
Citation: Li, T.; Lin, Y.; Cheng, B.; Ai,

G.; Yang, J.; Fang, L. PU-CTG: A Point

Cloud Upsampling Network Using

Transformer Fusion and GRU

Correction. Remote Sens. 2024, 16, 450.

https://doi.org/10.3390/rs16030450

Academic Editor: Sander Oude

Elberink

Received: 6 November 2023

Revised: 14 January 2024

Accepted: 19 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

PU-CTG: A Point Cloud Upsampling Network Using
Transformer Fusion and GRU Correction
Tianyu Li 1,2,3,† , Yanghong Lin 1,4,† , Bo Cheng 2,3, Guo Ai 3, Jian Yang 5 and Li Fang 3,*

1 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350117, China;
qsz20211327@student.fjnu.edu.cn (T.L.); linyanghong21@mails.ucas.ac.cn (Y.L.)

2 School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou 350117, China;
qsz20211338@student.fjnu.edu.cn

3 Quanzhou Institute of Equipment Manufacturing Haixi Institutes, Chinese Academy of Sciences,
Quanzhou 362216, China; guoai.rm@foxmail.com

4 University of Chinese Academy of Sciences, Beijing 100049, China
5 School of Geospatial Information, Information Engineering University, Zhengzhou 450052, China;

jian.yang@tum.de
* Correspondence: fangli@fjirsm.ac.cn
† These authors contributed equally to this work.

Abstract: Point clouds are widely used in remote sensing applications, e.g., 3D object classification,
semantic segmentation, and building reconstruction. Generating dense and uniformly distributed
point clouds from low-density ones is beneficial to 3D point cloud applications. The traditional
methods mainly focus on the global shape of 3D point clouds, thus ignoring detailed representations.
The enhancement of detailed features is conducive to generating dense and uniform point clouds. In
this paper, we propose a point cloud upsampling network to improve the detail construction ability,
named PU-CTG. The proposed method is implemented by a cross-transformer-fused module and a
GRU-corrected module. The aim of the cross-transformer module is to enable the interaction and
effective fusion between different scales of features so that the network can capture finer features.
The purpose of the gated recurrent unit (GRU) is to reconstruct fine-grained features by rectifying the
feedback error. The experimental results demonstrate the effectiveness of our method. Furthermore,
the ModelNet40 dataset is upsampled by PU-CTG, and the classification experiment is applied to
PointNet to verify the promotion ability of this network.

Keywords: point cloud upsampling; generative adversarial networks; cross-transformer; gated
recurrent unit; point cloud classification

1. Introduction

Point clouds are used extensively in remote sensing fields such as classification [1,2],
building reconstruction [3–6], and autonomous driving [7,8]. In recent years, thanks to
the development of deep neural networks, the research on point clouds has been greatly
accelerated. However, in view of the limitations of the real world, such as occlusion,
construction complexity, and distances in the scanning process, point clouds are often sparse
and nonuniform. Such situations pose huge challenges during point cloud applications [9].
The upsampling technique contributes to the establishment of high-resolution data, which
can improve the performance of point clouds in downstream tasks.

For a sparse and inhomogeneous point cloud, the task of upsampling is to input a
sparse point cloud and output a dense one, while the basic shape, uniformity, and other
characteristics of the point cloud need to be maintained. Since PointNet [10] pioneered
the direct extraction of features from disordered points, deep learning-based architectures
have been widely employed in the 3D vision domain. The success of several follow-up
works [11–15] has shown the enormous potential of this method. Based on the architecture
of PointNet++ [16], PU-Net [17] concatenated features of different scales in a weighted
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manner at the patch level and then used the convolutional layer for feature expansion.
Subsequently, MPU [18] used a progressive upsampling approach, repeating three upsam-
pling stages to gradually refine the coarse point cloud. PU-GAN [19] introduced generative
adversarial networks as a framework to ensure the uniformity of the point cloud as much
as possible. However, these methods still give priority to maintaining the integrity of the
overall shape and have limitations in detail-building.

In this paper, to improve the ability of detail construction in the upsampling process,
we present the point cloud upsampling network PU-CTG, which is based on a generative
adversarial architecture. The method we propose produces dense point clouds through the
generator and ensures the fidelity of outputs by the discriminator. For the generator, first
of all, we design a multiscale feature extraction and fusion (MEF) unit based on a cross-
transformer module to integrate the multiscale features that were extracted in a progressive
manner so that the minutiae can be better captured. Then, to increase the diversity of
the generated points, the number of features is extended by combining the hierarchical
upsampling unit with the folding operation [20]. Finally, we use the gated recurrent unit
(GRU) [21] to correct the point features during feature expansion. GRU can filter out
repetitive and useless information, making the development of fine-grained features more
accurate. On the other hand, the discriminator works as a classification model, which
supervises the generator to learn the real distribution of the model by distinguishing the
ground truth from the generated point clouds.

To verify the capability of PU-CTG, we perform experiments on the PU-GAN dataset
and PU1K dataset [22] for quantitative and qualitative evaluation. Furthermore, our method
is also tested on real scanned data from the KITTI dataset [23] and the TUM-MLS-2016
dataset [24]. We use the recently studied density-aware Chamfer distance (DCD) [25] as one
of the loss functions to constrain the network training. Compared to the Chamfer distance
and the earth mover’s distance, it is more efficient in calculation. Moreover, more attention
is given to the overall structure and local details. We compare PU-CTG with state-of-the-art
methods and perform a series of ablation experiments to assess the effectiveness of each
module. In general, our contribution can be summarized as follows:

• We propose a multiscale feature extraction and fusion (MEF) unit based on a cross-
transformer module containing an attention mechanism and position encoding. The
features at different scales are input simultaneously for effective integration so that
the detailed information can be further captured.

• We introduce a gated recurrent network (GRU) with error correction for the expanded
features. This can keep critical information in the calibration to promote the formation
of fine-grained features.

• We design the up-feature operation, which employs a simple hierarchical upsampling
and folding operation [20] to increase the number of points. The operation seeks to
enhance the diversity of generated points.

• The proposed method is evaluated on benchmark datasets, and the experimental
results show the effectiveness of our method. Finally, we demonstrate the assistance
of upsampling in point cloud classification.

The remainder of this article is organized as follows: Section 2 reviews previous
related work. Section 3 describes the proposed method in detail, and Section 4 shows the
upsampling results on different datasets and discusses the limits of the proposed method.
Finally, Section 5 summarizes the paper.

2. Related Work

In this section, research on point cloud upsampling can be divided into two main
categories: traditional methods based on optimization and methods based on deep learning.

2.1. Optimization-Based Point Cloud Upsampling

Early research works focused on optimization methods using a priori knowledge.
Ref. [26] firstly assumed that the surface of the point cloud is smooth. Based on this
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assumption, the upsampling points are obtained through Voronoi diagrams. Taking the
noise and outliers contained in the set of input points into account, ref. [27] introduced the
locally optimal projection operator (LOP) and the L1 norm, which is fault-tolerant. These
methods show good upsampling performance on 3D objects with smooth surfaces but
perform poorly on complex shapes or sharp edges because of their assumption that the
surface of the point cloud is smooth. Ref. [28] focused on the noise and non-uniformities of
the point cloud and proposed a weighted locally optimal projection (WLOP) with iterative
normal estimation to adjust the coordinates of the output point cloud. The effect of this
method is affected by the calculation of normal vectors and is subject to a certain degree
of randomness due to the parameter settings such as the density parameter and the angle
threshold in the experiment. Based on previous work, ref. [29] further investigated a
progressive method for upsampling based on edge perception. On this basis, ref. [30]
proposed a novel formulation based on the density of the original input points, accelerated
by an improved weighting operator for WLOP. Subsequently, ref. [31] introduced the
concept of deep points as a new point cloud representation to fill in the missing parts by
jointly optimizing both ends of the deep points.

Overall, optimization-based traditional methods mainly achieve upsampling by de-
signing a priori conditions and iteratively optimizing the generated points. Although
these methods have achieved some results, they all rely heavily on the design of a priori
conditions and lack the ability to autonomously extract a priori knowledge from data.

2.2. Learning-Based Point Cloud Upsampling

As deep learning approaches show great potential in 3D vision, researchers are begin-
ning to work on designing end-to-end deep learning networks that autonomously extract
information from data to achieve upsampling.

The earliest work using deep learning methods focused on 3D reconstruction from 2D
images. Ref. [32] accomplished the process of 3D reconstruction from a single image by
designing a conditional shape sampler that predicts multiple possible point cloud models
based on the input image. However, the parameters that can be learned in the network are
linearly related to the number of generated points, which does not scale well. It is difficult to
deal with a large number of points based only on the 3D distance metric as an optimization
criterion. Later, ref. [33] used 2D convolution operations to shape the 3D model from
multiple perspectives and utilized pseudo-rendered depth images in conjunction with 2D
projections to capture correlations between the generated point clouds for upsampling in a
more computationally convenient manner. Subsequently, ref. [34] represented the 3D shape
as a collection of parameterized surface elements. It approximates the target localization by
mapping a set of squares to a surface in 3D space, infers the representation of the surface,
and completes the reconstruction from the image to the 3D model. However, these methods
focus on reconstruction starting from 2D images and are not upsampled with point cloud
data as input. Many times the acquired point cloud data do not correspond to the 2D image.

For point cloud data, Pu-Net [17] gradually extracts the multi-resolution information
in the hierarchy based on the PointNet++ [16] architecture and learns the local and global
features of the point cloud. It has been a pioneer in deep learning networks for point cloud
upsampling using only point cloud data as input, laying out the way in which subsequent
upsampling networks are trained based on Patch block data. In contrast, ref. [35] later
designed an upsampling network based on PointNet’s [10] point generation model, but
in which the whole model is used as the network input for training. Compared to the
method of processing data into patch blocks, using the whole model as input can only
be applied to low-resolution models and is not suitable for high-resolution models with
many points. As the first attempt to upsample point cloud data using a deep learning
network, Pu-Net accomplished the task of upsampling from sparse to dense point clouds.
However, the generated point cloud model is too coarse, and the edges of the model cannot
be detected during the upsampling process, resulting in objects with unsmooth corners that
are prone to irregular undulations. To address these problems, in a follow-up work, they
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designed EC-Net [36], an upsampling network for edge perception, which is improved by
formulating an edge joint loss function that minimizes the distance from the point to the
edge. However, it is clear that this approach requires rather expensive edge annotations for
training. The training time also tends to be too long. Thus, the method is not applicable to
large data.

Immediately after, inspired by the multi-step approach [37] in the image neural net-
work super-resolution technique [38], ref. [18] designed a progressive upsampling network
MPU. With the same patch block database, the MPU subdivides an upsampling network
into multiple sub-networks. Compared to Pu-Net, MPU focuses on the detailed part of the
model. However, this progressive approach consisting of multiple sub-networks suffers
from low efficiency due to the complexity of the training process. Subsequently, ref. [19]
proposed a new upsampling framework, PU-GAN, which for the first time applied genera-
tive adversarial networks to point cloud upsampling to make predictions from a global
perspective with an adversarial learning strategy. Unlike traditional convolutional neural
networks (CNNs), generative adversarial networks (GANs) are able to motivate generators
to produce higher quality samples by training generators and discriminators against each
other [39]. Although PU-GAN has been greatly improved compared to previous works,
the ability to construct detailed parts is still limited, and it is still easy to generate noise
at boundaries. There are also upsampling networks that employ other ideas for imple-
mentation. For example, PUGeo-Net [40] introduced normals as an additional supervision
for the network and upsampling by learning the first and second fundamental forms of
local geometry. PMP-Net++ [41] is further applied to the upsampling task by performing
point cloud complementation based on the new strategy of shifting the points to capture
the topological relationship between incomplete and complete point clouds. Today’s point
cloud upsampling networks are data-driven, and most of them achieve far better results
than traditional methods. However, due to the prioritization of homogeneity and holism,
these networks are still limited in their ability to build detail and still generate a lot of noise
at the seams or boundaries of the model.

3. Overall Architecture of PU-CTG

The PU-CTG is based on the GAN architecture. The target of the generator is to pro-
duce dense outputs from sparse inputs by upsampling with discriminator constraints. As
shown in Figure 1, our generator follows the rules of feature extraction, feature expansion,
and coordinate reconstruction to process the input point clouds. For low-resolution input
point clouds, the purpose of the feature extraction component is to extract high-dimensional
features from them. Then, the feature expansion enlarges the number of points to extend
the extracted features. As the last stage, coordinate reconstruction regresses 3D coordinates
from the expanded features to construct high-resolution point clouds.

P
Multi-scale 

Feature Extraction 

and Fusion

Up-down-up 

Expansion Unit

coordinate 

reconstruction q

N×3 N×c (r+2)N×c rN×3

Feature Extraction Feature Expansion Coordinate Reconstruction

Figure 1. Generator architecture. The number of input points N is 256; the upsampling rate r is 4;
and the number of feature channels, c and c′, is 480 and 128, respectively.

Specifically, first, the feature extraction unit extracts features at different scales from
the input point cloud in a progressive manner. Inspired by MPU [18], we designed the
multiscale feature extraction and fusion (MEF) unit based on a cross-transformer to integrate
features across different layers. After that, the feature expansion aims to dilate the extracted
features of N × c to rN × c′, where N represents the number of input points, and c and c′

represent the number of feature channels at different stages. During this process, the gated
recurrent unit (GRU) will correct the expanded feature according to the feedback error. In
addition, a feature expansion operation incorporating a simple hierarchical upsampling
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and folding operation will improve the generated point diversity. Finally, we exploit
MLPs to obtain the coordinates of the new point clouds. In fact, we create the features
of (r + 2)N × c′ during expansion and keep the further rN points using Farthest Point
Sampling after MLPs in the coordinate reconstruction to improve the uniformity. The above
modules will be illustrated in Sections 3.1 and 3.2.

3.1. Multiscale Feature Extraction and Fusion (MEF) Unit

To extract features, MPU [18] constructs an architecture composed of a sequence
of dense blocks. They compute the local neighborhood dynamically by the k-nearest
neighbors (KNN) based on feature similarity and extract features from it in each block.
As the receptive field changes in blocks of different densities, the extracted features are
multiscale. Effective feature fusion is the key for learning information from multiscale
features. Thus, we build the multiscale feature extraction and fusion (MEF) unit. In MEF,
a cross-transformer is designed to connect the different blocks. An illustration of MEF is
shown in Figure 2. Specifically, the principle of the cross-transformer mechanism is shown
in Figure 2b. First, the features of two blocks at different scales are used as the two input
two-dimensional feature matrices. Then, the large-scale feature is adopted to initialize the
query matrix q, while the small-scale feature is used to initialize the key matrix k and value
matrix v:

q = Wql( fl), k = Wkl( fs), v = Wvl( fs) (1)

where Wq, Wk, and Wv are trainable matrices, l(·) is a projection function to align feature
channels, and fl and fs are the feature matrices of large-scale blocks and small-scale blocks,
respectively. Moreover, we use multiple heads to focus on the information of different
subspaces and enhance the expressiveness of the model. By using the multi-head attention
mechanism, each head can solve for a set of q, k, and v matrices. These matrices are then
individually concatenated to obtain the matrices Q, K, and V. Following the practice
of Point Transformer [42,43], we use subtraction instead of dot multiplication for the
interaction between Q and K. Therefore, the attention score y is calculated according to the
scaled dot-product attention:

y(Q, K, V) = so f tmax(
Q − K + pos√

dK
)(v + pos) (2)

where pos is the position encoding, which guides the network to capture the spatial
relationships between different local features, and

√
dK is the scaling factor. Similarly,

following the experiment of [42], pos is calculated according to the coordinates of every
two points pi and pj from the input:

pos = mlp(pi − pj).i, j ∈ (1, N). (3)

Finally , the output t of the cross-transformer is defined as follows:

output = l′(y + l( fl)) (4)

where l(·) and l′(·) are the projection and back-projection functions for dimension align-
ment. Through the cross-transformer, the features of blocks at different scales are effectively
fused. Then, the correlation between one another is fully utilized so that the output features
can contain richer semantic information.



Remote Sens. 2024, 16, 450 6 of 17

(a)

m
L

S Pos
y output

Q

K

V

a

a

V

y

c a

a

a

s

m

m

m

m : multiply

s

a

c

: subtract

: add

: concat

(b)

Figure 2. The multiscale feature extraction and fusion unit (a), cross-transformer (b).

3.2. Up-Down-Up Expansion Unit

For the expansion of point features, PU-GAN constructed an up-down-up expansion
unit, including two up-feature operators and one down-feature operator. The overall
process is shown in Figure 3. Based on this strategy, we propose constructing up-feature
operators by combining hierarchical upsampling and folding operations, which enhance
the diversity of points. Significantly, we introduce the gated recurrent unit (GRU) after the
second up-feature operator to correct the feedback error more precisely.

F1 Up-feature Operator   F  
Down-feature 

Operator
F2 -

  Up-feature Operator     GRUF

N×c rN×c N×c

N×crN×crN×c

Figure 3. Up-down-up expansion unit.

3.2.1. Up-Feature Operator

To upsample the point features r times, we build the up-feature operation by first
hierarchical upsampling and then folding. As shown in Figure 4b, hierarchical upsampling
is divided into two steps. The first stage is the top-down feature expansion part. For the
N × c input feature matrix, two feature matrices f1 ∈ N × 2c and f2 ∈ N × 3c are obtained
through MLPs. The next is fusion, where f1 and f2 are added to the original features after
deformation. By means of hierarchical upsampling, the input features are propagated from
general geometry information to detail points, which further promotes the generation of
fine-grained features.

After that, we take the 2D grid mechanism in [20], where the upsampled features
are appended to the 2D vector to increase the variations again. Finally, the features are
integrated by self-attention, and then the output is generated by a set of MLPs.
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Figure 4. The up-feature operator (a) and the hierarchical upsampling (b).

3.2.2. Gated Recurrent Unit (GRU)

In Figure 3, the difference △′ upsampled should be selectively memorized or forgotten
for the result of the first upsampling F′, since this strategy, as shown in Figure 5, mimics the
gated recurrent unit’s (GRU) choosing to remember or forget information. By calculating
the update gate z and the reset gate r, the features are further corrected. The standard GRU
takes the features in different time series as input. Instead, we treat F′ and the difference
△′ as our inputs so that the update gate z and the reset gate r are calculated as follows:

z = σ(Wz(F′ : △′) + bz)

r = σ(Wr(F′ : △′) + br)
(5)

where Wz and Wr are trainable matrices, bz and br are the bias vectors, σ is the sigmoid
activation layer, and : is the concatenation between two feature matrices. Therefore, the
output h is defined as:

h = z ⊙ F′ + (1 − z)⊙ h̃ (6)

where h̃ contains the preserved information from the difference △′ by the reset gate r, and
⊙ represents the Hadamard product. The calculation of h̃ can be formulated as:

h̃ = φ(Wh(F′ : r ⊙△′) + bh) (7)

where φ is the ReLU activation layer. By updating gate z and resetting gate r, repeated and
useless features can be filtered out, and useful features can be retained. Such a strategy
can more accurately correct the feature and improve the quality of fine-grained features
compared with addition, and we take the corrected feature h as the final upsampling
feature F.
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Figure 5. The gated recurrent unit.

4. Experimental Results and Discussion
4.1. Experimental Setup and Datasets

We trained the PU-CTG for 120 epochs using the Adam optimizer [44] with the two
time-scale update rule (TTUR). The learning rates of the generator and discriminator are
set as 0.001 and 0.0001, respectively. After 30,000 iterations, we gradually reduce both rates
by a decay rate of 0.7 per 30,000 iterations until 10−6. Our network is implemented based
on TensorFlow 2.0 and trained on an NVIDIA RTX A6000 GPU with a batch size of 28. The
model is evaluated on the PU-GAN dataset [19] and the PU1K dataset [22]. In addition,
performance on real scanned data is evaluated on the KITTI [23] and TUM-MLS-2016
datasets [24].

PU-GAN is an earlier point cloud upsampling dataset covering a rich variety of objects,
which includes 147 3D meshes from PU-Net [17], MPU [18], and the Visionair repository.
Among them, 120 3D meshes are used for training, and the remaining 27 3D meshes are
used for testing. PU1K is a new dataset covering 50 categories of objects, containing 1147
3D meshes from ShapeNetCore [45] mostly, where 1020 3D meshes are for training, and the
remaining 270 are for testing. Compared to PU-GAN’s dataset, PU1K is more challenging
and diverse. The strategy for data preparation is the same as that of PU-GAN [19]. The
KITTI dataset contains common real-world objects captured from autonomous driving,
and the TUM-MLS-2016 dataset is based on large-scale urban point cloud mapping the
TUM campus with an area of approximately 0.2 km2 for the city scene segmentation task.

4.2. Loss Function

In this work, the loss function for PU-CTG consists of GAN loss, reconstruction loss,
uniformity loss, and repulsion loss. Since the GAN architecture is used, we consequently
introduce the GAN loss. To make the output point cloud uniformly distributed, we
introduce the uniformity loss and the repulsion loss. Encouraging the generated points to
lie on the target surface and be more realistic, we use the density-aware Chamfer distance
(DCD) proposed recently as the reconstruction loss:

LDCD =
1
2

(
1

|S1| ∑
x∈S1

(
1 − 1

nŷ
e−α∥x−ŷ∥2

)

+
1

|S2| ∑
y∈S2

(
1 − 1

nx̂
e−α∥y−x̂∥2

))
(8)

where α is a hyperparameter, n is the query frequency for pairing between two point sets, x
and y are the generated point cloud and ground truth, respectively, and x̂, ŷ are defined as:

x̂ = minx∈S1∥y − x∥2

ŷ = miny∈S2∥x − y∥2
. (9)

Compared with CD, DCD is a more intensive similarity measure that can detect differences
in density distribution. On the other hand, it not only considers the overall structure and
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local details more comprehensively but also has more computational efficiency than EMD.
Otherwise, the other loss function settings are the same as PU-GAN [19]. Finally, our joint
loss of generator LG and discriminator loss LD are:

LG = λganLgan(G) + λrepLrep + λuniLuni + λDCDLDCD

LD = Lgan(D)
(10)

where λgan, λrep, λuni, and λDCD are the weights of each loss function, which are set as 0.1,
1, 10, and 100.

4.3. Experimental Results and Evaluation

We evaluate PU-CTG by quantitative comparison with three evaluation metrics:
(i) point-to-face (P2F) distance using the testing models, (ii) Chamfer distance (CD), and
(iii) Hausdorff distance (HD).

4.3.1. Quantitative and Qualitative Results on PU-GAN’s Dataset

As shown in Table 1, PU-CTG is compared with four state-of-the-art point set upsam-
pling methods. For the Chamfer distance (CD) and Hausdorff distance (HD), the PU-CTG
results reach the lowest values and achieve the best performance. For point-to-face dis-
tance (P2F), PU-CTG achieves suboptimal results that are very close to PU-GAN. For the
quantitative results, we further prove the better performance of PU-CTG considering the
upsampling shown in Figure 6. The results of PU-GAN and PU-CTG on the same model
are visually illustrated. For example, from the results of PU-GAN, we found that there is
still considerable noise at the bottom of the statue. In addition, gaps in the bird’s paws and
the camel’s tail were also observed. In contrast, PU-CTG significantly reduces the noise
in the same area. In particular, PU-CTG generates higher-quality edges for the statue. In
terms of time consumption, PU-CTG decreases the time for calculating based on PU-GAN.
However, compared to PU-GAN and PU-CTG, PU-Net has the lowest computation time
due to the simplicity of its structure, which also leads to its inferior performance.

Table 1. Quantitative comparison of PU-CTG vs. state-of-the-art on PU-GAN’s dataset.

Methods P2F (10−3) CD (10−3) HD (10−3) Time(s)

EAR [29] 5.82 0.52 7.37 -
PU-Net [17] 6.84 0.72 8.94 0.35

MPU [18] 3.96 0.49 6.11 -
PU-GAN [19] 2.33 0.28 4.64 0.63

PU-CTG 2.36 0.24 3.45 0.52

4.3.2. Quantitative Results on the PU1K Dataset

We also compare our network with PU-Net and MPU on the PU1K dataset. Perhaps,
because of the unstable nature of the inherent GAN architecture in PU-GAN, the results
from the code made available by its authors are unable to be reproduced. Therefore, we
do not compare it with PU-GAN on PU1K. Table 2 shows the quantitative results of the
comparisons. Our model shows relatively better performance on generalization. When
the error of all methods increases, a better improvement has been made by PU-CTG in all
metrics than with all other methods.

Table 2. Quantitative comparison of PU-CTG vs. state-of-the-art on PU1K.

Methods CD (10−3) HD (10−3)

PU-Net [17] 1.16 15.17
MPU [18] 0.94 13.33
PU-CTG 0.69 10.50

Points for input and ground truth are 2048 and 8096.
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   (a)Input (b)Ground Truth (c)PU-GAN (d)PU-CTG

Figure 6. Comparing upsampling results of PU-GAN (c) and PU-CTG (d) for the same input (a) and
ground truth (b).

4.4. Upsampling Real-Scanned Data

For evaluating performance on real-scanned data, our proposed method is also tested
on the KITTI dataset [23] and the TUM-MLS-2016 dataset [24]. Figure 7 compares the
performance of PU-CTG and PU-GAN [19] on the KITTI dataset. Both models are trained
on PU-GAN’s dataset for fair comparison, and then each point cloud, which is divided into
many patches, is quadruple upsampled by both models, respectively. Starting from the
first line, it can be observed that the input raw point cloud is sparse and non-uniform due
to hardware and environmental limitations, e.g., vehicles, cyclists, and pedestrians. After
upsampling, the point cloud becomes denser and more detailed in terms of local geometric
information with fewer occlusion-induced holes. Compared to PU-GAN, our results fill
more holes caused by occlusions while producing point clouds with sharper boundaries.
The results on the TUM-MLS-2016 dataset presented in Figure 8 further demonstrate the
superiority of our method on point clouds directly mapping large-scale urban scenes. For
the panorama and local, our method preserves the hole and boundary information well.
Figure 9 illustrates the point density distribution before and after upsampling on the TUM-
MLS-2016 dataset, which indicates that the point density is significantly increased after
upsampling by PU-CTG and can still remain relatively homogeneous. The produced dense
and uniform point clouds containing more geometric details may contribute to improved
performance in downstream tasks, e.g., point cloud classification and segmentation.
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15

Input

PU-GAN

Ours

Figure 7. Upsampling results of our proposed method on the KITTI dataset. Some cases are magnified,
e.g., vehicles, cyclists, and pedestrians , indicated by the red frames.

(a) Input (b) PU-CTG

Figure 8. Upsampling results of the TUM-MLS-2016 dataset. (Top row: Panorama; bottom row: Local
detail indicated by the red frame.)
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Figure 9. Point density distribution of upsampling on the TUM-MLS-2016 dataset.

4.5. Ablation Study

To evaluate the effects of our components, including MEF, GRU, the hierarchical
upsampling operator, and loss of DCD, we removed each of them from the network or
replaced them with the methods in PU-GAN (such as using EMD instead of DCD).

Table 3 shows the evaluation results of CD and HD. The absence of each component
from PU-CTG leads to poor overall performance. MEF adds a cross-transformer between
blocks at different scales, capturing contextual information and effectively performing
feature fusion. GRU achieves the correction of error on features by eliminating irrelevant
and repetitive features. Hierarchical upsampling of features before the folding operation
increases the diversity of points. Using DCD as reconstruction loss instead of EMD can
better balance the overall structure and local details of the model.

Table 3. Quantitative comparisons: removing each specific component from the full PU-CTG pipeline
(top four rows) vs. the full PU-CTG pipeline (last row).

CD (10−3) HD (10−3)

MEF 0.30 4.21
GRU 0.29 4.50

Hierarchical Upsampling 0.29 4.76
DCD 0.26 4.71

Full Pipeline 0.24 3.45

4.6. Discussion of Point Cloud Classification

Point cloud upsampling is also helpful for object recognition in 3D reconstruction. In
this work, we conduct classification experiments on PointNet [10] and KPConv [46] using
the ModelNet40 [47] dataset before and after upsampling, separately. For PointNet with
global features, we trained it on two sparse datasets (with 512 points and 2048 points) and
two dense ones (with 2048 points and 8192 points) upsampled by PU-CTG. After training
on these data, the same result was tested. The overall classification accuracy of one group
increased from 82.4% (by 512 sparse points) to 83.91% (by 2048 dense points), and the other
group increased from 88.57% (by 2048 sparse points) to 89.64% (by 8192 dense points).
Similarly for KPConv, by incorporating local features, the overall classification accuracy
increased from 88.80% (by 1024 sparse points) to 91.11% (by 4096 dense points). It has been
proven that PU-CTG helps improve the classification performance.

4.7. Effects of Additive Noise and Input Sizes
4.7.1. Upsampling Point Sets of Varying Noise Levels

To exemplify the robustness of our method to noise, we add Gaussian noise of different
levels to the input point cloud, including 0.005, 0.01, 0.015, and 0.025. The quantitative
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comparison results are shown in Table 4. It can be seen that, as the level of noise increases,
both the PU-GAN and our method simultaneously degrade in performance. However,
our method presents a much lower downward trend. This gap increases at larger noise
level and shows that our method has better robustness to noise than PU-GAN. Figure 10
illustrates the qualitative results, which further demonstrates the reliability and robustness
of the proposed method when encountering noise. PU-CTG can better combat noise and
restore some detailed parts.

(a) 0.005 (b) 0.01 (c) 0.025

Figure 10. Upsampling results by applying PU-GAN to inputs with a noise level of 0.005 (a), 0.01 (b),
and 0.025 (c). (From the first to the last row, in order, are input, PU-GAN, and PU-CTG).

Table 4. Quantitative comparison on the point cloud with varying noise levels.

Methods
Level = 0.005 Level = 0.01 Level = 0.015 Level = 0.025

CD
(10−3)

HD
(10−3)

CD
(10−3)

HD
(10−3)

CD
(10−3)

HD
(10−3)

CD
(10−3)

HD
(10−3)

PU-GAN 1.13 7.48 1.33 9.76 1.64 12.29 2.23 20.45
PU-CTG 0.97 6.25 1.13 7.76 1.36 9.60 2.02 16.80

4.7.2. Upsampling Point Sets of Varying Sizes

Figure 11 shows the qualitative results of our method for point clouds of different
sizes. The results of upsampling may be worse, compared to those with more points, on
point clouds with fewer points. However, PU-CTG still maintains a good upsampling
result with only 512 points of input. Certainly, on dense point clouds, our method gives
better results.
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(a) 512 points (b) 1024 points (c) 2048 points (d) 4096 points

Figure 11. Upsampling point sets of varying sizes (top row: input; bottom row: PU-CTG).

4.8. Effects of Generating 3D Meshes

To further validate the effectiveness of the proposed upsampling method, we compare
the 3D meshes generated by the point clouds before and after upsampling, respectively.
Figure 12 illustrates the results of the mesh generated from the upsampled point cloud.
The mesh generated after upsampling retains a more complete shape and more detailed
information than before upsampling. For example, in the case of the camel and the horse,
the mesh generated after upsampling has much finer detail, such as in the feet and head,
while maintaining a relatively more complete overall shape.

(a) camel (b) chair (c) horse

Figure 12. 3D meshes generated by upsampling point clouds (top row: input; bottom row: PU-CTG).

4.9. Limitations

Point cloud upsampling is a generic upstream operation, and it is not designed to
target a specific downstream task. Hence, during upsampling, we try to maintain the basic
shape of the point cloud and output a uniformly dense point cloud. However, we do not
always want to output a uniformly distributed point cloud in all scenarios. In some tasks,
it is desired to upsample more points on curved surfaces than on planar surfaces because
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points on curved surfaces are usually richer in spatial information. In this case, we can
consider taking curvature information into account in the patch extraction stage to extract
more patches where the curvature is high instead of sampling uniformly over the whole
surface of the point cloud.

5. Conclusions

In this paper, we proposed a new GAN-based point cloud upsampling network called
PU-CTG. To better extract and integrate the features of multiscale blocks, we designed the
cross-transformer to construct a feature extraction unit. The module uses the features in
different blocks as input. Position encoding is calculated from raw coordinates to guide the
module in learning the spatial relationships between different local features. We simulate
the GRU module to adjust the features. Repetitive and useless features will be dropped
as much as feasible in this module. The detailed information will be refined during the
feature fusion and correction. In addition, we use the operation of hierarchical upsampling
followed by the 2D grid to expand the features, which will further promote diversity of
generated points in the replication process. In the training phase, we quote the state-of-
the-art DCD as the reconstruction loss to optimize, prompting the generated points to lie
on the target surface. The experimental results prove the validity of PU-CTG. Our work
further extends the improvement of upsampling for classification tasks. We demonstrate
that creating high-resolution data instead of raw data can help improve the performance
of the classification task. In the future, we will continue to improve the performance of
upsampling for the sake of providing new auxiliary options for point cloud classification.
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