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Abstract: High dynamic range imaging (HDRI) is an essential task in remote sensing, enhancing
low dynamic range (LDR) remote sensing images and benefiting downstream tasks, such as object
detection and image segmentation. However, conventional frame-based HDRI methods may en-
counter challenges in real-world scenarios due to the limited information inherent in a single image
captured by conventional cameras. In this paper, an event-based remote sensing HDR imaging
framework is proposed to address this problem, denoted as ERS-HDRI, which reconstructs the
remote sensing HDR image from a single-exposure LDR image and its concurrent event streams. The
proposed ERS-HDRI leverages a coarse-to-fine framework, incorporating the event-based dynamic
range enhancement (E-DRE) network and the gradient-enhanced HDR reconstruction (G-HDRR)
network. Specifically, to efficiently achieve dynamic range fusion from different domains, the E-DRE
network is designed to extract the dynamic range features from LDR frames and events and perform
intra- and cross-attention operations to adaptively fuse multi-modal data. A denoise network and a
dense feature fusion network are then employed for the generation of the coarse, clean HDR image.
Then, the G-HDRR network, with its gradient enhancement module and multiscale fusion module,
performs structure enforcement on the coarse HDR image and generates a fine informative HDR
image. In addition, this work introduces a specialized hybrid imaging system and a novel, real-world
event-based remote sensing HDRI dataset that contains aligned remote sensing LDR images, remote
sensing HDR images, and concurrent event streams for evaluation. Comprehensive experiments
have demonstrated the effectiveness of the proposed method. Specifically, it improves state-of-the-art
PSNR by about 30% and the SSIM score by about 9% on the real-world dataset.

Keywords: HDR imaging; multi-modal fusion; remote sensing image processing; event camera;
machine learning

1. Introduction

Remote sensing photography through airplanes is important for earth observation, aiming
to record the spatial information of large areas on Earth [1–4]. However, due to the unexpected
light conditions, remote sensing images captured in the real world always suffer from low
dynamic range, leading to incomplete scene information [5]. Existing approaches handle high
dynamic range (HDR) reconstruction by leveraging multiple low dynamic range (LDR) images
with different exposures, i.e., multi-exposure high dynamic range imaging (HDRI) [6,7], or a
single LDR image, i.e., single-exposure HDRI [8–11]. Nevertheless, multi-exposure HDRI often
suffers from ghosting caused by moving objects [10,12,13]. Even though single-exposure
HDRI is more efficient and immune to ghosting effects, its limited information presents a
challenge for HDRI [8,14,15], rendering the problem ill-posed, as shown in Figure 1a.

In recent years, event cameras have shown great advantages in HDR imaging [16].
Since the photoreceptors of pixels measure intensity changes asynchronously in the log-
arithmic domain [16,17], event cameras achieve a high dynamic range (>120 dB) and
can compensate for saturated regions in LDR images captured by conventional cameras.

Remote Sens. 2024, 16, 437. https://doi.org/10.3390/rs16030437 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16030437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8103-5595
https://orcid.org/0009-0006-0903-5287
https://orcid.org/0000-0001-8335-3749
https://doi.org/10.3390/rs16030437
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030437?type=check_update&version=1


Remote Sens. 2024, 16, 437 2 of 23

However, the recovery of high-quality remote sensing HDR images with the aid of event
streams is still a challenging problem due to the following issues:

Figure 1. Different HDR reconstruction methods. (a): previous frame-based method. (b): our proposed
ERS-HDRI.

• Domain Gap. Conventional RGB cameras continuously capture frames by integrating
brightness and then generating color frames. In contrast, event cameras operate on
a completely different principle, detecting and transmitting changes in luminance,
resulting in an asynchronous stream of events [16]. The substantial distinction in
imaging mechanisms between conventional cameras and event cameras gives rise
to a considerable domain gap between optical images and event streams, prevent-
ing their efficient integration. Existing event-guided HDR imaging methods have
successfully integrated image frames and event streams by introducing exposure
mask attention [18,19]. However, the exposure mask is generated through threshold
segmentation and cannot be learned according to different environments, resulting in
an inability to perfectly adapt to diverse scenes. Therefore, how to narrow the domain
gap and implement adaptive fusion between optical images and event streams is still
an open problem in event-guided HDRI tasks.

• Light attenuation. The structures within low dynamic range (LDR) frames typically
exhibit weakening in under-/over-exposed regions. Even though event cameras are
able to sense structure information at contrast edges, their effectiveness in capturing
detailed information diminishes when operating at high altitudes. This limitation
arises due to the decrease in light intensity with increasing distance; as a result, the
event camera’s perception of brightness changes often fails to reach the event trigger-
ing threshold when capturing images at high altitudes [16], making it difficult for the
event camera to capture complex details. Therefore, it is challenging to reconstruct
informative structures in badly exposed remote sensing images with events captured
at high altitudes.

Previous event-based HDRI methods have attempted to leverage event streams to
guide LDR image enhancement by designing two-stage or end-to-end networks in ground
photography [18,20]. However, when it comes to remote sensing HDRI, the increased
sparsity of events aggravates the challenge of bridging the domain gap between LDR frames
and events for fusion. Moreover, the impact of light attenuation hinders the effectiveness
of these methods, resulting in the loss of details and distortion in the reconstructed images.

In this paper, an event-based remote sensing HDR imaging framework, i.e., ERS-HDRI,
is proposed to address these problems; it takes a remote sensing LDR image and its con-
current events as input, employing a coarse-to-fine strategy to reconstruct an informative
HDR image. ERS-HDRI incorporates two networks: the event-based dynamic range en-
hancement (E-DRE) network and the gradient-enhanced HDR reconstruction (G-HDRR)
network; they perform coarse and fine HDR reconstruction, respectively. Particularly, the
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E-DRE network reconstructs the missing information in under-/over-exposed regions by
integrating events, where the LDR image and events undergo adaptive fusion through
the introduction of the intra- and cross-attention (ICA) module. To handle the noise in
under-exposed regions, a multiscale denoising module is introduced into the E-DRE net-
work, followed by the dense feature fusion (DFF) module to enhance reconstruction. In
the G-HDRR network, the gradient enhancement (GE) module is leveraged to excavate
the structure map from image gradients and event frames, which can be used to enhance
textures in low-contrast regions. Additionally, a novel remote sensing event-based HDRI
dataset composed of both synthetic data and real-world data is conducted to evaluate our
proposed method. Comprehensive experiments demonstrate the superior performance of
our approach over state-of-the-art methodologies.

To summarize, the contributions of this work are as follows:

• We introduce an event-based HDRI framework for remote sensing HDR image recon-
struction, which integrates LDR frames with event streams.

• We implement a coarse-to-fine strategy that efficiently achieves dynamic range en-
hancement and structure enhancement, where both the domain gap problem and the
light attenuation problem are alleviated.

• We present a hybrid imaging system with a conventional optical camera and an event
camera; moreover, we present a novel remote sensing event-based HDRI dataset that
contains aligned LDR images, HDR images, and concurrent event streams.

The remainder of the paper is organized as follows. Section 2 reviews the related
works including the single-exposure HDR reconstruction, event-based HDR reconstruction,
and remote sensing image enhancement. Section 3 presents the problem formulation of
the event-based remote sensing HDRI task and describes the details of the proposed ERS-
HDRI, including the network architecture and optimization strategy. Section 4 details the
hybrid imaging system and the event-based remote sensing HDRI dataset. Finally, this
work evaluates the performance of ERS-HDRI on the proposed dataset in Section 5 and
concludes in Section 6. Limitations and future work are presented in Section 7.

2. Related Work
2.1. Framed-Based HDR Reconstruction

The framed-based HDR reconstruction is mainly composed of two methodologies,
i.e., multi-image HDR reconstruction and single-image HDR reconstruction. The former
generates the HDR images through the fusion of a stack of LDR images, each captured at
distinct exposure times of the same scene. Although certain efforts in this domain have
yielded commendable results, limitations, e.g., significant delays, arise due to dependencies
on specific software/hardware technologies, which affect the timeliness of remote sensing
imaging in specific scenarios. Therefore, we focus on single-exposure HDR reconstruction
methods, which aim to reconstruct missing details within saturated regions with a single
LDR input.

Traditional approaches estimate the density of light sources to expand the dynamic
range or conduct the cross-bilateral filter to enhance the input LDR images [21–24]. How-
ever, processing the diverse and complex semantic information inherent in various scenarios
proves to be a huge challenge.

Recently, with the release of several datasets, CNN-based methods have shown great
performance. Eilertsen et al. [25] presented HDRCNN to recover missing details in the
over-exposed regions. Marnerides et al. designed a multiscale autoencoder architecture,
i.e., ExpandNet, aiming to learn different levels of details from an LDR image. However, it
is noteworthy that these approaches have tended to ignore the presence of quantization
artifacts and noise. Santos et al. [26] contributed to the field by introducing masked
features and perceptual loss, which effectively mitigate ambiguity and halo artifacts in
HDR images. Nevertheless, this may result in the reconstruction of saturated areas with
inaccuracies in color representations in some cases. On the contrary, Liu et al. attempted to
learn LDR-to-HDR mapping by reversing the camera pipeline, including dequantization,
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linearization, and hallucination [27], demonstrating remarkable performance. Chen et al.
introduced a spatially dynamic encoder–decoder network [11], facilitating a robust learning
framework for HDR reconstruction that incorporates denoising and dequantization. Akhil
et al. enhanced the network’s representation capacity through the adoption of distinct dense
connection structures [28]. Moreover, Sharif et al. [29] proposed a two-stage learning-based
method without hardware information, such as the camera response function (CRF) and
exposure settings. Instead of employing multiple networks, Wang et al. presented a unified
network based on the imaging process, by integrating LDR-to-HDR imaging knowledge
into an UNet architecture [30]. Despite the considerable advances, single-image HDR
reconstruction remains a complex and ill-posed problem, primarily due to the challenge of
addressing missing information in under-/over-exposed regions with limited information.

On the other hand, inspired by multi-exposure approaches, certain works have also
attempted to reconstruct HDR from a single image via the prediction of multiple exposure
images [31]. This approach provides more fine-grained control over details and ensures
robust HDR recovery under various lighting conditions. However, it is important to note
that generating images with distinct exposures is difficult. Moreover, all the information
still comes from a single LDR image, leading to limited useful information.

2.2. Event-Based HDR Reconstruction

Event cameras represent a groundbreaking class of bio-inspired neuromorphic sensors,
presenting a paradigm shift in the acquisition of visual information. Diverging from the con-
ventional approach of measuring the intensity of each pixel, event cameras asynchronously
detect changes in scene radiance, providing remarkable structural texture. The dynamic
range of traditional frame-based cameras is limited as they need to encode scene intensities
into a fixed number of bits, while event cameras do not encode absolute intensity levels,
and will not saturate in extreme lighting conditions. Consequently, event cameras have a
substantially higher dynamic range (140 dB vs. 60 dB) [18], rendering them promising and
advantageous for HDR imaging.

Given the capacity of event cameras to capture additional scene details in areas
poorly exposed in LDR scenarios, numerous works have attempted to reconstruct intensity
images solely from event data. Belbachir et al. first handled this challenge within the
context of known camera motions [32]. Bardow et al. expanded this to general cameras by
estimating joint intensity images and optical flow [33]. By leveraging a recurrent neural
network (RNN) for video reconstruction, Rebecq et al. proposed EVDI and obtained
promising results [34]. Recently, a series of CNN-based networks have emerged [35–37].
Liang et al. [38] innovatively incorporated the diffusion model into the reconstruction
pipeline to remove artifacts and blur in reconstructed images, achieving high-quality results.
However, the results of these works are typically low resolution and grayscale, constraining
their applicability in diverse scenarios. Furthermore, due to the lack of absolute intensity
information and varying contrast thresholds, these approaches frequently fail to provide
highly detailed reconstructions.

To leverage the full spectrum of information in the LDR and the event data, some
approaches have employed various strategies to utilize events in guiding the LDR-to-HDR
mapping. Han et al. [18] proposed a multi-modal camera system and learning framework
for HDR, incorporating LDR and the intensity map generated by E2VID [34] as inputs.
However, their approach, which does not allow for end-to-end model optimization, resulted
in sub-optimal solutions. Messikommer et al. [20] first combined bracketed LDR images and
synchronized events for HDR imaging, demonstrating enhanced robustness in handling
noise and ghosts. Richard et al. [39] introduced a novel event-to-image feature distillation
module, directly transforming event features into the image feature space without relying
on an intermediary intensity image. Yang et al. [40] presented a multi-modal learning
framework for reconstructing HDR videos from hybrid inputs of LDR videos and events.
However, these approaches face challenges in achieving satisfactory generalization results
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when applied to remote sensing datasets. We attribute this limitation to the specificity of
the data and network structure.

2.3. Remote Sensing Image Enhancement

Remote sensing images have been widely applied in object detection [1,41], image
semantic segmentation [42], image classification [43], and change detection [44]. However,
the captured remote sensing images under diverse light conditions, such as overexposure
and underexposure, often suffer from low dynamics and noise [45,46]. This, in turn,
hampers the extraction of information for subsequent tasks.

Recent works have attempted to address this problem by performing remote sens-
ing HDR reconstruction and denoising, respectively. For remote sensing HDR imaging,
aimed at HDR reconstruction of low-illumination remote sensing images, Zhang et al. [5]
introduced a dynamic long–short-range structure. The network augments the lighting en-
hancement module, capturing both long-distance and short-distance structural information
in LI images, thereby improving the generalization capacity of the method. However, it
only focuses on processing under-exposed images, while reconstruction from over-exposed
remote sensing images has been less studied. The research on remote sensing image denois-
ing is relatively extensive. Han et al. [47] presented a novel remote sensing image denoising
network (RSIDNet), comprising a multiscale feature extraction module, a global feature
fusion block, and a noisy image reconstruction block. Synergistic integration of these
modules significantly enhances the capabilities of feature extraction, preserving detailed
information more effectively. Huang et al. [48] proposed a deep gradient descent network,
which can recognize structures from images degraded by additive white Gaussian noise,
producing competitive denoising performance. Several studies have integrated image
enhancement with additional tasks within the remote sensing domain. Wang et al. [49]
introduced a novel cross-modal interactive fusion method to enhance the interactivity
of modal fusion by combining multisource information, greatly improving classification
accuracy. Xi et al. [50] incorporated an anti-label-noise network framework into semantic
segmentation, enhancing the model’s robustness by mitigating label noise. However, to
the best of our knowledge, scant attention has been directed toward investigating high
dynamic range imaging of remote sensing images under arbitrary exposure conditions
with noise.

Although one can address the image enhancement task under abnormal lighting by cas-
cading the dynamic range enhancement method and image denoising method mentioned
above, sub-optimal problems often arise due to error accumulation. Therefore, this paper
considers conducting dynamic range reconstruction and image denoising synchronously.

3. Methods

In this section, the formulation of the event-based remote sensing HDRI problem is
presented in Section 3.1. Then, our proposed event-based remote sensing HDR imaging
(ERS-HDRI) framework is introduced in Section 3.2, followed by the optimization strategy
in Section 3.3.

3.1. Problem Formulation

Given a remote sensing LDR image L defined over L ≜ W +B with W and B denoting
well-exposed and badly-exposed regions, respectively, frame-based HDR imaging methods
recover the HDR image Î by learning semantically meaningful information of well-exposed
regions LW and the essential distributions of the total image L.

Î = F (LW ;D(L)), (1)

where F represents HDR imaging networks and D(L) denotes the distributions of input
LDR images.

However, when L is severely degraded, i.e., with extremely under-/over-exposed
regions, the information of LW is not enough to support the reconstruction of badly exposed
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regions, and the weakened distributions D(L) aggravate the difficulty of this task. Thanks
to the high dynamic range of event cameras, the event streams can record more information
in cases of inappropriate exposure, thus offering a valuable resource to compensate for the
remote sensing HDRI task.

The objective of our event-based remote sensing HDR imaging is to reconstruct the
HDR image Î from a blurry, low dynamic range image L and the concurrent event streams
ET ≜ {x, t, p}, which are triggered inside T , where x, t, and p denote the position, times-
tamp, and polarity of the event. The reconstruction process can be formulated through an
operator G conditioned by both the fused dynamic range and structures, i.e.,

Î = G(D(A(L, ET )),S(L, ET )), (2)

where D represents the dynamic range feature fusion operation. Considering the different
distributions between L and ET , the feature adaptive fusion A is introduced into D to
realize the adaptive fusion multi-modal features. S is a structure enhancement operation
that excavates the edge information to maintain the structure in the recovered HDR images.

3.2. Network Architecture

The proposed event-based framework aims to reconstruct the remote sensing HDR
image from an LDR image and its concurrent event streams, based on Equation (2), termed
ERS-HDRI. The overview pipeline is composed of two sub-networks, i.e., the event-based
dynamic range enhancement network (E-DRE) and the gradient-enhanced HDR recon-
struction network (G-HDRR), as shown in Figure 2. Based on the coarse-to-fine strategy,
E-DRE firstly performs coarse HDR imaging on the LDR image L with the aid of event
streams ET and reconstructs the HDR image Îcoarse. Secondly, by excavating the structure
attention map from the gradient of the coarse HDR image and short temporal event frame,
the G-HDRR network enhances the structures in low-contrast regions and reconstructs the
final informative and visually pleasing sharp HDR image Î f ine.

Figure 2. An illustration of our event-based remote sensing HDR imaging framework, i.e., ERS-
HDRI, which is composed of the event-based dynamic range enhancement (E-DRE) network and
gradient-enhanced HDR reconstruction (G-HDRR) network.
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3.2.1. Event-Based Dynamic Range Enhancement Network

The event-based dynamic range enhancement network (E-DRE) aims to learn the
HDR imaging function D(A(L, ET )). Since events are powerful at recording high dynamic
range scenes, they can recover the actual textures in the saturated regions of the LDR
images. Therefore, a coarse dynamic range fusion network, composed of feature extraction,
denoising, and dense feature fusion, is conducted to extract the high dynamic range
information from both the LDR image and event streams, and then reconstructs a coarse
clean high dynamic range image, as shown in Figure 2.

The purpose of the feature extraction process is to acquire meaningful information
from both the LDR image and events, encompassing dynamic range, structures, and color.
To enhance the processability of event streams by convolutional neural networks, they are
initially embedded into voxel grids. Specifically, when dealing with the event stream ET , it
is divided into 5 temporal bins, and then the events within each bin are merged into h × w
tensors. Consequently, the event streams are represented by a 5 × h × w tensor, denoted as
EV . Considering the notable disparity in distributions between the LDR image L and the
event voxel EV , direct fusion at the image level becomes challenging due to the domain gap
between two types of multi-modal data. To address this, two encoders, i.e., EL and EE, are
employed to embed L and EV into the feature space, yielding distinctive features, denoted
as FL and FE.

FL = EL(L), FE = EE(EV ). (3)

Note that the encoders are composed of cascaded convolution blocks, each incorporating a
convolution layer, batch normalization layer, and ReLU activation function.

To facilitate adaptive fusion between multi-modal features, our proposed framework
incorporates considerations for both the intra-relationship within each modal feature and
the cross-relationship between multi-modal features during the fusion process. Thus, the
intra- and cross-attention (ICA) module is proposed to merge deep features derived from
different modalities, as depicted in Figure 3. Specifically, given the LDR image feature, FL,
and event feature, FE, two parallel feature attention operations are executed to learn crucial
information within each modal branch.

For the intra-attention operation, one convolution block is used to generate the image
content feature, Lcontent, followed by a dual attention module consisting of channel attention
and spatial attention operations, facilitating intra-fusion. The intra-attention operation
enables the network to extract valuable information from single-modal data, mitigating
interference from degraded information. The process can be expressed as follows:

L′
content = Dual-Attention(Lcontent), E′

content = Dual-Attention(Econtent). (4)

For the cross-attention operation, the cascaded convolution blocks are employed to
generate the image attention feature map ML and event attention feature map ME from
FL and FE, respectively. Then, ML and ME are leveraged to refine FL and FE through dot
multiplication and generate F′

L and F′
E, respectively, aiming to provide weighted adjustment

across the modalities. After that, the summation is carried out between the features
generated from the intra-attention and cross-attention modules, obtaining the fused features
by performing the concatenation operation,

FF = Concat((F′
L + L′

content), (F′
E + E′

content)). (5)

As noise is prevalent in the under-exposed regions of remote sensing LDR images, a
denoise module is introduced to address degradation at the feature level. By designing
denoising networks DF of different scales and subsequently fusing their feature outputs,
the impact of random noise on restoration results is reduced in different receptive fields.
Subsequently, the dense feature fusion (DFF) network is deployed for coarse HDR image
reconstruction, where the dense fusion modules [51] serve as the main components, en-



Remote Sens. 2024, 16, 437 8 of 23

suring a sufficient connection between non-adjacent levels of features and rectifying the
missing spatial information during downsampling and upsampling. The denoising and
HDR reconstruction process can be expressed as follows:

Îcoarse = DFF(DF(FF)). (6)

Figure 3. The implementation of our proposed intra- and cross-attention (ICA) module for the LDR
image feature and event feature fusion.

3.2.2. Gradient-Enhanced HDR Reconstruction Module

Since remote sensing data are captured at high altitudes, the obtained event streams
always lack information at regions with small brightness differences due to light attenua-
tion, which prevents the effective reconstruction of low-contrast regions. To mitigate this
problem, the gradient-enhanced HDR reconstruction (G-HDRR) network is introduced
to reconstruct a more informative HDR image, Î f ine, by leveraging the structure attention
map derived from both the gradient, GC, of the coarse HDR image and the event frame, to
reinforce the structures. The process is formulated as follows:

Î f ine = G-HDRR( Îcoarse, GC, ES) (7)

where ES denotes the short temporal event frame, which is selected from the middle voxel
bin of EV and contains the information of a short temporal span.

The G-HDRR network is mainly composed of a multiscale fusion module that com-
prises the dense residual blocks with dilated convolution, i.e., DRDB [13], where multiscale
feature extraction and fusion are processed by applying dilated convolution with the vary-
ing receptive fields. Effective feature fusion is achieved by incorporating both local residual
skip connections within a DRDB block and global residual skip connections between the
three DRDB blocks. To enhance the structures during the HDR reconstruction process,
the gradient enhancement (GE) module is employed to encode the structure attention
map, inspired by AIND [52], which guides denoising with the noise estimation map, as
shown in Figure 4. Specifically, the GE module takes the concatenation of the coarse HDR
image gradient GC and short temporal event frame ES as input and leverages cascaded
learnable convolutional blocks to encode positional information related to the structure. By
modulating the input features through scaling and shifting operations, one can enhance
the details in the low-contrast regions.
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Figure 4. The implementation of our proposed gradient enhancement (GE) module for HDR image
structure enhancement.

3.3. Optimization Strategy

Our proposed ERS-HDRI framework is optimized in a coarse-to-fine strategy, encompass-
ing both the coarse HDRI optimization and fine HDRI optimization, where Lcoarse is conducted
to constrain the E-DRE network and L f ine is conducted to guide the G-HDRR network.

Coarse HDRI Optimization. Our event-based dynamic range enhancement network
aims to learn the coarse HDRI function by adaptively fusing multi-modal data. Therefore,
the coarse HDRI loss is conducted by employing L1 loss and perceptual loss [53] at both
pixel and feature levels. Moreover, considering that the color information of LDR images is
severely damaged and events contain less color information to compensate, the GAN loss
is employed to perform effectively in image-coloring tasks to recover the color information
and encourage the network to generate more natural images. The overall coarse HDRI loss
Lcoarse is formulated as follows:

Lcoarse = ∥ Îcoarse − I∥1

+ λper ∑
i

λi
Ci HiWi

∥∥ϕi( Îcoarse)− ϕi(I)
∥∥2

2

+E[− log(D( Îcoarse)] +E[− log(1 − D(I))],

(8)

where I is the ground-truth HDR image, ϕi represents the i-th layer in pre-trained VGG-19
network [54], λi denotes the weight of the i-th feature map, Ci, Hi, Wi are the shapes of the
feature map of the i-th layer, D represents the discriminator, and λper controls the trade-off
between these three terms.

Fine HDRI Optimization. For the gradient-enhanced HDR reconstruction module,
both spatial loss and reconstruction loss are conducted for optimization. The spatial loss
calculates the difference of high-frequency spatial information between the generated fine
HDR image and the ground-truth image, which fascinates the structure enhancement
process. For the reconstruction loss, the multiscale fusion module is optimized by L1, VGG,
and GAN losses similar to the coarse HDRI process; thus, the fine HDRI loss function is
formulated as follows:

L f ine =
∥∥∥∇AP

(
Î f ine

)
−∇AP(I)

∥∥∥2

2

+ ∥ Î f ine − I∥1

+ λper ∑
i

λi
Ci HiWi

∥∥∥ϕi( Î f ine)− ϕi(I)
∥∥∥2

2

+E[− log(D( Î f ine)] +E[− log(1 − D(I))],

(9)
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where ∇ denotes the gradient operator employed for extracting high-frequency spatial
information and AP(·) represents the average pooling function applied along the chan-
nel dimension.

Finally, the overall loss function for our ERS-HDRI framework is defined as follows:

Ltotal = λcoarseLcoarse + λ f ineL f ine. (10)

where λcoarse and λ f ine are the hyperparameters that control the trade-off of each term.

4. ERS-HDRD Dataset

Due to the lack of available datasets for the effective evaluation of our proposed
method, both real-world and synthetic datasets are constructed, and the designs and
processes are elaborated on.

4.1. Real-World Dataset

In this subsection, the designed hybrid camera system for capturing the ERS-HDRD dataset
in real-world scenes is first introduced, followed by the presentation of the dataset details.

4.1.1. Hybrid Camera System

As shown in Figure 5, the hybrid camera system is equipped with two different
cameras, an RGB camera, i.e., FLIR BFS-U3-32S4, for capturing real LDR images at 10 FPS,
and an event camera, i.e., Prophesee Gen 4.1 EVK2-HD camera, for collecting concurrent
event streams, fixed to the component. The dimension design of the hybrid imaging system
takes into account two primary considerations. Firstly, in light of the constraints posed
by the aircraft’s observation window, it is imperative that the overall structure of the
hybrid imaging system remains within specified size limitations. Secondly, to keep spatial
calibration accuracy and preserve image and event resolution after spatial calibration,
it is essential to minimize the baseline (distances between two cameras). Therefore, the
dimensions of the component are set to 270 mm × 174 mm × 112 mm, with the centers of
the apertures for the two cameras positioned at a separation distance of 57 mm. Temporal
synchronization and spatial calibration are conducted as follows.

Figure 5. The details of our proposed datasets. (Left): the hardware implementation of our hybrid
camera system. (Right): samples from our proposed ERS-HDRD dataset, composed of both real-
world and synthetic data.

Temporal Synchronization. The two cameras are synchronized by using the trigger
signal generated by the RGB camera. Specifically, the RGB camera generates alternating
positive and negative triggers at the beginning and end of exposures. The event camera
captures the signal from the RGB camera, recording accurate timestamps and polar infor-
mation of the triggers. This methodology enables the extraction of events precisely aligned
with the exposure time of LDR images through the recorded triggers.
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Spatial Calibration. Spatial calibration is performed between the RGB camera and
the event camera to guarantee a consistent field of view across all cameras. The distinct
modalities of information output by the two cameras pose challenges to direct spatial
alignment. To address this complexity, the E2VID methodology [34] is employed for
reconstructing the intensity map of the event. Subsequently, the alignment between events
and frames is performed by using the transformation matrix estimated by matching SIFT
features [55] between the frame captured by the RGB camera and the reconstructed intensity
maps. Specifically, perspective transformation [56] is applied to the RGB images as shown
in Equation (11).  x′

y′

z′

 = A

 x
y
z

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x
y
z

, (11)

where A is the transformation matrix, (x, y, z) and (x′, y′, z′) denote the source and destina-
tion image pixels.

To demonstrate the performance of our spatial calibration strategy, we compared it
with the affine transformation and handcrafted-perspective transformation, where the
feature points are selected manually. The comparison results are presented in Figure 6. It
can be observed that affine transformation, limited to linear alterations such as translation,
scaling, and rotation, cannot meet the requirements of calibration between LDR images and
events, as shown in Figure 6b. In contrast, perspective transformations, encompassing the
third dimension in comparison to affine transformations, exhibit superior efficacy, as shown
in Figure 6c,d. In Figure 6c, manual feature points are employed for performing handcrafted
perspective transformations on the original LDR image. This process is iteratively executed
10 times, each time selecting 20 corresponding points and retaining the best result. However,
the effectiveness of this method depends on the accuracy of the selected points, making it
less robust. Notably, a discernible misalignment with events appears on the right edge in
Figure 6c. Our method utilizes the SIFT algorithm to detect and match features between
the LDR image and event intensity map at various scales, extracting a large number of key
points, thus yielding high stability and optimal results, as illustrated in Figure 6d.

Figure 6. Alignment of LDR images with events. The events (red is positive, and blue is negative) are
overlain with the LDR image.

4.1.2. Dataset Setup

The comprehensive system is affixed to the aircraft, capturing images at an altitude of
approximately 5000 m under diverse lighting conditions. Moreover, 20,000 alternatively
exposed LDR images and their corresponding event streams are captured in diverse scenes,
such as lakes, mountains, buildings, and deserts, with a resolution of 1280 × 720. By
aligning and merging the alternatively exposed LDR images following [57], the ground-
truth HDR reference can be obtained. The training and testing parts are divided into a
ratio of 9:1. Note that the LDR images suffer from both LDR and noise when captured in
low-light conditions.

4.2. Synthetic Dataset

The synthetic dataset is built upon the remote sensing dataset DOTA-v1.0 [1], which con-
tains a large amount of RGB images with resolutions ranging from 800 × 800 to
20,000 × 20,000 pixels. These images encompass a diverse of object categories and, thus,
can also be used for external verification on the object detection task. By carrying out pre-
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processing that involves the removal of samples with extreme aspect ratios, 2340 images
are obtained as the ground-truth reference. Subsequently, a sliding window methodology
is employed for each image, yielding the generation of 600 frames with randomized strides.
The ESIM simulator [58] is utilized to simulate corresponding events and the frame rate is
configured to 100. Following this, a series of LDR images with extreme exposure is generated
through the brightness transform [59] of the original HDR images. To simulate the presence of
noise in under-exposed images in real-world scenarios, we further process the under-exposed
images by introducing Gaussian noise following the previous works [60–62]. The noise level
dynamically increases as the lighting conditions decrease and varies between 0 and 50 in
response to changes in light conditions. Ultimately, 38,400 data pairs are selected as the
synthetic dataset, with a resolution of 640 × 480. Moreover, 34,560 samples are adopted as
the training data and the remaining 3840 samples are adopted as the testing part.

4.3. Comparison with Existing HDRI Datasets

To contextualize the ERS-HDRD dataset within the broader landscape of HDRI and remote
sensing research, statistical data about the existing HDRI datasets and our proposed ERS-
HDRD dataset are presented in Table 1. Most works have focusd on conducting an HDRI
benchmark for scenarios on the ground only based on the conventional camera [63,64]. Zhang
et al. [5] explored the HDR reconstruction of low-illumination on remote sensing images
and introduced the synthetic degeneration images from the VHR-10 dataset. However,
the size of the dataset was too limited. Han et al. [19] constructed an event-based HDRI
dataset named HES-HDR. Although its image resolution was high, the low resolution of the
event camera limited the potential for HDRI. In contrast, our proposed ERS-HDRD dataset,
which features high resolution in both images and events, focuses on challenges unique to
the remote sensing field. Additionally, the ERS-HDRD dataset includes a large-scale dataset
generated based on the DOTA-v1.0 [1] dataset, providing substantial dataset support for
event-based HDRI.

Table 1. Comparison of different HDRI datasets. The remote option and event option respectively
denote whether the dataset is constructed under remote sensing scenarios or by event cameras.

Dataset Data Pairs Remote Event Resolution (Image, Event)

Kalantari13 [63] 976 × × 1280 × 720, NA
HDM-HDR-2014 [64] 15,087 × × 1920 × 1080, NA

VHR-10-LI [5] 650 ✓ × 1100 × 1100, NA
HES-HDR [19] 3071 × ✓ 2448 × 2048, 346 × 260

ERS-HDRD (Real-world) 20,000 ✓ ✓ 1280 × 720, 1280 × 720
ERS-HDRD (Synthetic) 38,400 ✓ ✓ 640 × 480, 640 × 480

5. Experiments

This section compares our proposed approach with existing state-of-the-art methods
on ERS-HDRD. First, the experimental settings, including the compared methods, metrics,
and implementation details are introduced in Section 5.1. After that, quantitative and
qualitative evaluations are provided on both the synthetic and real-world data and the
results are analyzed in Section 5.2. Then, the external verification on the object detection task
is carried out in Section 5.3, followed by the efficiency evaluation in terms of parameters
and runtime performance in Section 5.4. Finally, comprehensive ablation experiments are
conducted in Section 5.5 to verify the effectiveness of individual components of ERS-HDRI.

5.1. Experimental Settings
5.1.1. Comparison Methods and Metrics

This work compares the proposed ERS-HDRI with existing state-of-the-art methods,
including the frame-based method DeepHDR [26], HDRUNet [11], KUNet [30], and the
event-based method, HDRev [40]. To illustrate the overall performance of all the methods,
various metrics are adopted for evaluation from different perspectives. We utilize the PSNR
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and SSIM metrics to quantify the difference between the reconstructed images and the
ground truth (GT) HDR reference. Moreover, to better simulate human visual perception,
the learned perceptual image patch similarity (LPIPS) is employed for further evaluation.

5.1.2. Implementation Details

Our model is implemented in PyTorch and uses the ADAM [65] optimizer during the
training process. It is trained on two NVIDIA GeForce RTX 4090 GPUs for 200 epochs. The
initial learning rate is set to 0.0002 and decayed linearly from 100 epochs to the end. The
hyperparameters {λper, λcoarse, λ f ine} are set as follows: {10, 1, 2}.

5.2. Comparison with State-of-the-Art Methods
5.2.1. Results on Synthetic Data

Comparisons with state-of-the-art methods are first conducted on the synthetic test
data both quantitatively and qualitatively.

Quantitative Evaluation. As shown in Table 2, our method outperforms all the com-
petitors in all metrics, demonstrating our algorithm’s ability to reconstruct the HDR remote
sensing image with different exposures. Specifically, DeepHDR [26], HDRUNet [11], and
KUNet [30] only rely on a single LDR image with limited information, thus obtaining
unsatisfactory results. Despite HDRev [40] also incorporating event and RGB images as
inputs, it fails to integrate the information of the two modalities due to the distribution dif-
ferences between remote sensing events and ground events, leading to missing details and
displeasing color information. In contrast, our proposed approach takes the coarse-to-fine
strategy and leverages the intra- and cross-attention (ICA) module to realize efficient and
adaptive fusion between the LDR frame and high dynamic range events, thus reconstruct-
ing more natural and informative results and obtaining the PSNR gain of up to 12.263 dB
and the LPIPS gain of up to 0.174. In addition, by leveraging the gradient enhancement (GE)
module, our method significantly improves the sharpness of the reconstructed results, thus
obtaining a significant performance improvement on SSIM compared with the second-best
approach (HDRUNet), i.e., 32.63%.

Table 2. Quantitative comparisons on the synthetic data. Bold and underlined numbers represent
the best and second-best performances. The symbol ↑ indicates that the higher the value, the better,
and the symbol ↓ indicates that the lower the value, the better.

Metrics
Frame-Based Methods Event-Based Methods

DeepHDR [26] HDRUnet [11] KUnet [30] HDRev [40] Ours

PSNR ↑ 16.865 11.837 11.448 12.766 29.128
SSIM ↑ 0.627 0.668 0.659 0.560 0.886
LPIPS ↓ 0.293 0.229 0.242 0.362 0.055

Qualitative Evaluation. The visual comparisons of results on an over-exposed LDR
image are presented in Figure 7. It can be seen that our approach addresses the challenge of
over-exposed areas by restoring intricate scene textures and presenting color information
more aligned with human perception. In contrast, other methods exhibit notable artifacts
and color blocks, e.g., the trees and ground in the green box. This problem is attributed
to the deficiency of texture information in saturated areas of RGB images, rendering the
recovery of HDR images from a single RGB image ill-posed. To overcome this limitation,
our ERS-HDRI incorporates event information from another modality, augmenting existing
methodologies and yielding superior results. Notably, through the introduction of gradient
feature extraction and reinforcement module, our method enhances the depiction of texture,
e.g., the white marker lines on the playground within the delineated red box.
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Figure 7. Qualitative results on over-exposed images in synthetic data. GT represents the ground-
truth HDR reference.

Simultaneously, this subsection presents the outcomes in low-light conditions, as
illustrated in Figure 8. It can be found that all methodologies exhibit a general capacity
to restore the subject content of the image, which is attributed to the preservation of
certain texture information in low-light conditions. However, a notable observation is the
prevalence of considerable noise in the region restored by DeepHDR [26], e.g., the detail in
the green box. HDRUet [11] and KUNet [30] achieve HDR image reconstruction by globally
increasing brightness, leading to instances of local overexposure, e.g., the harbor within the
red box. Moreover, HDRev [40] tends to generate false and aesthetically displeasing color
information, e.g., the buildings in the green box. In comparison, our proposed method
exploits the high dynamic range of events, along with the color information from RGB
images, generating HDR images that exhibit enhanced visual appeal, informativeness, and
clarity. Moreover, thanks to the multiscale denoising module introduced into the E-DRE
network, our method shows excellent performance in noise suppression.

Figure 8. Qualitative results on under-exposed images in synthetic data. GT represents the ground-
truth HDR reference.
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5.2.2. Results on Real-World Data

In contrast to synthetic data, the task of HDRI in real scenes with remote sensing data
poses increased challenges, which are attributed to the intricate nature of the scenes and
the occurrence of mixing distortions. Consequently, experiments on real-world data are
conducted to assess the robustness of our model.

Quantitative Evaluation. The overall comparisons are presented in Table 3. As can be
observed, our proposed ERS-HDRI achieves superior performance in terms of all metrics
from diverse perspectives, on average 6.043 gain on PSNR, 0.064 on SSIM, and 0.162 on
LPIPS. The results show that the similarity and correlation between the HDRI reconstructed
by ERS-HDRI and ground-truth images are higher and our reconstructed images enjoy less
distortion and larger gradient amplitude. This achievement is attributed to the efficacy
of our coarse-to-fine framework, encompassing the joint multi-modal fusion module and
structure enhancement module. This integrated approach facilitates the restoration of
badly exposed regions while preserving the original texture information to a large degree.
Furthermore, these results demonstrate the robust feature extraction capabilities of our
network, particularly when confronted with complex scenes.

Qualitative Evaluation. Firstly, the efficacy of our model in addressing overexposure
is evaluated, as illustrated in Figure 9. Notably, our method clearly captures texture
details across diverse scenes, e.g., the delineation of mountain peak structures within
the red box, while other methodologies exhibit extensive color patches and blurring,
emphasizing the value of the supplementary information provided by events. Although
other methods perform well in restoring original information for mildly over-exposed
regions, the frame-based method DeepHDR [26], HDRUNet [11], and KUNet [30] struggle
to restore edge information for severely over-exposed areas, leading to pronounced blurring.
Although event-based HDRev [40] achieves commendable results closely approaching that
of our model within certain scenes, the abnormal color mapping reduces the contrast
of some targets, thereby compromising visual effectiveness, as shown in the example.
This deficiency can be attributed to HDRev’s inadequate consideration of the distinctions
between the two modal data during the integration of event information. In contrast, our
method strategically addresses this issue through a feature alignment process, effectively
narrowing the domain gap between multi-modalities.

In real scenes, under-exposed images frequently exhibit substantial noise, which leads
to artifacts in the reconstructed HDR. The comparative visualization of various methods
on under-exposed images is presented in Figure 10. Notably, both DeepHDR [26] and
HDRev [40] encounter considerable noise, resulting in the decay and loss of intricate
textures, e.g., the detail in the red box. In contrast, our proposed ERS-HDRI demonstrates
superior noise handling capabilities, yielding clear HDR images that closely align with
ground-truth representations. HDRUet [11] and KUNet [30], although enhancing overall
brightness, impose stringent constraints on pixel brightness values within a narrow range,
leading to a significant reduction in contrast and the diminishing of target characteristics.
Leveraging a double-branch structure in our approach allows us not only to recover lost
information in under-exposed areas but also to enhance the texture of the restored results
and mitigate the impact of noise.

Table 3. Quantitative comparisons on real-world data. Bold and underlined numbers represent the
best and second-best performances. The symbol ↑ indicates that the higher the value, the better, and
the symbol ↓ indicates that the lower the value, the better.

Metrics
Frame-Based Methods Event-Based Methods

DeepHDR [26] HDRUnet [11] KUNet [30] HDRev [40] Ours

PSNR ↑ 20.183 17.693 17.514 16.368 26.226
SSIM ↑ 0.678 0.716 0.728 0.540 0.792
LPIPS ↓ 0.284 0.273 0.278 0.471 0.111
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Figure 9. Qualitative results on over-exposed images in real-world data. GT represents the ground-
truth HDR reference.

Figure 10. Qualitative results on under-exposed images in real-world data. GT represents the ground-
truth HDR reference.

5.3. External Verification on Object Detection

To assess the efficacy of our proposed method in enhancing downstream tasks, various
HDRI methods are taken as pre-processing steps for object detection, subsequently com-
paring the detection results. Particularly, LSKNet, introduced by Li et al. [66], is employed
as the detector, given its recent advancements in utilizing large and selective kernels for
remote sensing object detection, leading to state-of-the-art performance on competitive
benchmarks such as DOTA. Specifically, the LSKNet-T version, fine-tuned on the DOTA for
our detection experiments, is adopted in the experiment. The visual detection results are
presented in Figures 11 and 12, indicating a substantial enhancement in detection efficacy
after applying our method, irrespective of over-exposed or under-exposed scenes. The
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improved detection is particularly evident in the identification of smaller targets, e.g., the
detail in the red box.

Figure 11. Detection results of LSKNet [66] on over-exposed LDR images processed by different
methods. GT represents the ground-truth HDR reference.

Figure 12. Detection results of LSKNet [66] on under-exposed LDR images processed by different
methods. GT represents the ground-truth HDR reference.
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5.4. Efficiency Evaluation

To demonstrate the efficiency of our ERS-HDRI, we evaluate the HDRI methods in
different dimensions, including the amounts of parameters (Param) to compare the size
of models and floating point operations (FLOPs) as well as runtime to evaluate the speed.
Specifically, we implement all methods on an NVIDIA RTX 4090 GPU and obtain the
runtime by averaging the cost time of 3840 images in our ERS-HDRD dataset with a size of
640 × 480. As shown in Table 4, although DeepHDR shows its superiority on the FLOPs
and runtime, the heavy parameters limit its application on the edge device. In contrast,
HDRUnet, KUnet, and our proposed method obtain more lightweight models, while our
methods achieve better performance in inference time.

Table 4. Efficiency evaluation with other HDRI methods on the parameter, FLOPs, and runtime. Bold
and underlined numbers represent the best and second-best performances.

DeepHDR [26] HDRUnet [11] KUnet [30] HDRev [40] Ours

# Param (M) 51.54 1.65 1.14 57.93 10.06
FLOPs (109) 75.77 203.11 217.66 748.47 194.41
Runtime (s) 0.0161 0.0215 0.0273 0.4661 0.0209

5.5. Ablation Study

In this subsection, ablation studies are conducted to prove the effectiveness of our
key modules in the ERS-HDRI framework. A baseline model is first trained by utilizing
the E-DRE network with only remote sensing LDR images as input and then the ablation
study is implemented by incrementally adding them over the baseline. Ablation studies
are conducted as follows. (a) baseline: the baseline framework; (b) +event: adding event
streams into the framework to compensate for the HDRI process; (c) +ICA: further adopting
intra- and cross-attention module into the E-DRE network. (d) +G-HDRR: further adding
the G-HDRR into the ERS-HDRI framework to enhance the structure. Quantitative results
in terms of PSNR [11], SSIM [27], and LPIPS on ERS-HDRD are presented in Table 5 and
the best and second-best results are indicated in bold and underlined fonts, respectively.
Meanwhile, the corresponding qualitative ablation results are also shown in Figure 13.

Importance of Events. Event streams contain high dynamic range information that
can compensate for the HDRI process. By introducing them into the framework, one can
improve the recovery capability of the network and generate a more informative remote
sensing image. As shown in Figure 13, the results generated by fusing multi-modal data
show the details in the over-exposed regions. Also, the quantitative results shown in Table 5
demonstrate the improvements of introducing event streams, achieving a PSNR gain of up
to 2.421 dB, an SSIM gain of up to 0.034, and an LPIPS gain of up to 0.106.

Importance of ICA. To explore the impact of the ICA module on the ERS-HDRI
performance, the proposed ERS-HDRI is evaluated by replacing the concatenation operation
with the ICA module to improve the efficacy of the multi-modal fusion process. As shown
in Figure 13, with the help of ICA, the reconstructed HDR image is more visually pleasant
and suffers less distortion, e.g., the tiles on the roof. From Table 5, it can be seen that the
PSNR value of the ICA-based network is 2.129 dB higher than that of the concatenation-
based network. Moreover, the SSIM and LPIPS performances are increased again by 0.024
and 0.025.

Importance of G-HDRR. To verify the effectiveness of the proposed G-HDRR network,
we perform the cascading process of the E-DRE network and G-HDRR network. As
demonstrated in Table 5, with the combination of the G-HDRR network, our method
further improves the performance metrics, i.e., 0.435 dB PSNR gain, 0.005 SSIM gain,
and 0.013 LPIPS gain. The reconstructed HDR result is also sharper and clearer in the
low-contrast regions, as shown in Figure 13.
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Table 5. Comparisons of average PSNR (dB) and SSIM on our real-world dataset in ablation settings.
Bold and underlined numbers represent the best and second-best performances. The symbol ↑
indicates that the higher the value, the better, and the symbol ↓ indicates that the lower the value,
the better.

Baseline +Events +ICA +G-HDRR PSNR ↑ SSIM ↑ LPIPS ↓
✓ 21.241 0.729 0.255
✓ ✓ 23.662 0.763 0.149
✓ ✓ ✓ 25.791 0.787 0.124
✓ ✓ ✓ ✓ 26.226 0.792 0.111

LDR Event Baseline

+ICA+Event +G-HDRR

Figure 13. Visual comparisons on the real-world dataset of ERS-HDRD in ablation settings.

6. Conclusions and Discussion

In this paper, an event-based remote sensing HDR imaging framework named ERS-
HDRI is proposed to handle the limitation of the conventional camera, which can recon-
struct the HDR remote sensing image from a single-exposure LDR image and its concurrent
event streams by leveraging a coarse-to-fine strategy. Specifically, the event-based dynamic
range enhancement (E-DRE) network is designed to first extract the dynamic range features
from LDR frames and events and then perform multi-modal feature fusion adaptively with
the intra- and cross-attention modules. To reduce the noise and generate more informative
results, the multiscale denoise network and dense feature fusion network are then intro-
duced to reconstruct the coarse clean HDR image. To enhance the missing information
caused by light attenuation, our proposed framework further builds the gradient-enhanced
HDR reconstruction (G-HDRR) network upon the gradient enhancement module and dense
residual blocks to reconstruct the detailed gradient information in low-contrast regions. A
novel remote sensing event-based HDRI dataset, i.e., ERS-HDRD, is also conducted for
evaluation, which contains aligned LDR images, event streams, and corresponding HDR
images. Experiments show that the proposed method outperforms the state-of-the-art
methods on both synthetic data and real-world data.

Our method demonstrates the compensation ability of event cameras to traditional
cameras in badly exposed remote sensing scenes, enhancing the ability to capture more
informative remote sensing images, and can further improve the accuracy of subsequent
tasks such as remote sensing object detection and tracking. Some similar remote sensing
tasks, such as backlit image enhancement [67] and low-light image enhancement [5], can
also be addressed with our framework. In addition, event cameras have other important
attributes, such as high temporal resolution and low latency, which could be further devel-
oped to address challenges in other tasks, such as remote sensing motion deblurring [68],
by leveraging our methods.
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7. Limitations and Future Work

Although our ERS-HDRI demonstrates commendable efficacy in the remote sensing
HDRI task, certain challenges persist in achieving precise color restoration when processing
extremely over-exposed regions. The inherent limitation arises from the absence of color
information in both low dynamic range (LDR) images and event streams, as shown in
Figure 14. A prospective solution to this issue could involve the integration of image
colorization techniques [69,70] as a post-processing step in future work.

LDR Event Ours GT

Figure 14. An example of a color reconstruction failure of our ERS-HDRI in the remote sensing HDRI
process. GT represents the ground-truth HDR reference.
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