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Abstract: Super-resolution (SR), a technique to increase the resolution of images, is a pre-processing
step in the pipelines of applications of Earth observation (EO) data. The manual design and optimisa-
tion of SR models that are specific to every possible EO use case is a laborious process that creates
a bottleneck for EO analysis. In this work, we develop an automated machine learning (AutoML)
method to automate the creation of dataset-specific SR models. AutoML is the study of the automatic
design of high-performance machine learning models. We present the following contributions. (i) We
propose AutoSR4EO, an AutoML method for automatically constructing neural networks for SR.
We design a search space based on state-of-the-art residual neural networks for SR and incorporate
transfer learning. Our search space is extendable, making it possible to adapt AutoSR4EO to future
developments in the field. (ii) We introduce a new real-world single-image SR (SISR) dataset, called
SENT-NICFI. (iii) We evaluate the performance of AutoSR4EO on four different datasets against the
performance of four state-of-the-art baselines and a vanilla AutoML SR method, with AutoSR4EO
achieving the highest average ranking. Our results show that AutoSR4EO performs consistently well
over all datasets, demonstrating that AutoML is a promising method for improving SR techniques
for EO images.

Keywords: super-resolution; neural architecture search; automated machine learning

1. Introduction

Many applications require high-resolution satellite imagery, such as land and forestry
management, agricultural observations and crop monitoring [1–3], high-accuracy mapping,
civil engineering and disaster relief and emergency response operations [4]. Technological
advancements have increased the spatial resolution of optical images collected by satellites.
Still, different factors constrain this resolution, including the size, power and cost of the
satellites and trade-offs between swath width and spatial vs. temporal resolution.

Super-resolution (SR) techniques increase the spatial resolution of images with the
goal of improving performance in downstream EO use cases, such as object detection [5–7].
Three requirements are considered when selecting SR models fitted to downstream Earth
observation (EO) tasks.

Firstly, the SR method needs to be able to model the data at hand. Different approaches
have been designed for different types of data. Edge-maintaining SR models work well
for imagery with many sharp edges, such as buildings. However, other models are better
suited for smoother images with more gradients than sharp edges (e.g., large bodies of
water or desert landscapes).
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Secondly, the choice of training dataset impacts the final results. SR models can be
trained with images from other sensors if we lack the high-resolution reference images
needed for supervised learning. This process of transferring knowledge by training on
one dataset and evaluating on another is called transfer learning. However, results can
degrade when we train a model on a dataset that is very different from the target dataset.
For instance, trained models transfer poorly to the target data [8] if the difference in spatial
resolution is too large. This issue relates to domain transfer and arises from differences in
image characteristics, like the modulation transfer function (MFT), signal-to-noise ratio
(SNR), spatial resolution and spectral characteristics.

Thirdly, we need the ability to evaluate the performance of SR frameworks in different
pipelines. SR frameworks—either single, fixed models or algorithms that can automatically
design SR models—need to be versatile because SR is a low-level computer vision task
followed by high-level tasks with different requirements for the model, data and evaluation.

Current approaches to SR (e.g., SwinIR [9], DeCoNAS [10] and CARN-M [11]) fail to
fulfil the requirements related to EO pipeline design.

Firstly, a single, well-performing SR model is often used for all scenarios (Figure 1a).
Secondly, many SR methods (e.g., SRDCN [12] and DMCN [13]) are trained and

evaluated on synthetic datasets because these are easier to obtain than real-world datasets.
Real-world datasets require matching images from different sensors, as shown in Figure 2.
However, the performance of a model trained on synthetic data overestimates the model’s
performance on real-world data [14]. The simple downsampling procedures that are used
for creating synthetic data are unable to capture the complicated patterns occurring in
real-world data. The complex systems encountered in EO produce data that are often
noisy and unpredictable. Differences in reflectance values in low-resolution inputs and
high-resolution ground truths may bias the loss and training process, and the time lag
between two matching images, the presence of clouds and small pixel shifts due to image
co-registration all further complicate the picture.

Manual model design and training data selection can overcome these issues, but
carrying this out for every target and application (Figure 1b) significantly increases the
time and effort required for designing end-to-end pipelines.

We can satisfy the three requirements of good SR systems by automating the pro-
cess of SR model design (Figure 1c) using automated machine learning (AutoML) ap-
proaches. AutoML is a recently growing research area studying the automatic design of
high-performance machine learning models. Neural architecture search (NAS) systems
are a specific group of AutoML systems that automatically design neural networks to find
better architectures.

NAS systems consist of three components [15], as shown in Figure 3. The first compo-
nent in creating neural networks is a search space, which is the set of all available design
choices encoded by hyperparameters, including architectural parameters, like the number
and type of layers in the neural network, and training parameters, like the learning rate.

The second component is a search strategy, which determines how to traverse the search
space and selects suitable combinations of hyperparameter values. These combinations of
values determine the architecture of the candidate network architecture to be evaluated.
The vast search spaces typically encountered in NAS systems require sophisticated search
strategies for effective exploration.

The third component is an evaluation strategy, which efficiently assesses the candidate
network until the search strategy finds a suitable architecture, i.e., the best architecture
found after a pre-determined number of evaluations or the first architecture to reach a
target metric, like minimum accuracy score.
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Figure 1. Illustration of the three options for selecting SR methods, where D denotes a dataset, T
is a downstream task and SR represents an SR method: (a) the scenario where the same model
is used for all pipelines, possibly with lower performance than desired; (b) the case when an SR
model is manually selected or designed for each pipeline, which is time-consuming; (c) our proposed
approach, AutoSR4EO, which can automatically construct a custom neural network for each dataset;
(d) the currently available model blocks and sets of pre-trained weights in our proposed approach,
the search space of which could easily be extended in the future.

HR target LR input

Real-world image pair

HR target

Bicubic
downsampling

LR input

Derived
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Sensor A Sensor BSensor A

Figure 2. A synthetic image pair compared to a real-world image pair. The synthetic pair is ob-
tained by bicubically downsampling an image using a pre-determined scaling factor. The real-
world pair consists of two co-located images obtained by different sensors: (left) UC Merced [16];
(right) OLI2MSI [17].
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Figure 3. Diagram of the components of an NAS framework. A search strategy s samples candidate
models from the search space S. The candidate model is evaluated. The search strategy is updated
with the evaluation results.

While NAS systems create high-performance neural architectures, several challenges
arise when creating NAS systems for EO tasks. Several NAS approaches have been pro-
posed in the past few years, including approaches for the EO domain. To the best of our
knowledge, none have yet been applied to SR for EO images. Moreover, designing a good
search space for this task is a challenging problem. On the one hand, the search space must
be large and diverse enough to design well-performing SR models for each dataset; on the
other hand, if the search space is too large, it can become too computationally expensive
to search.

We address these challenges and create an NAS SR approach for EO. Our contributions
are as follows:

• We propose AutoSR4EO, the first AutoML system for SR for EO, by designing a
customised search space based on state-of-the-art research in SR;

• We further propose to use pre-trained weights generated from EO datasets in Au-
toSR4EO to facilitate knowledge transfer and speed up the training of SR methods for
EO tasks;

• We introduce a vanilla baseline AutoML system for SR, dubbed AutoSRCNN, based
on existing NAS search spaces consisting exclusively of convolutional layers, which is
useful as a lower-bound baseline for comparison to future AutoML approaches for SR;

• We evaluate the performance of AutoSR4EO on four EO datasets in terms of peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) and compare our
methods to four state-of-the-art SR methods and AutoSRCNN;

• We introduce SENT-NICFI, a novel SR dataset consisting of paired images obtained by
Sentinel-2 [18] and Planet [19].

2. Related Work

In this section, we discuss the related work on the topics of SR and AutoML for EO
tasks. We conclude with a discussion of the relevance of this work.

2.1. Super-Resolution

Super-resolution can be addressed using either traditional model-based approaches
(e.g., regression [20–22] and kernel estimation [23]) or, more recently, neural networks. Deep
learning methods, which train neural networks to map low-resolution images to higher-
resolution images, are currently state-of-the-art in super-resolution [24]. These methods
range from classical convolutional neural networks (CNNs) (e.g., SRCNN [25–27]) to newer
generation SR methodologies that use residual neural networks, generative adversarial
networks (GANs) and vision transformers.

Residual approaches (including EDSR [27], WDSR [28] and CARN-M [11]) train
deeper networks than earlier fully convolutional approaches, like SRCNN [25], using
residual connections. Residual connections preserve the information of previously extracted
features, alleviating the problem of features disappearing as network depth increases [29].

Attention-based models (e.g., RCAN [30], AWSRN [31] and HBPN [32]) weigh features
according to their importance using channel attention.
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GAN-based approaches are gaining popularity in SR. These architectures consist of a
generator and a discriminator that are trained alternatingly. One of the first approaches
based on a GAN was SRGAN [33]. Other GAN-based SR methods include EEGAN [34],
ESRGAN [35], ESRGAN+ [36], EnhanceNet [37] and OpTiGAN [38]. GANs are also used
for SR for EO tasks: MA-GAN [39] combines a GAN with multi-attention and a pyramidal
structure; TE-SAGAN [40] reduces artefacts and improves texture with self-attention and
weight normalisation; NDSRGAN [41] uses pairs of images taken at different altitudes
instead of bicubically downsampled images.

GANS are difficult to include in automated frameworks as they face training chal-
lenges, like mode collapse, non-convergence, instability and vanishing gradients [42],
and they come with the risk of hallucination. NAS frameworks that are specifically de-
veloped for GANs do exist (e.g., [43–45]), but our goal was to create a rich search space
comprising different types of architectures. The two-network architectures of GANS make
it very challenging to include any other types of architectures because of the significant
differences in both training and architecture.

Other notable work comes from the recent area of vision transformers (e.g., [46–48]).
Liang et al. [9] applied vision transformers to super-resolution, taking inspiration from the
Swin Transformer [49], and achieved state-of-the-art results while using similar amounts of
data as convolutional baselines.

Recently, SR approaches using diffusion techniques have been proposed. For instance,
Han et al. [50] used diffusion to create detailed super-resolved images and used feature
distillation to reduce inference time. Wu et al. [51] used diffusion together with contrastive
learning to estimate the degradation kernels of images, without making assumptions
about the kernels. Ali et al. [52] combined diffusion models with vision transformers in a
two-step approach.

We took a different approach to SR. Instead of designing a new SR algorithm, we
designed a framework that can automatically generate a network architecture for a given
dataset. The advantage of this approach is that architectures can be created and optimised
automatically for any dataset at hand. Moreover, such an approach goes beyond model
selection and can yield new architectures. We built our search space based on existing
residual- and attention-based SR approaches.

2.2. AutoML for EO Tasks

Auto-sklearn [53,54], AutoGluon [55] and FLAML [56] are examples of popular off-the-
shelf AutoML systems for tabular data. These frameworks allow users to easily optimise
their machine learning pipelines using classic machine learning algorithms. AutoKeras [57]
and Auto-Pytorch [58] automatically design neural networks and also support image data.

The EO community is interested in using AutoML in their applications; for example,
César de Sá et al., compared the performance of auto-sklearn and AutoGluon to a manual
design approach for grass height estimation [59]. In atmospheric science, Zheng et al.,
employed the FLAML framework to estimate particulate matter concentrations in satellite
measurements [60]. In image classification, Palacios Salinas et al., proposed a network
architecture search (NAS) system optimised for classifying EO images with blocks that
were pre-trained on four EO datasets (e.g., [16,61–63]) by customising the search space of
AutoKeras [64]. Another approach for object recognition in EO images was presented by
Polonskaia et al., who proposed an automated evolutionary NAS approach for designing
CNNs implemented in Auto-Pytorch [65].

Even though existing AutoML systems have been successfully applied to EO tasks,
the available frameworks have yet to cover all tasks related to EO data. As we show in this
work, we can create better and more accurate ML pipelines for EO data by extending or
creating AutoML frameworks that focus on the requirements for EO tasks.
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NAS Systems for SR

One of the first examples of an NAS system for SR, MoreMNAS [66], was designed for
mobile devices by optimising both the peak signal-to-noise ratio and FLOPS. The search
strategy is a separate reinforcement learning (RL) neural network that selects candidate
networks. Similarly, FALSR [67] uses an RL search strategy and evolutionary search at the
micro and macro levels. A downside of using a neural network for the search is the added
overhead of training the network in addition to training the candidate architecture.

MoreMNAS and FALSR have relatively high search costs: 56 and 24 GPU days,
respectively [10]. DeCoNAS [10] only requires 12 GPU hours for the search as it uses
parameter sharing during the training of candidate networks. MBNASNet [68] further
improves these results because it captures multi-scale information better with the help of
its multi-branch structure. Nevertheless, state-of-the-art SR techniques still outperform
current NAS approaches in terms of PSNR and SSIM [24].

A key aspect differentiates these works from our proposed methods: we search and
train on the target dataset. In most super-resolution works, the generated models are not
optimised for the target dataset [10,66–70]. Instead, the networks are often searched and
trained on the DIV2K dataset [71] (a large-scale dataset with multiple scaling factors for
the development of SR methods) and evaluated on a different set of benchmark datasets
(e.g., Set5 [72], Set 14 [73], and Urban100 [74]). This is less computationally expensive than
repeating the search and training with multiple datasets, but it comes with the risk that
the resulting pre-trained model is not suitable for each task because it is optimised for
another dataset.

2.3. Relevance of Our Work

Previous work has demonstrated the successes achieved using NAS systems in the
context of EO image classification. NAS systems may enable similar gains for other EO
tasks, including SR. To the best of our knowledge, our work is the first to propose an NAS
method for SR specifically for EO data. Our goal is to leverage an NAS system to improve
the current state-of-the-art SR approaches for EO images by automatically designing a
network for each dataset. While others have mainly considered transferring knowledge
from natural image datasets, such as ImageNet [75], we studied how transfer learning can
be efficiently used by considering transferable knowledge within the EO domain.

3. Materials and Methods

In this section, we describe our methods, the data used in this study and the experi-
mental setup.

3.1. Methods

We now describe our new automated SR method for EO images, called AutoSR4EO.
Our goal was not to propose a new SR neural network architecture; instead, we aimed to
devise a system that can produce a new and high-performance neural network architecture
for each dataset. The three main components of an NAS system (as described in Section 1)
are (i) a search strategy, (ii) a search space and (iii) an evaluation procedure (also called
performance estimation strategy) [15].

To reach our goal of creating an NAS system for SR, our main focus was on the
first component: a new customised search space specifically designed for the task of SR.
We designed this search space by including all design choices (i.e., the hyperparameters
involved in designing neural networks) from previously proposed SR architectures (see
Section 3.3.1).

The second component is the search strategy, which is used to sample from this search
space. Different search strategies can be used for this purpose, including Bayesian optimi-
sation or random search. We propose using an existing search strategy (see Section 3.1.2).
The search strategy may stop the search early if it does not find new candidate architectures
that improve the validation loss of the best candidate found so far.
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The third component of NAS systems, the evaluation procedure for efficiently evaluat-
ing sampled architectures, is simple: candidate architectures are created and trained one by
one using early stopping on the validation set until a maximum number of epochs (100) is
reached. The final validation performance of each candidate network is saved. The best
candidate is retrieved and evaluated on the test set when the maximum number of trials is
reached or when the search strategy stops the search early due to lack of improvement.

We implemented our methods in AutoKeras, like the work on image classification
by Palacios Salinas et al. [64]. The AutoKeras library is a natural choice for SR because it
already contains functionality for image tasks.

The combination of a search strategy and our custom search space leads to the selection
of a pre-determined number of candidate architectures, referred to as trials. In the following
subsections, we specify the SR blocks that are the basis of the search space of AutoSR4EO
and we describe the search strategy.

3.1.1. Search Space

AutoKeras implements a search space in the form of configurable blocks that are
used as the basic units to build candidate architectures. A block is a smaller collection of
possible design choices. For instance, the ConvBlock consists of convolutional layers and
corresponding hyperparameters, like the number of kernels and filters. Multiple blocks
combine to create larger search spaces. The search strategy builds candidate networks by
selecting and stacking different blocks, and the blocks themselves can also be morphed,
i.e., the hyperparameters of the blocks can be optimised.

AutoKeras offers different types of blocks that are mostly used for image classification,
such as ResNet [76]. However, SR is a complex image task that requires different architectures.

To define a new SR framework for EO tasks, we propose a search space that in-
cludes relevant architectural hyperparameters for creating SR networks. We define this
search space based on existing deep learning models for SR tasks, namely, RCAN [30] and
WDSR [28]. The model blocks form the foundation of AutoSR4EO. We selected WDSR and
RCAN as the basis of AutoSR4EO because of the representative nature of these methods
in the domain of non-GAN-based SISR methods. Both WDSR and RCAN achieve high
performance for SR tasks with natural images [77–80].

In our implementation, the RCAN block had just 1 residual group instead of the
original 10 because our initial experiments indicated that the version with 1 residual group
achieved significantly higher scores than the original.

Figure 4 illustrates the search space of AutoSR4EO. The search strategy selects a type
of model block and modifies it by choosing the number of residual blocks in the selected
model. We based the ranges of the numbers of residual blocks on the original papers [28,30]:
the maximum number of blocks for RCAN in search space S was 20, while in search space
L, the maximum number of 40 reflected the range of residual blocks in WDSR.

N Image normalization to [0,1]

D Image denormalization to [0,255]

n_res Number of residual blocks: integer
    - RCAN: S: [10,20], L: [10,40]
    - WDSR: [4,40]

N D

Model block
RCAN
WDSR

Weights
Cerrado UC Merced

So2SAT OLI2MSI

Model hyper- 
parameters

n_resLR
image

HR
image

Figure 4. The architecture and search space hyperparameters of search spaces S (small) and L (large)
in AutoSR4EO. The large search space allows for more residual blocks in RCAN. The range for WDSR
is equal in both search spaces. The search spaces can be abstracted into three components that are
tuned automatically by the search strategy: (i) the model block; (ii) the model hyperparameters;
(iii) the set of pre-trained weights. The currently available options are shown for each component,
but all three components can be extended.

Finally, the search strategy selects a set of pre-trained weights for the residual blocks.
The shape of the upscaling module at the end of the network depends on the upscaling
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factor. This limits the usage of pre-trained weights to weights obtained from datasets with
the same upscaling factor as the training dataset. Therefore, we restricted the pre-trained
weights to the residual stack to make the weights transferable to datasets with other scaling
factors. We trained WDSR and RCAN on EO datasets to obtain these weights.

Figure 4 shows a schematic of AutoSR4EO and the hyperparameters defining its
search space.

Design choices. In practice, a user is more likely to have access to a model trained on
a different dataset than the target dataset. Therefore, AutoSR4EO cannot select pre-trained
weights from the dataset on which it is trained and evaluated.

We set hyperparameters, such as the kernel sizes, the number of filters, the learning
rate and residual block hyperparameters, including linear scaling factor and expansion, by
following the recommendations of the authors of RCAN and WDSR. Thus, we limited the
search space to increase the likelihood of finding high-performing solutions.

The maximum number of blocks was one of the most important design choices in
defining this search space. We investigated two search spaces: S, with a maximum number
of 20 residual blocks in the RCAN model block, and L, with a maximum number of
40 residual blocks in the RCAN block. These choices determine the maximum depths of the
models generated by AutoSR4EO: low values result in shallower models and higher values
result in deeper models. Deeper models may model more complex patterns, but they are
also more prone to overfitting.

3.1.2. Search Strategy

Search strategies sample hyperparameter values from search spaces to select candidate
network architectures. We used AutoKeras’ default search strategy: a combination of
greedy and random search. This stops further exploration early if the search converges
to a local optimum. In each trial, the search strategy builds a candidate network by
sampling the search space and the blocks and block hyperparameters are selected and
combined into a network. The network is then trained and evaluated. AutoKeras saves the
performance and returns the highest-scoring neural network after the final trial. Other NAS
frameworks (e.g., NNI [81]) could implement the same concepts. The networks generated
by AutoSR4EO vary in depth and the number of parameters, depending on the choices of
the search strategy.

Time Complexity. The time complexity of NAS systems is O(nt), where n is the
number of trials and t the average trial time [57]. More trials may be necessary to achieve
convergence if the search space size is increased. However, the number of trials is much
lower than the number of configurations in the search space; therefore, we doubted that
the number of trials would increase significantly. Combined with the linear complexity of
NAS systems, the cost of adding new methods is relatively small.

3.2. Data

We selected both types of datasets that are used for SR: synthetic datasets created by
downsampling existing images and real-world datasets created by matching acquired im-
ages from different sensors. We used the five datasets shown in Table 1 for both evaluation
and pre-training.

3.2.1. Synthetic Datasets

Table 1 lists the EO image datasets used to create the synthetic data. The low-resolution
images were generated by downsampling the images in the data sources using a bicubic
kernel [28–30,71] with a scaling factor of 2 (i.e., the resolution of the high-resolution images
is twice that of the low-resolution images). We used the following data sources:

• UC Merced [16], which is a dataset for land use image classification containing
21 different classes of terrain in the United States;

• So2Sat [62], which is a dataset comprising images of 42 different cities across different
continents. The RGB subset of So2Sat consists of Sentinel-2 images. We used this
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dataset exclusively to generate the pre-trained weights because the large size of the
dataset made it infeasible to evaluate AutoSR4EO on this dataset using the current
experimental setup;

• Cerrado-Savanna [82], which consists of images of Brazil’s Serra do Cipó region and
has a wide variety of vegetation and high variations between classes.

3.2.2. Real-World Datasets

The simple downsampling procedure used to generate synthetic data can oversimplify
differences between high- and low-resolution images from different sensors. We can
avoid this problem by using real-world datasets with different resolutions. However,
these datasets are much more difficult to obtain due to the limited availability of freely
accessible satellite data with different resolutions. Additionally, neural networks have to
account for differences in images that can occur due to non-strict overlapping between
the spectral bands of different sensors and different signal-to-noise ratios. Discrepancies
can also occur during radiometric calibration when estimating reflectance from radiance.
Additionally, atmospheric conditions can change over time and data providers provide
images at different production levels, for instance, either top of atmosphere (TOA) or
bottom of atmosphere (BOA) [83]. We used the following two real-world datasets:

• OLI2MSI, proposed by Wang et al. [17], which consists of low-resolution images
taken by Landsat-8 and Sentinel-2 of a region in Southwest China and contains
10,650 training pairs;

• SENT-NICFI, which is a novel SR dataset we constructed using images from Sentinel-2
and Planetscope that were taken in June 2021. The Planetscope images are part of the
NICFI programme. We selected images of countries around the equator, covering an
area of about 45 million square kilometres. We selected high-resolution (HR) images
from five scenes from each of the following ecosystems from countries on the African
continent: urban, desert, forest, savanna, agriculture and miscellaneous (i.e., outside
of the previous categories). The low-resolution (LR) images were Sentinel-2 images
from around the same month, producing 12,000 training pairs. We aligned the HR
image colours to the LR images via histogram matching. We provide code for the
reconstruction of this dataset.

Table 1. Overview of the data sources and the synthetic (Syn.) and real-world datasets (Real).
The resolution is given in metres (m) and the image size is given in pixels (px). The size of the
synthetic LR images is left out because these images were derived by bicubic downsampling. * The
bands are near-infrared (NIR), green (G) and red (R).

Dataset Type Source Bands # Images Resolution (m) LR Size (px) HR Size (px)

UC Merced [16] Syn. USGS (aerial) RGB 590 k 0.3 - 256 × 256
So2Sat [62] Syn. Sentinel-2 RGB 376 k 10 - 32 × 32
Cerrado-Savanna [82] Syn. RapidEye NIR, G, R * 27 k 5 - 64 × 64

OLI2MSI [17] Real Landsat and
Sentinel-2 RGB 10.65 k 30 and 10 160 × 160 480 × 480

SENT-NICFI Real Sentinel-2 and
Planetscope RGB 2.2 k 10 and 5 100 × 100 200 × 200

3.3. Experiments

This section describes the baselines, training configurations, evaluation procedures
and experimental setup.

3.3.1. Baselines

We considered the following baseline methods:

• RCAN [30], which introduces channel attention modules that give more weight
to informative features. The network consists of stacked residual groups, with an
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upscaling module at the end of the residual stack after merging the two branches.
We used the Keras implementation of RCAN, made available by Hieubkset (https:
//github.com/hieubkset/Keras-Image-SR, accessed on 28 June 2022);

• WDSR [28], which is a residual approach, like RCAN, but the residual blocks lack
the channel attention mechanism. The two branches are merged after upsampling
on each of them. Convolutions with weight normalisation replace all convolutional
layers. We used the Keras code for the WDSR model released by Krasser (https:
//github.com/krasserm/super-resolution, accessed on 28 June 2022);

• SwinIR [9], which is a state-of-the-art adaptation of the Swin Transformer [49] for
image reconstruction and super-resolution. We used the DIV2K and Flickr2K pre-
trained models (https://github.com/JingyunLiang/SwinIR, accessed on 1 September
2023). We followed the original work and selected the “Medium” configuration, which
is comparable in complexity to RCAN, with a patch size of 64 and a window size of 8.
We directly inferred on our test sets (as defined in Section 3.2, as in the original work,
but with natural image test sets (Set5 [72], BSD100 [72], Set14 [73] Urban100 [74] and
Manga109 [84]);

• HiNAS [69], which is a state-of-the-art NAS framework for super-resolution and
image denoising. It is computationally efficient due to its gradient-based search and
architecture sharing between layers. We searched and trained the best networks for
the upscaling factors of 2 and 3, following the original work. The evaluation was the
same as for SwinIR;

• AutoSRCNN, which is an AutoML SR approach inspired by SRCNN [25]. We imple-
mented AutoSRCNN exclusively with convolutional layers, without residual connec-
tions, pre-trained weights or specialised blocks. The search space (shown in Figure 5)
is much smaller than that of AutoSR4EO; thus, it served as a control to ensure that a
more extensive search space is beneficial for solving the problem of SISR for EO images.
AutoSRCNN found networks comparable to SRCNN, which are less complex than
the state-of-the-art alternatives. As such, AutoSRCNN served as a vanilla baseline to
AutoSR4EO.

Both WDSR and RCAN are based on residual neural networks. Figure 6 shows
diagrams of the residual blocks of WDSR and RCAN.

N Image normalization to [0,1]
D Image denormalization to [0,255]

kernel size [3,5,7,9]

N D

Model block
Upscale

Layer hyper- 
parameters
kernel size

LR
image

HR
image

filters 64
padding same

+
AutoKeras 
ConvBlock

Figure 5. The fixed architectural hyperparameters and the search space hyperparameters that are
changed during the AutoSRCNN search. AutoSRCNN scales images up at the beginning, as in
SRCNN [25], followed by convolutional layers (implemented using AutoKeras’ ConvBlock).

https://github.com/hieubkset/Keras-Image-SR
https://github.com/hieubkset/Keras-Image-SR
https://github.com/krasserm/super-resolution
https://github.com/krasserm/super-resolution
https://github.com/JingyunLiang/SwinIR
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S

Channel attention
S

RCAN

WDSR

Sigmoid function

Element-wise product

Element-wise sum

Conv

ReLU

Global Pooling

Conv with Weight Norm

Figure 6. The architectures of the residual blocks of RCAN [30] and WDSR [28]. Both use blocks
with residual connections, where the output of the residual block is the sum of the input of the block
and the final result within the block. The sizes of the kernels and the numbers of filters are left out
for simplicity. Figure created by authors.

3.3.2. Training Details

We set the number of epochs and batch sizes per method and dataset, depending on
the validation loss, memory and time limit for the computational cluster used in our exper-
iments. We used early stopping with a patience of 10 epochs. AutoSRCNN, AutoSR4EOS
and AutoSR4EOL evaluated a maximum of 20 candidate networks per run, with a maxi-
mum of 100 epochs per candidate network. We used L1 for all methods because it yielded
better results than L2 loss for SR [85]. The networks were trained on images with three
channels (the spectral bands per dataset are listed in Table 1).

3.3.3. Evaluation

We evaluated AutoSR4EO and the baseline methods using two metrics: peak signal-
to-noise ratio (PSNR), a pixel-wise metric related to the MSE, and the structural similarity
index measure (SSIM), a perception-based metric that considers the contrast, luminance
and structure of images to better reflect human visual interpretation. Both metrics are
widely used for evaluating SR approaches [80,86–88]. The PSNR is given by

PSNR = 10 × log10
L2

1
N × ∑i=1 N × (I(i)− Î(i))2

(1)

where I is the ground truth image, Î is the super-resolved image, L is the maximum pixel
value (which is 255 in this case) and N is the number of pixels. The SSIM is given by

SSIM =
(2µI × µ Î + c1)× (2σI Î + c2)

(µ2
I + µ2

Î
+ c1)× (σ2

I + σ2
Î
+ c2)

(2)

where Î is the super-resolved image, I is the ground truth image, µ is the average luminance,
σ is the standard deviation of the luminance and c1 and c2 are constants.

3.3.4. Experimental Setup

The experiments were run on two GeForce RTX 2080TI GPUs with 10 GB of CPU
RAM. We differentiated between the two types of baseline experiments: WDSR, RCAN
and AutoSRCNN were each trained and evaluated on the datasets presented in Section 3.2.
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We trained and evaluated each combination of baseline method and dataset five times
to facilitate a more thorough comparison between AutoSR4EO and the baseline methods
underlying its search space. The results of the experiments were compared by first boot-
strapping the results with 1000 samples of size 3, followed by a Wilcoxon signed-rank
test [89] for non-normally distributed samples. We used the pre-trained models SwinIR
and HiNAS and evaluated them on UC Merced, Cerrado, OLI2MSI and SENT-NICFI. This
evaluation strategy, common in SR, yielded a single result per combination of method and
dataset. Though it is possible, we did not fine-tune the models, since this is not customary
in the evaluation of NAS baselines. For instance, both HiNAS and SwinIR were trained on
the DIV2K [71] dataset and evaluated on different datasets without fine-tuning (Set5 [72],
BSD100 [72], Set14 [73], Urban100 [74] and Manga109 [84]).

The test set consisted of 20% of the dataset. The remaining data were split into 80% for
training and 20% for validation. The same splits were maintained for all experiments.

The wall-clock time for training and evaluating WDSR, RCAN, AutoSR4EO and
AutoSRCNN (and finishing all trials, in the case of the NAS methods) on a single dataset
ranged from 30 min to 2 days, with outliers of 5 days, depending on the number of
parameters of the model and the number of images and the image sizes in the dataset.
The training time of AutoSR4EO encompassed two components: the design time and the
training of the candidate architectures. The design time is the time taken to find an effective
architecture. The training time is the total time taken to train all candidate architectures.
The design time of WDSR and RCAN is not easily quantifiable because it is not defined
as the runtime of the algorithm but is instead the time that was implicitly invested by the
experts that crafted these methods. As a result, a direct comparison between the training
times of AutoSR4EO and these baselines was not appropriate.

We customised AutoKeras to include image output and custom metrics (https://
github.com/JuliaWasala/autokeras (release 1.0.16.post1, accessed on 28 June 2022)). The
code for our methods and experiments has been made publicly available (https://github.
com/JuliaWasala/autoSR-RS_SENT-NICFI, accessed on 28 June 2022).

4. Results

In this section, we present the results of the experiments described in Section 3.3.
In the first subsection, we present the performance of AutoSR4EO compared to that of
the state-of-the-art alternatives, followed by a subsection describing the analyses of the
performance of search spaces S and L.

4.1. Performance Evaluation

This section describes the results of the comparisons between AutoSR4EOS, AutoSR4EOL
and the baseline methods on the four training datasets: Cerrado, UC Merced, OLI2MSI
and SENT-NICFI. Figure 7 shows samples of an image predicted by the different methods.
AutoSR4EO produced much sharper images than AutoSRCNN. Table 2 presents the results
of the PSNR and SSIM scores. Firstly, we considered the set of baselines trained on the
target datasets: WDSR, RCAN and AutoSRCNN. AutoSR4EOL outperformed the baselines
on UC Merced and OLI2MSI. RCAN achieved a higher score than AutoSR4EOL on SENT-
NICFI, but this difference was not statistically significant. However, AutoSR4EOS performed
significantly better than RCAN and the other baselines on this dataset.

https://github.com/JuliaWasala/autokeras
https://github.com/JuliaWasala/autokeras
https://github.com/JuliaWasala/autoSR-RS_SENT-NICFI
https://github.com/JuliaWasala/autoSR-RS_SENT-NICFI
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HR

LR

LR - Overview

WDSR
PSNR: 

28.00 +- 11.55 

PSNR: 

33.77 +- 0.02

RCAN

HiNAS

SwinIR

AutoSR4EO

AutoSRCNN
PSNR: 

30.82 +- 1.44

PSNR (S): 

33.57 +- 0.23 

PSNR: 

34.12 

PSNR: 

35.06

Figure 7. Samples of a super-resolved image from the UC Merced [16] dataset. The LR image was
obtained by bicubically downsampling the HR image with a scaling factor of 2. The presented
samples are parts of a single image, an overview of which is shown on the right. The images with
blue and magenta borders are crops of the original image. The PSNR values are the averages of the
whole dataset, as shown in Table 2. Though there was a difference in PSNR, it can be difficult to
visually distinguish the results at this image resolution and super-resolution factor. Still, AutoSR4EO
clearly outperformed AutoSRCNN, showing that a simple AutoML approach is not enough to solve
the problem of SR.
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Table 2. PSNR/SSIM results for all methods. Experiments for WDSR, RCAN, AutoSRCNN and
AutoSR4EO were run five times per configuration, while for SwinIR and HiNAS, it was only possible
to acquire one result since the results were obtained from pre-trained models. The highest and
second-highest performances are shown in red and blue, respectively.

Method Cerrado UC Merced OLI2MSI SENT-NICFI

WDSR 40.96 ± 0.39 /
0.9729 ± 0.0016

28.00 ± 11.55 /
0.7414 ± 0.3956

43.89 ± 0.04 /
0.9719 ± 0.0002

28.17 ± 1.20 /
0.7843 ± 0.0525

RCAN 38.48 ± 0.38 /
0.9544 ± 0.0067

33.77 ± 0.02 /
0.9252 ± 0.0002

44.45 ± 0.01 /
0.9749 ± 0.0000

30.12 ± 0.02 /
0.8537 ± 0.0007

AutoSRCNN 38.80 ± 0.89 /
0.9507 ± 0.0083

30.82 ± 1.44 /
0.8825 ± 0.0269

43.13 ± 0.68 /
0.9680 ± 0.0045

28.85 ± 0.22 /
0.8223 ± 0.0009

SwinIR 42.85 / 0.9784 35.06 / 0.9365 42.72 / 0.9687 27.79 / 0.7766
HiNAS 42.67 / 0.9803 34.12 / 0.9339 42.75 / 0.9695 27.83 / 0.7897

AutoSR4EOS (Ours) 40.61 ± 1.91 /
0.9645 ± 0.0191

33.57 ± 0.23 /
0.9238 ± 0.0024

44.42 ± 0.68 /
0.9741 ± 0.0090

30.20 ± 0.42 /
0.8550 ± 0.0097

AutoSR4EOL (Ours) 39.84 ± 4.94 /
0.9414 ± 0.0783

33.91 ± 0.36 /
0.9266 ± 0.0024

45.01 ± 0.11 /
0.9780 ± 0.0005

30.10 ± 0.26 /
0.8541 ± 0.0179

Table 3 shows the average ranking of the methods. AutoSR4EOS and AutoSR4EOL
achieved higher rankings than the baseline methods, with L achieving the highest overall
ranking. AutoSRCNN consistently ranked last.

Table 3. The average ranking of the methods calculated across the four datasets, with 1 being
the highest ranking. Both AutoSR4EO versions are ranked individually. The highest scores are in
boldface. The rankings were calculated by ranking the methods per dataset and then taking the
average rank across the datasets.

AutoSR4EO
L S HiNAS RCAN SwinIR WDSR AutoSRCNN

PSNR 3.00 3.00 4 3.50 4 4.75 5.25
SSIM 3.25 3.25 3.25 3.50 4 5 5.75

Additional Trials

We performed additional experiments on Cerrado (a synthetic dataset) and SENT-
NICFI (a real-world dataset) to select the optimal number of trials. Although the increase in
computational complexity as a function of the dataset size created a bottleneck, we trained
AutoSR4EOS for 100 trials on Cerrado and 50 trials on SENT-NICFI. These experiments
monitored performance as a function of the number of trials. This information was essential
for understanding the trade-off between performance gain and additional running time.
We expected this to have little effect on the optimal number of trials because the size of
the AutoSR4EOL search space only increased with a few possible values for the number of
residual blocks, as discussed in Section 3.1.2.

Table 4 shows the results of these experiments. The results with more trials were
significantly better than those for 20 trials (Table 2). The lower standard deviations indicate
that high scores were obtained more consistently, consequently increasing the average
scores. Figure 8 plots the highest validation PSNR values found so far for each trial, which
can be different from the PSNR value of the current trial. The improvement in validation
scores flattened around 20 trials: running the method for longer improved the results but at
a decreased rate of improvement.
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Table 4. Results of longer experiments with AutoSR4EOS compared to the original results with
20 trials. Each experiment was run five times. Significantly best results are shown in boldface.

Dataset Trials PSNR SSIM

Cerrado 20 40.61 ± 1.91 0.9645 ± 0.0191
100 42.10 ± 0.83 0.9763 ± 0.0031

SENT-NICFI 20 30.20 ± 0.42 0.8550 ± 0.0097
50 30.45 ± 0.26 0.8612 ± 0.0124

Figure 8. Evolution of the PSNR values on the validation set for each trial of experiments on the
Cerrado (left) and SENT-NICFI (right) datasets, with a maximum of 100 and 50 trials, respectively.
Runs could stop if no improvement was expected before the maximum number of trials was reached.
Each point shows the mean of the best score achieved in each run up until that trial. The bands show
the ranges between the lower and upper quantiles. The scores stabilises around 20 trials.

4.2. Search Space Analysis

We analysed the architectures returned by AutoSR4EO to compare the effectiveness of
the AutoSR4EOS and AutoSR4EOL search spaces. We analysed the model blocks, model
depths and the sets of pre-trained weights occurring in the constructed architectures.
Figure 9 shows the numbers of residual blocks (N_res) chosen from search spaces S and
L. The number of blocks peaked at 20 for search space S. RCAN-based architectures
made up a large proportion of this peak. The results for search space L lacked this peak.
RCAN-based models occurred with a depth of up to 28 blocks.

Figure 10 compares search spaces S and L in terms of the model blocks and pre-trained
weights. The RCAN model block was sampled more often from S than the WDSR block,
while the blocks were sampled evenly from search space L. The selection of pre-trained
weights shows a similar pattern: the sampling distribution was uniform for search space L
but more unbalanced for search space S.

4 8 12 16 20 24 28 32 36 40
0

2

4

6

8 S - WDSR
S - RCAN
L - WDSR
L - RCAN

Figure 9. The number of residual blocks in models returned by AutoSR4EO, shown for both search
space versions S and L. Each bar shows the proportions of WDSR and RCAN with a colour difference.
Search space L was sampled more uniformly than S, showing it is more effective.
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Figure 10. The hyperparameter values chosen in the best networks returned by AutoSR4EOS and
AutoSR4EOL in each experiment: (left) the model blocks and (right) the sets of pre-trained weights.
For S, some hyperparameters were sampled more than others, while the distribution for L was flat,
i.e., each hyperparameter value was chosen with an equal frequency.

5. Discussion

This section covers the interpretation of our results, the limitations of this study and
possible future research directions following on from our results.

5.1. Interpretation of the Findings

In this section, we interpret the performance of AutoSR4EO and compare it to that of
the baseline methods. Furthermore, we discuss the results of the analysis of the AutoSR4EO
search space.

5.1.1. Performance Evaluation

The results from SwinIR and HiNAS (Table 2) showed an interesting pattern: in terms
of PSNR, they either outperformed the other methods by a large margin or achieved lower
scores. Both SwinIR and HiNAS outperformed the other baselines on the synthetic datasets
Cerrado and UC Merced but achieved the lowest scores on the real-world datasets SENT-
NICFI and OLI2MSI. These results underline how much the performance of a model can
vary when presented with different datasets.

The relatively low PSNR scores of SwinIR and HiNAS on real-world datasets compared
to those of the other methods could be explained by the models’ failure to model complex
real-world data, as both models were trained on synthetic data. These results support the
finding of Kohler et al. [14] that evaluation using synthetic datasets can overestimate results.

All methods scored higher on OLI2MSI than on the other datasets. The higher green
levels in the OLI2MSI images could explain this. We found by visual inspection that
the scenes contained many forests that were quite homogeneous, while UC Merced and
SENT-NICFI contained a wider variety of land cover types from larger regions.

AutoSRCNN consistently ranked last (Table 3), suggesting a simple AutoML method is
insufficient for the problem of SR for EO images. These results motivate the use of methods
with more carefully crafted search spaces, such as AutoSR4EO. The task of SR for EO data
cannot be solved with simple CNNs; it requires more sophisticated, and often deeper,
network architectures. Deeper networks take longer to train but transfer learning can speed
up this process. AutoSR4EO uses both SOTA neural networks and transfer learning.

5.1.2. Search Space Analysis

The peak at 20 residual blocks (Figure 9) coincided with the maximum number of
residual blocks possible for the RCAN block in search space S. This peak disappeared in
the results of search space L as deeper RCAN models performed better on the evaluated
datasets. A further increase in the maximum number of blocks was unnecessary as the
maximum number of 40 blocks was never chosen.
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The results presented in Tables 2 and 3, as well as Figure 9, indicate that search space
L was more effective than S. The distribution of the hyperparameters chosen from this
search space was more balanced due to the change in the N_res hyperparameter. No single
hyperparameter value dominated. The performance of different methods varies based
on data distribution [90]. In these terms, search space L better reflected the purpose of
AutoML than search space S because search space L was larger and thus offered a higher
number of possible models.

While AutoSR4EO ranked the highest on average, it did not achieve the highest score
on every dataset. This issue is not unique to AutoSR4EO. Manually designed SR networks
still outperform NAS-based approaches [24] on standard natural image benchmark datasets,
despite the potential of AutoML.

Nevertheless, successful AutoML systems are not required to achieve the highest score
in every case. The strength of our approach lies in its ability to generalise, as the high
ranking of AutoSR4EO shows. AutoSR4EO presents a new approach to the development of
SR methods: an approach that is directly applicable to different use cases. This considerable
benefit reduces the time spent on selecting and designing pre-processing pipelines for
various applications and datasets. Additionally, AutoML techniques have the capacity to
make state-of-the-art (SOTA) techniques accessible to practitioners who are less familiar
with SOTA machine learning techniques.

Even though manually designed approaches still outperform NAS systems, we believe
that a generic and automatic methodology can be useful for three main reasons. Firstly, our
proposed methodology is inherently adaptable: AutoSR4EO can produce a good starting
point for highly adaptable model design because the same methods can be re-used without
any adaptations for different datasets.

Secondly, this starting point supports further improvements using hand-crafted so-
lutions: automated and hand-crafted methods do not have to be mutually exclusive but
can rather complement each other. Furthermore, automation can significantly shorten the
time required to obtain an effective model because only the manual fine-tuning needs to be
repeated when solving a new problem.

Thirdly, automated methods are valuable for practitioners who want to use machine
learning techniques but have no prior experience with designing and configuring machine
learning models. Automatic model design and configuration make these techniques more
accessible to this group of users.

5.2. Limitations

In this section, we discuss possible improvements and changes for the search space,
evaluation procedure and SENT-NICFI dataset. We consider the challenges and benefits of
creating real-world datasets, like SENT-NICFI, to better evaluate SR methods, as well as
the metrics used for evaluation.

5.2.1. Search Space

The AutoSR4EO search space, which contains model blocks based on two SOTA SR
networks, shows the potential of our approach. AutoSR4EO achieved the highest average
ranking, showing its ability to generalise regardless of the fact that two model blocks may
seem like a small number for an AutoML approach. Moreover, the possibility of extending
the search space makes our approach more robust to future developments in the field of SR.

A wider array of model blocks could accommodate a larger variety of datasets, possibly
also extending beyond optical images. It is possible to add extra blocks to the search space
without changing the search strategy. However, the search strategy may need more trials to
consistently reach high-performing solutions if the search space is larger.

We expect that the largest gain would be achieved by adding models that differ
significantly from WDSR and RCAN in terms of architecture. Intuitively, the more diverse
the search space, the more types of datasets for which AutoSR4EO could produce high-
performing models.
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The number of runs of AutoSR4EO (five per configuration) limited our interpretation
of the analysis of the search space. The results did not show evident patterns in the
effect of the number of residual blocks. An analysis with a significantly larger sample
size may provide a deeper understanding of the effect of model depth in this case. In
general, more runs resulting in more final configurations are necessary for more robust
statistical comparisons. However, running more experiments would incur considerable
computational costs, which were infeasible within the scope of this study.

5.2.2. Real-World Datasets and SENT-NICFI

We evaluated AutoSR4EO on two real-world datasets. The lack of availability of more
real-world datasets, to the best of our knowledge, prevented us from further comparing
training on synthetic data to training on real-world data. We created SENT-NICFI, con-
taining images of a variety of real-world landscapes, to alleviate this problem, but future
research is needed to create more of these real-world multi-sensor datasets and study the
impacts of using real-world data compared to synthetic data.

The difference in satellite overpass times is a challenge in creating real-world multi-
sensor datasets for supervised SR because it complicates finding matching images that are
sufficiently close to each other in terms of time. Some applications, like change detection,
require training images that are as close in time as possible. Other factors, like cloud cover,
can also interfere with the retrieval of image pairs for training.

Furthermore, it is important to be aware of the target use cases of the datasets used for
evaluation. SENT-NICFI was designed without a specific downstream application in mind.
The purpose of the dataset was to increase the number of real-world datasets available for
the evaluation of SR methodologies. It is yet unclear how performance on downstream
tasks could be affected by training SR models on SENT-NICFI.

Finally, it is important to discuss the role of blind SR models, which do not make
assumptions about the degradation kernels of images. This property allows this type of
model to overcome some of the problems associated with synthetic datasets. Diffusion
models, like that of Wu et al. [51], that learn degradation kernels could reduce the need for
real-world datasets in the future. However, real-world datasets are still important for the
development of non-blind SR because supervised methods still rely on realistic information
on the degradation kernels, which is not provided by synthetic datasets that use simple
downsampling procedures, like bicubic interpolation.

5.2.3. Evaluation Metrics and Baselines

The PSNR and SSIM metrics may offer insufficient information for selecting SR models
for specific EO pipelines. For instance, images intended for building segmentation could
benefit from enhanced edges, while it could be important to preserve the edges from
original scenes for applications like land cover classification. Research on the correlations
between the SR PSNR and SSIM metrics and downstream task performance is needed to
understand which metrics most strongly predict downstream performance and determine
whether better performance metrics need to be designed. For instance, future work could
include perception-based metrics, like learned perceptual image patch similarity (LPIPS)
[91] and Frechet inception distance (FID) [92], and assess whether these metrics are better
predictors of downstream performance.

5.3. Future Work

The rapid expansion of the field of deep learning for remote sensing has made in-
creasing numbers of architecture types and training techniques available to researchers.
We believe that the main aim of our proposed methods, automated model design, is an
important strategy for making effective use of novel techniques. There are still many
possible areas of improvement and open challenges to explore, which could improve the
usability and adoption of such automated techniques. We discuss four future research
topics that could build towards this goal.
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Firstly, future work could extend our approach with new model blocks to include the
most recent advances in SR; for example, multi-stage residual networks (e.g., BTSRN [93]),
progressive reconstruction networks (e.g., LapSRN [94]), multi-branch networks (e.g.,
IDN [95]), multi-stage vision transformers (e.g., SwinIR [9]) and graph neural networks
(GNNs, e.g., DLGNN [96]). Very recently, diffusion-based models ([50,51]) have shown
very promising results and overcome some of the challenges posed by GANs. It was not
feasible to include these in this work because it would have required many more experi-
ments to validate a larger search space. Aside from model blocks, there is also a need for
more research on why manually designed architectures tend to outperform automatically
generated architectures. Advances in this area could further improve AutoSR4EO.

Finally, future work should focus on evaluating SR models, including AutoML models
such as those evaluated here, within the context of EO pipelines. This is a challenging
task because of the multitude of pipeline design choices and interactions between pipeline
components, for example, the choice of SR model, downstream task model, training data
and training procedure (independent or stacked, where the downstream task loss influences
SR model training). Recent work has focused mainly on steps in pipelines as independent
units instead of studying them as part of a whole. We need a better understanding of the
interactions between pre-processing steps, like SR, and downstream tasks, as well as which
design choices have the largest impacts on pipeline results rather than intermediate results.

6. Conclusions

We introduced AutoSR4EO, the first AutoML super-resolution approach for Earth
observation images that automatically designs neural networks based on training data. We
designed a specialised search space for SR tasks, consisting of SR blocks based on state-of-
the-art SR methods. Further, we used pre-trained weights generated from EO datasets to
increase training efficiency while better adapting models to EO data. AutoSR4EO provides
a good basis for further research on the use of AutoML techniques for EO data because it
is easily extendable using new model blocks and pre-trained weights. Additionally, we
constructed SENT-NICFI, a novel dataset for SISR for EO images, thus adding to the small
number of real-world datasets available for SR for EO images. We evaluated AutoSR4EO
on four EO datasets and compared the results to four SOTA baselines and an additional
AutoML baseline that we introduced: AutoSRCNN. We compared two search spaces: S
and L. AutoSR4EOL outperformed the baselines on two of the datasets and achieved the
highest average ranking among all baselines in terms of both PSNR and SSIM. Models that
were pre-trained on synthetic data performed poorly on real-world datasets compared to
those that were trained on real-world datasets. From these analyses, we have shown that
AutoML is a very promising method for improving SR techniques for EO images. This
introduces many opportunities to improve EO-based machine learning tasks.
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