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Abstract: Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health,
nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote
sensing data coupled with advanced machine learning (ML) techniques have eased SOC level
estimation while revealing its patterns across different ecosystems. However, despite these advances,
the intricacies of training reliable and yet certain SOC models for specific end-users remain a great
challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we
introduce a methodology that leverages conformal prediction to address the uncertainty in estimating
SOC contents while using remote sensing data. Conformal prediction generates statistically reliable
uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS
dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the
efficacy of integrating conformal prediction with another ML model, specifically random forest.
In addition, we conducted a comparative assessment of our results against prevalent uncertainty
quantification methods for SOC prediction, employing different evaluation metrics to assess both
model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction
sets as informative indicators of uncertainty. These sets accurately identify samples that pose
prediction challenges, providing valuable insights for end-users seeking reliable predictions in the
complexities of SOC estimation.

Keywords: uncertainty quantification; conformal prediction; soil organic carbon; digital soil mapping;
remote sensing

1. Introduction

The soil represents the most extensive reservoir of terrestrial organic carbon within
the biosphere, containing a greater amount of carbon than that found in both plants and
the atmosphere [1]. Soils also play a crucial role in the sequestration of atmospheric carbon
dioxide, CO2, as well as in the emission of trace gases that contribute to the greenhouse
effect [2]. Soil organic carbon (SOC) is one of the most important soil properties that
serves as a crucial indicator of soil health and plays a significant role in supporting essential
ecosystem services, such as nutrient cycling and food production [3]. Various environmental
factors, including droughts, fires, increased level of heavy metals, alterations in land use
patterns, and the anticipated consequences of global warming, can significantly influence
organic carbon stocks, exerting a profound impact on the Earth’s ecosystem [4–6]. In light
of these potential consequences, the importance of monitoring SOC levels is a priority. This
monitoring process stands out as one of the most effective methods for assessing ecosystem
health, protecting biodiversity, and preserving natural habitats [7].
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Monitoring and assessing SOC involves the utilization of remote sensing methods,
which employ satellite, airborne, and ground-based sensors. These techniques include
various approaches. For instance, in [8], lidar technology is utilized to provide high-
resolution elevation data, characterizing vegetation structure and biomass, thereby offering
insights into SOC levels. Another method involves infrared and thermal imaging, where
sensors capture heat emissions and surface temperatures. This technique, as discussed
in [9], correlates changes with organic carbon content, providing a quantitative assessment.
Additionally, proximal sensing utilizes ground-based sensors, which are beneficial for close-
range measurements and validating remote sensing results (e.g., [10]). This comprehensive
suite of remote sensing techniques facilitates a thorough understanding of SOC across
diverse spatial scales and environmental conditions. In recent years, the soil science
community has seen the emergence of digital soil mapping (DSM) techniques, which aid
in comprehending the spatial distribution of soil properties, particularly SOC [11]. DSM
generates soil maps by employing statistical inferences derived from a prediction model.
This model utilizes an extensive set of available environmental covariates that can be
provided via remote sensing as predictors and is trained using soil sample data [12,13].

Although DSM is a widely employed and popular technique, the predictions it pro-
duces are not free from errors [14]. These errors originate from multiple sources, with a
primary contributor being the inherent limitations of the input data [15,16]. Notably, envi-
ronmental features often prove insufficient in elucidating the entirety of soil variations [17],
lacking the desired level of informativeness. The applied model itself introduces another
source of error, as it has the potential to propagate errors from inputs to final outputs [18].
Moreover, the intricate relationships between environmental features and soil properties
may not always be comprehensively captured by the model, leading to prediction errors.
Additionally, imprecise measurement methods and the utilization of small training sample
sizes can further contribute to the presence of errors in predictions [19].

Various approaches have been employed to quantify uncertainty in the field of DSM.
Geostatistical modeling techniques, such as kriging models [20], kriging with external
drift [21], and the use of empirical models [22], offer a means to evaluate uncertainty levels
by facilitating the computation of spatial representations for prediction intervals. It is
important to note, however, that these uncertainty assessments are inherently linked to the
specific modeling framework employed and may not seamlessly align with the increasingly
prevalent use of ML techniques in DSM applications [23]. The bootstrapping method
offers an alternative approach to uncertainty estimation, as exemplified in [14,24]. This
technique entails training a model with a randomly selected subset of the complete training
samples, followed by the generation of multiple predictions. These predictions play a
crucial role in deriving uncertainty estimates, achieved by computing the average mean
squared error (MSE) across all predictions and integrating it with the prediction variance
calculated during the bootstrapping process for each prediction. However, it is essential to
recognize that the practical applicability of this method may be constrained, particularly
when dealing with large datasets, due to computational limitations. This limitation arises
from the necessity to predict the entire extent of each map realization to estimate prediction
variance [25].

Lately, there has been a growing interest in the field of DSM in the use of ML al-
gorithms that have the capability to predict conditional quantiles, as evidenced by the
works of [26–28]. Two examples of such techniques include the quantile regression forest
introduced in [29] and the quantile regression neural network presented by [30]. These
methods represent probabilistic adaptations of a random forest and an artificial neural
network, respectively. Alternative uncertainty estimation approaches facing computational
challenges include Monte Carlo simulation [31] and the Gaussian process [32]. It is note-
worthy that the Gaussian method primarily quantifies uncertainty associated with input
data, whereas the Monte Carlo method is specifically tailored for assessing uncertainty
in parameters [33]; hence, each method exhibits distinct limitations. In addition to the
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aforementioned limitations, none of the previously discussed methods provide statistical
guarantees that the final output is highly probable to be included in the prediction sets.

Irrespective of the origins of errors, establishing confidence in DSM products, typically
represented as maps, is crucial for end-users. However, this trust is hindered by consider-
able challenges arising from inherent errors within these products. The deficit in trust is
further compounded by a lack of comprehensive understanding of the underlying models
and the absence of performance guarantees, as noted in recent studies [34,35]. Conse-
quently, end-users express concerns not only about the overall accuracy of the map but also
seek precise information regarding the accuracy of predictions at specific locations within
the mapped study area. The diverse and complex nature of these challenges underscores
the imperative for enhanced transparency and interpretability in DSM models [36], gen-
eralizations to new observations [37], robustness to out-of-distribution observations [38],
and the quantification of uncertainty [39].

In addressing one aspect of this multi-dimensional issue, our focus is directed toward
the domain of uncertainty quantification and management. Conformal prediction, recog-
nized as a distribution-free method for uncertainty quantification, addresses this concern
by specifically endeavoring to offer assurances regarding sample coverage. Precisely, given
a specified tolerance error or confidence level a ∈ [0, 1], the conformal approach allows for
a statistical guarantee that the true value lies within the prediction intervals. The efficacy
of the conformal approach has been demonstrated across various fields. For instance,
in [25], it was applied to quantify uncertainty in land use land cover classification at the
pixel level. In a recent study, inductive conformal prediction has been introduced for an
image-based harvest readiness classification that can select a pre-defined level of predictive
confidence in the model [40]. In another study, authors utilized conformal prediction for
crop and weed classification through group-conditional conformal statistics, employing
quantile regression on group membership indicators [41]. Additionally, [42] showcased the
application of the ensemble version of conformal prediction for time series forecasting.

This study, for the first time, presents an introduction to conformal prediction [43,44]
as a reliable and effective approach for assessing uncertainty in the prediction of SOC within
a regression framework. In the context of regression, this framework enables a predictive
model to generate prediction intervals or sets for a given observation X rather than singular
predictions, ensuring that the true value Y falls within the prediction interval with a high
probability [45]. This method offers notable advantages, primarily attributable to three
key factors. Firstly, it demonstrates computational efficiency and scalability, particularly in
large-scale studies. Additionally, the approach exhibits adaptability to a broad spectrum of
regression algorithms, encompassing various machine learning (ML) techniques. Moreover,
the implementation of conformal prediction requires minimal preassumptions to construct
predictive sets, facilitating effective empirical coverage. Conformal prediction, as far as our
understanding goes, is a novel addition to the field of DSM. Consequently, the principal
contribution of this paper lies in presenting conformal prediction to the DSM community,
addressing uncertainties in ML decision-making procedures, and providing empirically
demonstrable coverage guarantees.

The article is structured as follows. In Section 2, the mathematical framework defining
conformal prediction and its application in calculating uncertainty within ML frameworks
is established. Section 3 introduces the data, including ground reference samples and
the required input features for establishing the predictive model. Section 3 also outlines
the experimental setup, the implemented regression methods, and common techniques
for uncertainty estimation in DSM. It also introduces evaluation metrics for both uncer-
tainty and accuracy. Section 4 delves into the experimental results and compares different
implemented methods. Finally, Section 5 provides a comprehensive discussion and interpre-
tation of derived uncertainty, spatial distribution of samples with high and low uncertainty,
and empirical coverage of samples within different land cover classes. The concluding
remarks of the study are presented in Section 6.
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2. Mathematical Background

Conformal prediction is a probabilistic framework that creates valid prediction inter-
vals using a similarity metric called ‘conformity’ [43]. It does not rely on assumptions about
distribution, except for the requirement that observations must be exchangeable, meaning
that the order of observations does not affect the information they provide.

Consider {(Xi, Yi)}n
i=1 to be a pair of predictors, Xi ∈ Rd, and response variables,

Yi ∈ R. We split it into two subsets: the training set, S1, and a validation set, S2. First,
we build a regression model using S1, and then the conformity score, a measure of the
prediction errors (residuals) derived from S2, which is employed to assess the level of
uncertainty in forthcoming predictions [42].

When presented with a new observation Xn+1 = x, we ensure that the conditional
prediction intervals for the target variable Yn+1, denoted as Ĉa(x) and characterized by a
miscoverage rate a, satisfy the following condition:

P
{

Yn+1 ∈ Ĉa(Xn+1 = x)
}
≥ 1 − a. (1)

Conformal prediction offers conditional prediction intervals, Ĉa(x), in the following
manner:

Ĉa(x) = [µ̂(x)− q1−a(R,S2), µ̂(x) + q1−a(R,S2)], (2)

where µ̂(x) represents the prediction generated by the underlying regression model or base
model. R denotes the collection of residuals Ri, which are calculated based on the predic-
tions of the samples indexed by i ∈ S2. The conformity score q1−a(R,S2) corresponds to
the (1 − a)-th quantile of R [46]. The residuals used for computing the conformity score
are typically determined using the L1 norm, although alternative distance metrics may also
be employed. Equation (2) reveals that conformal prediction, in this form, was originally
designed with the assumption of homoscedastic data in mind. Homoscedasticity refers
to the property of having constant variance across the range of predictor variables in a
statistical model. In the context of conformal prediction, this assumption implies that the
variability in the data remains uniform, regardless of the values of the predictors. This
is because the prediction interval is constructed as a conditional mean estimate of the
response variable, surrounded by a fixed-width band [47].

A quantile regression can be used as the base model to produce predictions. In this
regard, quantile regression seeks to estimate the conditional quantile function (CQF) of Y
given X for a specified value of (0 < a < 1). It is formally defined as follows:

qa(x) = inf{y ∈ R : FY(y | X = x) ≥ a}, (3)

where FY(y) is the conditional distribution of Y. Prediction intervals can be derived directly
from two empirical CQFs calculated from the training dataset. The confidence level for
these prediction intervals, denoted as (1 − a), corresponds to the difference between these
two quantile levels. Consequently, the estimated conditional prediction interval for quantile
regression is defined as follows:

Ĉa(x) =
[
q̂alo (x), q̂ahi (x)

]
, (4)

where q̂alo (x) and q̂ahi (x) are the empirical CQFs computed for alo = a/2 and ahi = 1 − a/2.
Unlike Equation (2), the width of the prediction interval in Equation (4) depends on each
specific data point x and can vary significantly from point to point. Therefore, quantile
regression yields intervals that adapt to heteroscedasticity in the data. However, when
the ideal interval Ca(x) is replaced by the finite sample estimate Ĉa(x) in Equation (4),
the actual coverage of the prediction interval is not guaranteed to match the designed
confidence level (1 − a) [46].

The estimation of q̂alo (x) and q̂ahi (x) could be seen as an optimization problem that
minimizes a loss function and can be defined as:



Remote Sens. 2024, 16, 438 5 of 22

ρa,i =

{
(1 − a)(q̂a(xi)− yi), q̂a(xi)− yi ≥ 0;
a(yi − q̂a(xi)), otherwise,

(5)

in which yi denotes the i-th sample response and qa(xi) is the a-th quantile estimated
from the quantile regression model. The simplicity and versatility of this approach make
it suitable for a broad range of applications. Similar to traditional regression analysis,
different ML models can be applied to create and train the loss function (e.g., [48,49]).

Now we can take advantage of both conformal prediction and quantile regression for
prediction. The properties of quantile regression allow the method to adapt to the local
variability in the data, and the use of conformal prediction guarantees valid marginal cov-
erage. After training the quantile regression algorithm, we can define the conformity scores
Ei, to be the difference between y and its nearest quantile. In other words, the resulting
prediction intervals are conformalized using the conformity scores:

Ei = max
{

q̂alo (xi)− yi, yi − q̂ahi (xi)
}

, i ∈ S2 (6)

The scores are evaluated on the validation set, S2, and quantify the error made by the
prediction interval of the regression algorithm, as specified by the lower and upper bounds
q̂alo (xi) and q̂ahi (xi) in Equation (4). Given a new input Xn+1, the prediction intervals are
calculated via:

Ĉa(x) =
[
q̂alo (x)− Q1−a(E ,S2),

q̂ahi (x) + Q1−a(E ,S2)
]
,

(7)

where E = {Ei}i∈S2
. The value of Q1−a(E ,S2), utilized to transform the prediction intervals

created by the chosen quantile regression technique, remains constant for all new data
points x, just like how q1−a(R,S2) behaves in the context of conformal prediction in
Equation (2) [50].

In more straightforward terms, we can express that the sets Ĉa(x) either expand or
contract the gap between the quantiles by Q1 − a(E ,S2) to attain the desired coverage in
Equation (1), as illustrated in Figure 1.

Figure 1. Conformalized quantile regression in which the quantiles are adjusted by the constant
Q1−a(E ,S2) calculated via the validation set.

3. Materials and Methodology
3.1. Data Description and Preprocessing

To construct a predictive model, it is essential to obtain ground reference samples con-
taining information on SOC content. The details of this ground reference information can
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be found in Section 3.1.1. Alongside this dataset, input features, which are comprehensively
elucidated in Section 3.1.2, are required.

3.1.1. Ground Reference Samples

Established in 2001, the Land Use/Cover Area frame Survey (LUCAS) program ini-
tially employed a visual assessment area frame survey tailored for agricultural policies.
Evolving in 2006 to adopt a systematic grid structure with 22 km grid cells across the
EU territory, the program took a significant step with the incorporation of the specialized
“LUCAS-Topsoil” component. Developed in collaboration with Eurostat, DG ENV (the
Directorate-General for Environment), and JRC (the Joint Research Centre), this component
focuses on evaluating topsoil within the 0 to 20 cm depth range. The LUCAS topsoil
dataset, comprising comprehensive information on soil properties, such as texture, organic
carbon content, pH levels, and nutrient concentrations, stands as a valuable resource for
researchers, policymakers, and land managers. It also plays a crucial role in advancing
agricultural practices, environmental monitoring, and sustainable land management strate-
gies at a continental scale. In this study, the 2015 LUCAS dataset, which provides data on
SOC for all European Union member countries, was employed. These countries could be
categorized into eight different climate zones: boreal to sub-boreal, Atlantic, sub-oceanic,
sub-continental northern and southern, temperate mountainous, and Mediterranean (semi-
arid and temperate to sub-oceanic). Table 1 presents the statistical details of the data for
reference. The distribution of SOC values is also depicted in Figure 2.

The LUCAS dataset is a rich collection of accessible soil samples. This abundance of
information facilitates a comprehensive exploration of soil characteristics, contributing to
the resilience of our investigation. Moreover, it can assist in modeling soil properties on
a continental scale, thereby augmenting the precision and clarity of our analysis. Table 1
presents the statistical details of the data for reference. The distribution of SOC values is
also depicted in Figure 2.

Table 1. Statistical summaries of the LUCAS soil samples used in this study.

Mean s.d. Min. Q1 Median Q3 Max.

SOC (g/kg) 43.27 76.70 0.1 12.5 20.4 38.6 560.2

Figure 2. Histogram and kernel density estimation plot depict the distribution of SOC (g/kg) values.

3.1.2. Input Features
Climate Data

To investigate the environmental determinants that either facilitate or hinder climate
regulation, we utilized a comprehensive array of parameters sourced from TerraClimate [51].
Monthly time series were generated based on gridded meteorological data through spa-
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tiotemporal interpolation of the WorldClim datasets [52]. This study incorporated variables,
such as temperature, evapotranspiration, precipitation, soil moisture, surface radiation,
and vapor pressure, which are relevant environmental factors known for their impact on
SOC dynamics [52,53] and their significance in the processes contributing to the ecosys-
tem’s climate regulation capacities [54,55]. For data acquisition, we obtained a subset
covering the temporal interval of 2010 to 2015. In cases where the dataset exhibited missing
values (NaN), K-nearest neighbors (KNN) interpolation was applied to ensure temporal
completeness of records. For each specific climatic feature, we computed both the mean
and the difference between maximum and minimum values over the 5-year interval.

Landsat-8 Bands

Our research utilized Landsat-8 surface reflectance data from the year 2015, which
was selected based on its proximity to our sampling period. Our analysis was designed to
minimize the impact of vegetation by selecting images captured during winter season (i.e.,
November/December and January/February), which are less likely to be affected by dense
vegetation. If we were unable to find a suitable image from the winter months, the image
with the lowest NDVI value from the other months of the sampling year was selected. In
addition, we implemented a filtering process to eliminate images with substantial cloud
cover, shadow, or snow, making sure they accounted for less than 10 percent of the total area
of the image. As a result of this meticulous data collection approach, we were able to acquire
soil-specific images for analysis, minimizing potential confounding factors and enhancing
the relevance of the data collected. However, in the case of sampling locations within
forests or permanent grasslands, access to soil reflectance remains a plausible challenge. To
gather the required data for each sample point, we downloaded Landsat image patches
centered around each sample location, using a window size of 3 by 3 pixels.

Vegetation and Mineral Indices

As part of our research, a collection of indices that cover a range of soil and vegetation
characteristics was developed. Several indices, including clay minerals [56], ferrous miner-
als [57], carbonate index, rock outcrop index, and Normalized Different Vegetation Index
(NDVI), provided information about soil and vegetation attributes within the study region,
particularly with respect to SOC [58,59].

Topography

Digital elevation data sourced from the Shuttle Radar Topography Mission (SRTM)
were also utilized in this study. These data, part of a global research initiative, aim to create
digital elevation models covering extensive geographic areas. The SRTM-V3 product (SRTM
Plus) provided by NASA JPL offers a resolution of 1 arc-second, approximately equal to
30 m. Alongside elevation data, we incorporated information on slope, valley bottom
flatness (VBF)—a ratio indicating the flatness of the valley bottom concerning a reference
surface—and topographic wetness index (TWI)—representing the degree of landscape
wetness based on its topography. These variables play a pivotal role in shaping soil
distribution across the landscape by influencing processes like overland flow and erosion,
ultimately impacting the behavior, as observed in [59,60]. By concentrating on these
specific topographic factors, our objective is to comprehensively understand the intricate
relationship between terrain characteristics and SOC dynamics within the designated
study area. For a comprehensive understanding of the utilized features, including both
summary and detailed information, refer to Tables 2 and 3. A detailed explanation of the
preprocessing steps can also be found in [61].
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Table 2. The number of input features within each category and their corresponding temporal and
spatial resolutions.

Category Number of Features Spatial Resolution Temporal Resolution

Climate Data 12 ∼4 km One month

Landsat-8 Bands 7 30 m 16 day

Vegetation and
Mineral Indices 5 30 m 16 day

Topography 4 30 m One time mission

Table 3. The specification of input features, including remote sensing images and spectral indices,
topographical characteristics, and climate features, along with their corresponding units of measurement.

No Feature Description Unit

1 L8B1 Ultra Blue W/m2 · sr · µm
2 L8B2 Blue W/m2 · sr · µm
3 L8B3 Green W/m2 · sr · µm
4 L8B4 Red W/m2 · sr · µm
5 L8B5 NIR W/m2 · sr · µm
6 L8B6 SWIR1 W/m2 · sr · µm
7 L8B7 SWIR2 W/m2 · sr · µm
8 Clay Minerals (SWIR1 − SWIR2)/(SWIR1 + SWIR2) Unitless
9 Ferrous Minerals (NIR − SWIR1)/(NIR + SWIR1) Unitless
10 Carbonate Index (Red − Green)/(Red + Green) Unitless
11 Rock Outcrop Index (SWIR1 − Green)/(SWIR1 + Green) Unitless
12 NDVI (NIR − Red)/(NIR + Red) Unitless
13 Elevation Elevation m
14 Slope Slope Percent
15 VBF Vally bottom flatness Unitless
16 TWI Topography wetness index Unitless
17 Actual evapotranspiration Actual evapotranspiration mm
18 pdsi Palmer Drought Severity Index Unitless
19 Climate water deficit Climate water deficit mm
20 Reference evapotranspiration Reference evapotranspiration mm
21 Precipitation accumulation Precipitation accumulation mm
22 Soil moisture Soil moisture mm
23 Surface radiation Downward surface shortwave radiation W/m2

24 Minimum temperature Minimum temperature °C
25 Maximum temperature Maximum temperature °C
26 Vapor pressure deficit Vapor pressure deficit kPa
27 Vapor pressure Vapor pressure kPa
28 Wind speed Wind speed at 10 m m/s

3.2. Experiments

The objective of our experiments is to assess the effectiveness of conformal prediction
for SOC estimation and to compare it with commonly used methods for uncertainty
quantification in DSM. We conceptualize our quantile regression model as a quantile
random forest and tailor the prediction intervals according to the previously outlined
reasoning in Section 2. To this end, all ground reference samples were initially divided
into training and test groups for five different seeds. Subsequently, we employed the
training samples for analysis, reserving the test samples exclusively for the final evaluation.
Furthermore, the training data were partitioned into training and validation groups over
ten iterations. During these iterations, all training steps were executed for all implemented
models, with the remaining validation samples serving different purposes based on the
selected methodology. For instance, in the case of the quantile versions of random forest
and gradient boosting (QRF and QGB), which required hyperparameter selection, we
determined the optimal parameters based on the validation samples. For QGB, these
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parameters include learning rate, number of estimators, maximum depth, and minimum
sample split. For QRF, the hyperparameters are the number of estimators and minimum
sample leaf.

Additionally, the conformal prediction involved an extra step of calculating conformity
scores using the validation set. The miscoverage rate a for this step was set to 0.1. In the
case of the quantile neural network (QNN), we utilized the validation set to prevent
overfitting of the network and to stop the training loop. For quantile linear regression
(QLR), the set was used to identify the best model performance across different iterations.
As for bootstrapping random forest (BRF), we performed resampling using the training
samples ten times without any further validation steps. A comprehensive description of
the implemented method is presented in Section 3.2.1. The experimental setup is visually
represented in Figure 3.

Figure 3. The experimental setup outlines the procedural aspects of data partitioning, model imple-
mentation, and the evaluation metrics.

3.2.1. Implemented Methods

We applied five distinct methods, which will be elaborated upon in the subsequent
sections. All experiments were conducted using Python, with the utilization of packages
such as Sci-Kit Learn, Sci-Kit Garden, and Statsmodels.

Bootstrapping Random Forest

An RF regression approach coupled with bootstrapping was applied to comprehen-
sively assess and quantify uncertainty in our predictive modeling framework. RF Re-
gression, a powerful ensemble learning technique, was chosen for its ability to handle
complex relationships within the multi-modal data by aggregating the predictions of
multiple decision trees [62]. To enhance the robustness of our predictions and provide a
thorough characterization of the uncertainty associated with our model, we implemented
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bootstrapping—a resampling technique that involves generating multiple bootstrap sam-
ples from the original dataset. By constructing multiple models on these resampled datasets
and subsequently aggregating their predictions, we were able to derive a distribution of out-
comes, allowing for the estimation of prediction intervals and enhancing our understanding
of the inherent variability in the model predictions.

Conformalized Quantile Random Forest

As mentioned in the previous section, the RF constitutes a prevalent regression tech-
nique in the DSM field. To implement this methodology following the guidelines outlined
in Section 2, we instantiated the quantile random forest as the conditional quantile function,
as detailed in Equation (3). The training process involves utilizing training samples. Fol-
lowing this, we applied conformal prediction to the validation set (Equation (7)), enabling
the adjustment of prediction intervals for each specific outcome. These intervals act as
indicators of the inherent uncertainty associated with the predictive outcomes.

Quantile Neural Networks

QNNs are a class of neural networks designed for estimating conditional quantiles of
a target distribution, here SOC, and they often utilize the pinball loss function as an integral
component of their training process. Pinball loss is a quantile-specific loss function that
penalizes the differences between predicted and observed quantiles. By incorporating
the pinball loss function, QNNs are tailored to optimize the parameters of the network to
produce accurate quantile estimates across a range of quantiles, not just a single-point
estimate. This approach enables QNNs to capture the spectrum of uncertainty associated
with the data.

Quantile Gradient Boosting

QGB extends traditional gradient boosting methods to address quantile regression
tasks. QGB achieves this by iteratively fitting a series of weak learners, typically regression
trees, to minimize a specialized loss function designed for quantiles. The loss function
measures the differences between predicted and observed quantiles and is optimized during
each boosting iteration. This approach allows QGB to adapt to the specific characteristics
of the data distribution.

Quantile Linear Regression

QLR is a statistical method that extends linear regression by modeling not only the
conditional mean but also various quantiles of the response variable. Unlike traditional
regression, which focuses only on the mean value, quantile regression allows for a more
comprehensive analysis of the distribution by estimating different quantiles, such as the
median or other percentiles. In this study, we estimated the 5th and 95th quantiles.

3.2.2. Evaluation Metrics

While numerous metrics are accessible, determining a golden metric for uncertainty
quantification remains an ongoing research question [63]. Our approach suggests value in
examining multiple metrics simultaneously. Therefore, we have categorized our evaluation
metrics into those associated with uncertainty in Section 3.2.2 and others related to the
accuracy of prediction models in Section 3.2.2.

Uncertainty

1. Negative Log-Likelihood (NLL): NLL measures the agreement between predicted
(ypred) and observed values (yobs) under the assumption of a Gaussian distribution
with a mean of zero and a standard deviation (σ). The NLL is defined as:

NLL = −∑ ln

(
1

σ
√

2π
e−

(yobs−ypred)
2

2σ2

)
(8)
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2. Interval Score (IS): The scoring function IS(β) is designed to evaluate the perfor-
mance of a predictive model’s interval predictions. It considers the average width
of prediction intervals and introduces penalties for observations falling outside the
predicted intervals. The parameter β and δ play roles in determining the weighting
and conditions for the penalties.

IS(β) =
1
n

n

∑
i=1

(Ui − Li)

+
2

1 − β
· 1

n

n

∑
i=1

(Li − yi) · δ(yi < Li)

+
2

1 − β
· 1

n

n

∑
i=1

(yi − Ui) · δ(yi > Ui).

(9)

The first term of Equation (9) represents the average width of prediction intervals for
n number of samples. The second term introduces a penalty for observations, yi, that
fall below the lower bound, Li, of the prediction interval. The penalty is proportional
to the difference between the lower bound and the actual observation. The factor,
2/(1 − β), scales the penalty, and δ(·) is the indicator function, which equals 1 if the
condition inside is true and 0 otherwise. Similar to the second term, the third term
penalizes observations that exceed the upper bound, Ui, of the prediction interval.

3. Prediction Interval Coverage Probability (PICP): The PICP is a fundamental metric
used to assess the reliability and calibration of prediction intervals. It quantifies the
proportion of observed data points that fall within the model’s prediction intervals.
In simpler terms, it shows the coverage of samples. A well-calibrated model would
ideally have a PICP close to the specified confidence level, indicating that a given
percentage of prediction intervals should encompass the true values. The PICP is
calculated as follows:

PICP =
1
n

n

∑
i=1

ci, ci =

{
1, yi ∈ [Li, Ui]

0, yi /∈ [Li, Ui]
(10)

Like Equation (9), U and L are the upper and lower bounds of the prediction intervals
and n is the number of samples. A high PICP indicates that a significant portion of
the observed data falls within the predicted intervals, reflecting well-calibrated and
reliable predictions. Conversely, a low PICP suggests that the prediction intervals
may be too narrow, indicating a potential lack of calibration in the model’s uncertainty
estimates.

4. Prediction Interval Normalized Average Width (PINAW): The PINAW measures the
normalized average width of the prediction intervals relative to the spread of the true
values. It provides an indication of how well the width of the prediction intervals
corresponds to the variability in the observed data. A lower PINAW indicates that the
prediction intervals are narrower compared to the variability of the data.

PINAW =
1

nD

n

∑
i=1

(Ui − Li), D = ymax − ymin (11)

Accuracy Assessment

1. Root Mean Square Error (RMSE): RMSE is widely used in statistics and data analysis
for the accuracy assessment of a model. An accurate model can be assessed by
calculating the square root of the mean of the squared differences, which quantifies
the average magnitude of prediction errors.

RMSE =

√
1
n ∑(yobs − ypred)2 (12)
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2. Mean Absolute Error (MAE): MAE measures how well predictions or estimates match
observed values. MAE calculates the difference between predicted or estimated values
and observed values by taking the average of absolute differences instead of squared
differences, as does RMSE.

MAE =
1
n ∑ |yobs − ypred| (13)

3. Ratio of Performance to Interquartile distance (RPIQ): This metric represents the
spread of the population and is calculated using the following equation [64]:

RPIQ =
Q3 − Q1

RMSE
(14)

The values Q1 and Q3 represent the 25th and 75th percentiles of the observed samples,
respectively, defining the interquartile distance.

4. Results

Table 4 presents the outcomes for various implemented methods. Given the use of
five different seeds for test samples, the mean values for all metrics have been reported.
The units for all metrics except PICP are consistent with the data and expressed in g/kg.
The optimal results are highlighted in bold. The following insights can be derived.

Table 4. Evaluation metrics for both accuracy and uncertainty of the implemented models.

Uncertainty Accuracy

Method NLL IS PICP (%) PINAW MAE RMSE RPIQ Final Score

BRF 32.06 188.89 25 15.67 26.07 69.03 0.38 0.33

CQRF 4.93 143.75 90 111.91 42.20 80.79 0.33 0.31

QNN 5.89 243.99 89 165.58 72.05 111.73 0.27 0.58

QGB 5.06 155.75 89 124.30 48.15 82.39 0.32 0.35

QLR 550.87 419.54 2 2.24 41.145 86.59 0.30 0.64

All metrics are in g/kg except PICP (%) and RPIQ (unitless).

4.1. Coverage and Prediction Interval Width: PICP and PINAW

As outlined in Section 2, conformal prediction is characterized by its coverage guar-
antee, and CQRF exhibits the most average coverage across all seeds (PICP = 90%).
Among other methods, both QGB and QNN also demonstrate good coverage, albeit at 89%,
which is still less than CQRF. When considering PICP, the meaningfulness of the width of
prediction intervals, PINAW, is also essential, as a method might return intervals from the
minimum to the maximum of the dataset, achieving coverage for all samples but lacking
meaningful prediction intervals. Therefore, there is a trade-off between PICP and PINAW.

By comparing CQRF, QGB, and QNN, which exhibit the best coverages, we observe
that the smallest PINAW belonged to CQRF. For BRF and QLR, the PICP values are very low
(25% and 2%, respectively), indicating that only a small percentage of the responses of the
test samples fall within the prediction intervals returned by these methods. This deficiency
arises because these methods lack consideration for sample coverage. Consequently, two
significant findings are that (1) resampling may not be the optimal method for uncertainty
quantification, and (2) while QLR is a straightforward and understandable method, it is
evidently inadequate for uncertainty estimation. Given the low PICP for these methods, it
is evident that the PINAW is also very low.

4.2. Accuracy Metrics: RMSE, MAE, and RPIQ

In the context of accuracy assessment metrics, which generally indicate the proximity
of predicted values to observed values, the BRF method exhibits the lowest RMSE, MAE,
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and RPIQ values. This is attributed to the method’s exclusive focus on point estimation
of outputs, albeit lacking the capability to generate validated uncertainty, as indicated
by uncertainty metrics in Table 4. This underscores the notion that concentrating solely
on the best method in terms of accuracy may compromise our ability in other aspects.
The second most effective method is CQRF, demonstrating lower RMSE, MAE, and RPIQ
values compared to those of QGB, QNN, and QLR. This suggests that CQRF not only
provides better coverage but also delivers accurate predictions.

4.3. Scoring Rules: NLL and IS

Based on the results, QLR exhibits a remarkably high NLL value due to overfitting,
a consequence of the non-normal distribution of the data (refer to Figure 2). BRF also
presents a high NLL, attributed to the non-normal data distribution. However, BRF outper-
forms QLR because random forest demonstrates superior performance over linear regression
when dealing with non-normal distributions. The NLL values for other methods, QNN and
QGB, are comparable and reasonable, with CQRF exhibiting the best performance.

For the evaluation of prediction intervals using the scoring rule IS, optimal perfor-
mance is observed for CQRF. This can be attributed to conformal prediction’s attempt to
calibrate the prediction interval while simultaneously ensuring coverage.

4.4. Summary of All: Final Score

In our analysis, comparing various metrics with distinct purposes posed a challenge
for evaluating all implemented methods simultaneously. To streamline this comparison,
we introduced a straightforward system to generate a final score. Initially, we transformed
all metrics for all seeds to be negatively oriented, emphasizing smaller values as more
desirable. For example, considering that PICP is positively oriented, we deducted its value
from 100. Subsequently, we calculated the mean normalized values for all metrics within
the range of 0 to 1. The method with the smallest value is considered the best performer.

While our study primarily focuses on uncertainty quantification, we chose to assign
equal weights to all evaluation metrics in the normalization procedure. This decision is
grounded in our belief that sacrificing accuracy solely for the sake of uncertainty quantifi-
cation is not justifiable, ensuring a fair comparison. According to the final score, CQRF
emerges as the top-performing method.

4.5. Variances of Metric Estimation

To precisely evaluate the accuracies of the implemented methods and to observe
variations in metric estimation, we illustrated the results for different seeds in Figure 4.
Notably, QLR exhibits the highest variance in NLL, primarily due to its large values for this
metric. In contrast, PICP shows consistently small variances across all methods, suggesting
that changes in the test sets do not significantly impact the study results.

A key observation comes to light when examining other metrics such as RMSE, MAE,
RPIQ, IS, and PINAW. QNN displays the highest variances in the estimation of these
metrics. This may be attributed to the utilization of the pinball loss function, designed
to capture uncertainty. If the data distribution deviates from normal in a specific seed, it
can lead to lower accuracy. In essence, the neural network proves highly sensitive to data
imbalance, and this sensitivity manifests as elevated variances in metric estimation.
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Figure 4. Performance metric variances across five seeds for the implemented models.

5. Discussion
5.1. Understanding Uncertainty in Environmental Contexts

To have a better understanding of the results, we decided to visualize the SOC values
for all ground reference samples (Figure 5a) alongside standardized uncertainties. These
uncertainties represent the standardized difference between lower and upper values for
each sample, derived independently by each model (Figure 5b–f).

We aim to comprehend uncertainties related to our model based on well-known soil
and environmental processes. Regarding the CQRF model, as depicted in Figure 5b, we
noted elevated uncertainties linked to SOC estimates, particularly in regions characterized
by very high altitudes (e.g., Austria, Italy), peatland deposits (e.g., Great Britain, Ireland),
and boreal environments (e.g., Finland, Sweden, Estonia). These findings align with
previous studies [65,66], affirming the prevalence of significant model uncertainty in such
geographically challenging areas.
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(a) SOC values for all ground reference samples. (b) CQRF.

(c) QNN. (d) BRF.

(e) QGB. (f) QLR.

Figure 5. Spatial distribution of SOC values across all ground reference samples (a) and the computed
standardized uncertainty values from various implemented methods, limited to the test samples of a
specific seed (b–f).
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High-altitude regions pose inherent challenges due to their intricate and heteroge-
neous terrain, making them difficult to access and sample. Consequently, the limited
number of soil observations collected in these areas leads to pronounced variability in SOC
estimates [67]. This limitation becomes evident when mapping the spatial distribution of
soil samples based on their land cover classes, as illustrated in Figure 6. The corresponding
histogram of sample counts in Figure 7 underscores the lowest number of samples for the
Wetland class. Furthermore, it is essential to note that many high-altitude regions in Europe
comprise glacier formations, concealing the topsoil and making it challenging to obtain a
sufficient number of soil samples.

Figure 6. Spatial distribution of soil samples based on their land cover classes.

Figure 7. Histogram of soil samples for different land cover classes.
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Due to decades of cold and anaerobic conditions, peatland soils are very heterogeneous
in composition [68]. Such heterogeneity, which is a precursor of varying soil microbial
activities and low organic matter decomposition rates [69], makes it difficult to accurately
measure SOC and predict its distribution in these regions. Apart from peatlands, soils
in boreal regions also have high SOC contents due to decades of accrual and favorable
conditions linked to low organic matter decomposition, ample vegetation, and prolonged
arctic conditions. These regions not only have ample vegetation but are also highly diverse
(e.g., spruce, pines, etc.). Plant diversity constitutes highly heterogeneous soil carbon inputs
due to different litter types and undulated topograph [70]. The different litter types tend to
decompose at different rates, contributing to SOC variability in these regions. An increase
in soil microbial diversity [71] is also an expected positive effect associated with plant
diversity, which also influences overall soil composition in boreal regions. Moreover, since
some soils in boreal regions are frozen, thawing associated with rapid environmental
warming events continues to alter their composition [72]. For instance, as temperature
increases, soil microorganisms in boreal regions are becoming more active, which means
that greater organic matter decomposition is expected, thus altering SOC contents. All
these and other uncovered factors may be contributing to the observed model uncertainties
associated with high SOC estimate sampling locations in our study (Figure 5).

Examining the uncertainty patterns derived from QGB (Figure 5e), we observe a
striking similarity to the results obtained from the CQRF, aligning with the trends discussed
thus far. However, the results from BRF (Figure 5d) share similarities with the previous two
models, yet it classifies a substantial number of samples as having very low uncertainty.
This characteristic could potentially be misleading, particularly for end-users relying on
uncertainty information for decision making. A similar observation holds for the results
obtained from QLR (Figure 5f). In the case of QNN (Figure 5c), an intriguing pattern
emerges. The model appears to struggle in distinguishing samples with both low and
high uncertainties, predominantly categorizing most samples with a mid-level uncertainty.
This observation suggests that despite achieving good sample coverage (PICP = 89%),
the generated uncertainties might not precisely align with expert knowledge, potentially
limiting their utility for end-users.

5.2. Empirical Coverage for Low-Sample Classes

As extensively discussed in Section 2, a key aspect of conformal prediction is its statis-
tical guarantee of coverage with an error tolerance a. However, the dataset demonstrates
imbalances both within the response range (refer to Figure 2) and across various land cover
classes, as depicted in Figure 7. The soil samples are distributed across various land cover
classes, and the sample sizes exhibit variations among these classes. In particular, wet-
lands stand out with the lowest sample count (only 49 valid samples for the entire ground
truth), accompanied by substantial variability in SOC values within this category (see
Figures 6 and 5a). Moreover, several classes, such as artificial land, bare land, and shrub-
land, have significantly lower sample counts compared to cropland, grassland, and wood-
land, primarily due to the inherent nature of these three classes. However, from an ML
perspective, it becomes challenging for models to accurately capture trends for classes with
a limited number of samples. This underscores the importance of the statistical coverage
guarantee offered by conformal prediction.

To evaluate the coverage, PICP, provided by each method, especially for classes with
a low number of samples, we isolated these samples from the test data. Subsequently,
we plotted the response and prediction intervals offered by each implemented method,
centering the sample values around 0 for simplicity (see Figure 8). Despite the variability in
SOC values, the CQRF demonstrated the ability to cover almost all samples, particularly for
the wetlands class, which has only five test samples. This underscores its superiority over
QGB. In fact, CQRF emerges as the sole method providing accurate uncertainty estimation
that covers wetland samples. When considering other land cover classes with low samples,
we observe that the coverage offered by QNN, while high, does not accurately adjust the



Remote Sens. 2024, 16, 438 18 of 22

true upper and lower bounds of test samples, leading to inaccurate uncertainty values,
as discussed in Section 4.5. BRF exhibits a narrow and inaccurate coverage, and as expected,
QLR is unable to produce meaningful coverage, confirming the results provided in Table 4.

Although conformal prediction demonstrated superior performance compared to other
uncertainty quantification methods, it is not capable of identifying the specific sources of un-
certainty—whether originating from the data or the applied models. Further investigation
is required to discern the precise origins of uncertainty within the predictive framework.

Wetland

Artificial land

Bareland

Figure 8. Cont.
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Shrubland

Figure 8. The coverage of the test samples for different land cover classes, provided by various
implemented methods.

6. Conclusions

Conformal prediction, introduced as a method for quantifying uncertainty for SOC
estimation in the DSM community, excels in ensuring comprehensive sample coverage. We
conducted a comprehensive comparison with four distinct methodologies for uncertainty
quantification, leading to the following key conclusions:

• Conformal prediction uniquely demonstrates the ability to effectively adjust predic-
tion intervals derived from an ML regression model. This adaptability ensures the
generation of uncertainties that closely align with both empirical observations and
expert knowledge derived from the natural processes influencing SOC estimation.

• We empirically demonstrated the coverage efficacy of conformal prediction, even
for land cover classes characterized by a limited number of samples. This aspect
underscores its versatility and reliability across diverse data scenarios.

• In contrast to inherently time-consuming uncertainty quantification techniques, such
as bootstrapping, conformal prediction emerges as an efficient solution. Moreover, its
versatility extends beyond being a model-specific approach and can be applied to any
ML model.

• Beyond its advantages in uncertainty quantification, conformal prediction demon-
strates competitive accuracy metrics, as evidenced by lower RMSE and MAE values
compared to other methods. This dual proficiency in uncertainty quantification and
accuracy sets it apart from other methodologies.

• The uncertainty maps generated by combining conformal prediction with quantile
random forest offer a visually captivating representation of the underlying SOC
structure. These patterns align seamlessly with our understanding of SOC formation,
providing valuable insights into the intricate dynamics of SOC.

In summary, conformal prediction emerges as a robust and versatile method offer-
ing a unique blend of efficient uncertainty quantification, high accuracy, and insightful
representations of SOC patterns.

Author Contributions: Conceptualization, N.K.; methodology, N.K.; software, N.K.; validation,
N.K., N.M.K. and T.S.; formal analysis, N.K. and N.M.K.; investigation, N.K.; resources, T.S.; data
curation, N.K.; writing—original draft preparation, N.K., S.A. and N.M.K.; writing—review and
editing, N.K., S.A., N.M.K., M.A. and T.S.; visualization, N.K., S.A. and N.M.K.; supervision, T.S.;
project administration, N.K.; funding acquisition, T.S. and M.A. All authors have read and agreed to
the published version of the manuscript.

Funding: We acknowledge the support of the German Research Foundation (DFG) [3150] for the
project ‘MLTRANS-Transferability of Machine Learning Models in Digital Soil Mapping’ (SCHO
739/21-1) and ’Machine Learning for Science’ which is part of Germany’s Excellence Strategy—EXC
number 2064/1—Project number 390727645.



Remote Sens. 2024, 16, 438 20 of 22

Data Availability Statement: The LUCAS-Topsoil samples used during the current study are available
upon request from the European Soil Data Center (ESDAC) https://esdac.jrc.ec.europa.eu/resource-
type/european-soil-database-soil-properties (accessed on 24 November 2023). The base code
https://github.com/moienr/SoilNet (accessed on 17 January 2024) and the the implementation of
experiments is available online at https://github.com/nafisehkakhani/Conformal_Prediction_DSM
(accessed on 17 January 2024).

Conflicts of Interest: Author Meisam Amani was employed by the WSP Environment and Infrastruc-
ture Canada Limited. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl.

2000, 10, 423–436. [CrossRef]
2. Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das,

B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [CrossRef]
3. Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil

organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [CrossRef]
4. Rillig, M.C.; van der Heijden, M.G.; Berdugo, M.; Liu, Y.R.; Riedo, J.; Sanz-Lazaro, C.; Moreno-Jiménez, E.; Romero, F.; Tedersoo,

L.; Delgado-Baquerizo, M. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Chang. 2023,
13, 478–483. [CrossRef] [PubMed]

5. Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.;
Gallardo, A.; et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020,
4, 210–220. [CrossRef] [PubMed]

6. Orr, J.A.; Vinebrooke, R.D.; Jackson, M.C.; Kroeker, K.J.; Kordas, R.L.; Mantyka-Pringle, C.; Van den Brink, P.J.; De Laender, F.;
Stoks, R.; Holmstrup, M.; et al. Towards a unified study of multiple stressors: Divisions and common goals across research
disciplines. Proc. R. Soc. B 2020, 287, 20200421. [CrossRef] [PubMed]

7. Powlson, D.; Bhogal, A.; Chambers, B.; Coleman, K.; Macdonald, A.; Goulding, K.; Whitmore, A. The potential to increase soil
carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agric. Ecosyst. Environ.
2012, 146, 23–33. [CrossRef]

8. Lin, Y.; Prentice, S.E., III; Tran, T.; Bingham, N.L.; King, J.Y.; Chadwick, O.A. Modeling deep soil properties on California
grassland hillslopes using LiDAR digital elevation models. Geoderma Reg. 2016, 7, 67–75. [CrossRef]

9. Hong, Y.; Munnaf, M.A.; Guerrero, A.; Chen, S.; Liu, Y.; Shi, Z.; Mouazen, A.M. Fusion of visible-to-near-infrared and mid-infrared
spectroscopy to estimate soil organic carbon. Soil Tillage Res. 2022, 217, 105284. [CrossRef]

10. Atwell, M.A.; Wuddivira, M.N. Soil organic carbon characterization in a tropical ecosystem under different land uses using
proximal soil sensing technique. Arch. Agron. Soil Sci. 2022, 68, 297–310. [CrossRef]

11. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar,
N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by
stacking machine learning models and rescanning covariate space. Remote Sens. 2020, 12, 1095. [CrossRef]

12. McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [CrossRef]
13. Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; Zhu, A.X.; Scholten, T. Hyper-scale digital soil mapping and soil formation

analysis. Geoderma 2014, 213, 578–588. [CrossRef]
14. Stumpf, F.; Schmidt, K.; Goebes, P.; Behrens, T.; Schönbrodt-Stitt, S.; Wadoux, A.; Xiang, W.; Scholten, T. Uncertainty-guided

sampling to improve digital soil maps. Catena 2017, 153, 30–38. [CrossRef]
15. Takoutsing, B.; Heuvelink, G.B.; Stoorvogel, J.J.; Shepherd, K.D.; Aynekulu, E. Accounting for analytical and proximal soil sensing

errors in digital soil mapping. Eur. J. Soil Sci. 2022, 73, e13226. [CrossRef]
16. van der Westhuizen, S.; Heuvelink, G.B.; Hofmeyr, D.P.; Poggio, L. Measurement error-filtered machine learning in digital soil

mapping. Spat. Stat. 2022, 47, 100572. [CrossRef]
17. Nelson, M.; Bishop, T.; Triantafilis, J.; Odeh, I. An error budget for different sources of error in digital soil mapping. Eur. J. Soil

Sci. 2011, 62, 417–430. [CrossRef]
18. Heuvelink, G.B. Uncertainty and uncertainty propagation in soil mapping and modelling. In Pedometrics; Springer: Cham,

Switzerland, 2018; pp. 439–461.
19. Schmidinger, J.; Heuvelink, G.B. Validation of uncertainty predictions in digital soil mapping. Geoderma 2023, 437, 116585.

[CrossRef]
20. Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma 2001, 103, 3–26. [CrossRef]
21. Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007.
22. Malone, B.; McBratney, A.; Minasny, B. Empirical estimates of uncertainty for mapping continuous depth functions of soil

attributes. Geoderma 2011, 160, 614–626. [CrossRef]

https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
https://github.com/moienr/SoilNet
https://github.com/nafisehkakhani/Conformal_Prediction_DSM
http://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
http://dx.doi.org/10.1016/j.geoderma.2017.01.002
http://dx.doi.org/10.1038/s41467-023-39338-z
http://dx.doi.org/10.1038/s41558-023-01627-2
http://www.ncbi.nlm.nih.gov/pubmed/37193246
http://dx.doi.org/10.1038/s41559-019-1084-y
http://www.ncbi.nlm.nih.gov/pubmed/32015427
http://dx.doi.org/10.1098/rspb.2020.0421
http://www.ncbi.nlm.nih.gov/pubmed/32370677
http://dx.doi.org/10.1016/j.agee.2011.10.004
http://dx.doi.org/10.1016/j.geodrs.2016.01.005
http://dx.doi.org/10.1016/j.still.2021.105284
http://dx.doi.org/10.1080/03650340.2020.1831693
http://dx.doi.org/10.3390/rs12071095
http://dx.doi.org/10.1016/S0016-7061(03)00223-4
http://dx.doi.org/10.1016/j.geoderma.2013.07.031
http://dx.doi.org/10.1016/j.catena.2017.01.033
http://dx.doi.org/10.1111/ejss.13226
http://dx.doi.org/10.1016/j.spasta.2021.100572
http://dx.doi.org/10.1111/j.1365-2389.2011.01365.x
http://dx.doi.org/10.1016/j.geoderma.2023.116585
http://dx.doi.org/10.1016/S0016-7061(01)00067-2
http://dx.doi.org/10.1016/j.geoderma.2010.11.013


Remote Sens. 2024, 16, 438 21 of 22

23. Fouedjio, F.; Klump, J. Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches. Environ.
Earth Sci. 2019, 78, 38. [CrossRef]

24. Padarian, J.; Minasny, B.; McBratney, A. Chile and the Chilean soil grid: A contribution to GlobalSoilMap. Geoderma Reg. 2017,
9, 17–28. [CrossRef]

25. Valle, D.; Izbicki, R.; Leite, R.V. Quantifying uncertainty in land-use land-cover classification using conformal statistics. Remote
Sens. Environ. 2023, 295, 113682. [CrossRef]

26. Kasraei, B.; Heung, B.; Saurette, D.D.; Schmidt, M.G.; Bulmer, C.E.; Bethel, W. Quantile regression as a generic approach for
estimating uncertainty of digital soil maps produced from machine-learning. Environ. Model. Softw. 2021, 144, 105139. [CrossRef]

27. Lagacherie, P.; Arrouays, D.; Bourennane, H.; Gomez, C.; Martin, M.; Saby, N.P. How far can the uncertainty on a Digital Soil
Map be known?: A numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery.
Geoderma 2019, 337, 1320–1328. [CrossRef]

28. Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma
2017, 291, 55–64. [CrossRef]

29. Meinshausen, N.; Ridgeway, G. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999.
30. Cannon, A.J. Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Comput.

Geosci. 2011, 37, 1277–1284. [CrossRef]
31. Minasny, B.; Vrugt, J.A.; McBratney, A.B. Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo

simulation. Geoderma 2011, 163, 150–162. [CrossRef]
32. Karunaratne, S.; Bishop, T.; Baldock, J.; Odeh, I. Catchment scale mapping of measureable soil organic carbon fractions. Geoderma

2014, 219, 14–23. [CrossRef]
33. Solomatine, D.P.; Shrestha, D.L. A novel method to estimate model uncertainty using machine learning techniques. Water Resour.

Res. 2009, 45, W00B11. [CrossRef]
34. Condran, S.; Bewong, M.; Islam, M.Z.; Maphosa, L.; Zheng, L. Machine learning in precision agriculture: A survey on trends,

applications and evaluations over two decades. IEEE Access 2022, 10, 73786–73803. [CrossRef]
35. Saia, S.M.; Nelson, N.G.; Huseth, A.S.; Grieger, K.; Reich, B.J. Transitioning machine learning from theory to practice in natural

resources management. Ecol. Model. 2020, 435, 109257.
36. Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A brief survey on history, research areas, approaches and

challenges. In Proceedings of the Natural Language Processing and Chinese Computing: 8th CCF International Conference,
NLPCC 2019, Part II 8, Dunhuang, China, 9–14 October 2019; pp. 563–574.

37. You, K.; Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Universal domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2720–2729.

38. Raghunathan, A.; Xie, S.M.; Yang, F.; Duchi, J.; Liang, P. Understanding and mitigating the tradeoff between robustness and
accuracy. arXiv 2020, arXiv:2002.10716.

39. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and
methods. Mach. Learn. 2021, 110, 457–506. [CrossRef]

40. Farag, M.; Kierdorf, J.; Roscher, R. Inductive Conformal Prediction for Harvest-Readiness Classification of Cauliflower Plants:
A Comparative Study of Uncertainty Quantification Methods. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Paris, France, 2–6 October 2023; pp. 651–659.

41. Melki, P.; Bombrun, L.; Diallo, B.; Dias, J.; Da Costa, J.P. Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Paris, France, 2–6 October 2023; pp. 614–623.

42. Jensen, V.; Bianchi, F.M.; Anfinsen, S.N. Ensemble conformalized quantile regression for probabilistic time series forecasting.
IEEE Trans. Neural Netw. Learn. Syst. 2022. . [CrossRef]

43. Shafer, G.; Vovk, V. A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 2008, 9, 371–421.
44. Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic Learning in a Random World; Springer: New York, NY, USA, 2005; Volume 29.
45. Balasubramanian, V.; Ho, S.S.; Vovk, V. Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications;

Morgan Kaufmann: Waltham, MA, USA, 2014.
46. Romano, Y.; Patterson, E.; Candes, E. Conformalized quantile regression. In Proceedings of the 33rd Conference on Neural

Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
47. Sesia, M.; Candès, E.J. A comparison of some conformal quantile regression methods. Stat 2020, 9, e261. [CrossRef]
48. Takeuchi, I.; Le, Q.; Sears, T.; Smola, A. Nonparametric quantile estimation. J. Mach. Learn. Res. 2006, 7, 1231–1264.
49. Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [CrossRef]
50. Angelopoulos, A.N.; Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification.

arXiv 2021, arXiv:2107.07511.
51. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate

and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef] [PubMed]
52. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land

areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [CrossRef]

http://dx.doi.org/10.1007/s12665-018-8032-z
http://dx.doi.org/10.1016/j.geodrs.2016.12.001
http://dx.doi.org/10.1016/j.rse.2023.113682
http://dx.doi.org/10.1016/j.envsoft.2021.105139
http://dx.doi.org/10.1016/j.geoderma.2018.08.024
http://dx.doi.org/10.1016/j.geoderma.2016.12.017
http://dx.doi.org/10.1016/j.cageo.2010.07.005
http://dx.doi.org/10.1016/j.geoderma.2011.03.011
http://dx.doi.org/10.1016/j.geoderma.2013.12.005
http://dx.doi.org/10.1029/2008WR006839
http://dx.doi.org/10.1109/ACCESS.2022.3188649
http://dx.doi.org/10.1007/s10994-021-05946-3
.
http://dx.doi.org/10.1109/TNNLS.2022.3217694
http://dx.doi.org/10.1002/sta4.261
http://dx.doi.org/10.1257/jep.15.4.143
http://dx.doi.org/10.1038/sdata.2017.191
http://www.ncbi.nlm.nih.gov/pubmed/29313841
http://dx.doi.org/10.1002/joc.1276


Remote Sens. 2024, 16, 438 22 of 22

53. Sakhaee, A.; Gebauer, A.; Ließ, M.; Don, A. Spatial prediction of organic carbon in German agricultural topsoil using machine
learning algorithms. Soil 2022, 8, 587–604. [CrossRef]

54. Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van Der Heijden, M.G.; Liebman, M.; Hallin, S. Agricultural diversifica-
tion promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [CrossRef]

55. Yang, Q.; Liu, G.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.; Casazza, M. Emergy-based ecosystem services valuation and
classification management applied to China’s grasslands. Ecosyst. Serv. 2020, 42, 101073. [CrossRef]

56. Alasta, A.F. Using Remote Sensing data to identify iron deposits in central western Libya. In Proceedings of the International
Conference on Emerging Trends in Computer and Image Processing, Bangkok, Thailand, 23–24 December 2011; pp. 56–61.

57. Segal, D. Theoretical basis for differentiation of ferric-iron bearing minerals, using Landsat MSS data. In Proceedings of the
Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort
Worth, TX, USA, 6–10 Decembe 1982; pp. 949–951.

58. Baumann, F.; He, J.S.; Schmidt, K.; Kuehn, P.; Scholten, T. Pedogenesis, permafrost, and soil moisture as controlling factors for soil
nitrogen and carbon contents across the Tibetan Plateau. Glob. Chang. Biol. 2009, 15, 3001–3017. [CrossRef]

59. Don, A.; Schumacher, J.; Scherer-Lorenzen, M.; Scholten, T.; Schulze, E.D. Spatial and vertical variation of soil carbon at two
grassland sites—implications for measuring soil carbon stocks. Geoderma 2007, 141, 272–282. [CrossRef]

60. Carter, B.J.; Ciolkosz, E.J. Slope gradient and aspect effects on soils developed from sandstone in Pennsylvania. Geoderma 1991,
49, 199–213. [CrossRef]

61. Kakhani, N.; Rangzan, M.; Jamali, A.; Attarchi, S.; Alavipanah, S.K.; Scholten, T. SoilNet: An Attention-based Spatio-temporal
Deep Learning Framework for Soil Organic Carbon Prediction with Digital Soil Mapping in Europe. arXiv 2023, arXiv:2308.03586.

62. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

63. Chung, Y.; Char, I.; Guo, H.; Schneider, J.; Neiswanger, W. Uncertainty toolbox: An open-source library for assessing, visualizing,
and improving uncertainty quantification. arXiv 2021, arXiv:2109.10254.

64. Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators
commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010,
29, 1073–1081. [CrossRef]

65. Feeney, C.; Cosby, B.; Robinson, D.; Thomas, A.; Emmett, B.; Henrys, P. Multiple soil map comparison highlights challenges for
predicting topsoil organic carbon concentration at national scale. Sci. Rep. 2022, 12, 1379. [CrossRef] [PubMed]

66. de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon
content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [CrossRef]

67. Hoffmann, U.; Hoffmann, T.; Johnson, E.; Kuhn, N.J. Assessment of variability and uncertainty of soil organic carbon in a
mountainous boreal forest (Canadian Rocky Mountains, Alberta). Catena 2014, 113, 107–121. [CrossRef]

68. Baird, A.J.; Comas, X.; Slater, L.D.; Belyea, L.R.; Reeve, A. Understanding carbon cycling in Northern peatlands: Recent
developments and future prospects. Carbon Cycl. North. Peatlands 2009, 184, 1–3.

69. Barreto, C.; Lindo, Z. Decomposition in peatlands: Who are the players and what affects them? Front. Young Minds 2022, 8, 107. .
[CrossRef]

70. Gries, P.; Schmidt, K.; Scholten, T.; Kühn, P. Regional and local scale variations in soil organic carbon stocks in West Greenland. J.
Plant Nutr. Soil Sci. 2020, 183, 292–305. [CrossRef]

71. Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.;
et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [CrossRef]

72. Scholten, T.; Baumann, F.; Schleuss, P.M.; He, J.S. Tibet: Soils, climate, vegetation, and land-use feedbacks on the Tibetan Plateau.
In Soil and Climate; CRC Press: Boca Raton, FL, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5194/soil-8-587-2022
http://dx.doi.org/10.1126/sciadv.aba1715
http://dx.doi.org/10.1016/j.ecoser.2020.101073
http://dx.doi.org/10.1111/j.1365-2486.2009.01953.x
http://dx.doi.org/10.1016/j.geoderma.2007.06.003
http://dx.doi.org/10.1016/0016-7061(91)90076-6
http://dx.doi.org/10.1038/s41586-019-0912-1
http://www.ncbi.nlm.nih.gov/pubmed/30760912
http://dx.doi.org/10.1016/j.trac.2010.05.006
http://dx.doi.org/10.1038/s41598-022-05476-5
http://www.ncbi.nlm.nih.gov/pubmed/35082379
http://dx.doi.org/10.1111/ejss.12193
http://dx.doi.org/10.1016/j.catena.2013.09.009
.
http://dx.doi.org/10.3389/frym.2020.00107
http://dx.doi.org/10.1002/jpln.201900390
http://dx.doi.org/10.1038/ncomms7707

	Introduction
	Mathematical Background
	Materials and Methodology
	Data Description and Preprocessing
	Ground Reference Samples
	Input Features

	Experiments
	Implemented Methods
	Evaluation Metrics


	Results
	Coverage and Prediction Interval Width: PICP and PINAW
	Accuracy Metrics: RMSE, MAE, and RPIQ
	Scoring Rules: NLL and IS
	Summary of All: Final Score
	Variances of Metric Estimation

	Discussion
	Understanding Uncertainty in Environmental Contexts
	Empirical Coverage for Low-Sample Classes

	Conclusions
	References

