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Abstract: Unmanned aerial systems (UASs) are increasingly playing a crucial role in earthquake
emergency response and disaster assessment due to their ease of operation, mobility, and low cost.
However, post-earthquake scenes are complex, with many forms of damaged buildings. UAS
imagery has a high spatial resolution, but the resolution is inconsistent between different flight
missions. These factors make it challenging for existing methods to accurately identify individual
damaged buildings in UAS images from different scenes, resulting in coarse segmentation masks
that are insufficient for practical application needs. To address these issues, this paper proposed DB-
Transfiner, a building damage instance segmentation method for post-earthquake UAS imagery based
on the Mask Transfiner network. This method primarily employed deformable convolution in the
backbone network to enhance adaptability to collapsed buildings of arbitrary shapes. Additionally, it
used an enhanced bidirectional feature pyramid network (BiFPN) to integrate multi-scale features,
improving the representation of targets of various sizes. Furthermore, a lightweight Transformer
encoder has been used to process edge pixels, enhancing the efficiency of global feature extraction
and the refinement of target edges. We conducted experiments on post-disaster UAS images collected
from the 2022 Luding earthquake with a surface wave magnitude (Ms) of 6.8 in the Sichuan Province
of China. The results demonstrated that the average precisions (AP) of DB-Transfiner, APbox and
APseg, are 56.42% and 54.85%, respectively, outperforming all other comparative methods. Our model
improved the original model by 5.00% and 4.07% in APbox and APseg, respectively. Importantly, the
APseg of our model was significantly higher than the state-of-the-art instance segmentation model
Mask R-CNN, with an increase of 9.07%. In addition, we conducted applicability testing, and the
model achieved an average correctness rate of 84.28% for identifying images from different scenes of
the same earthquake. We also applied the model to the Yangbi earthquake scene and found that the
model maintained good performance, demonstrating a certain level of generalization capability. This
method has high accuracy in identifying and assessing damaged buildings after earthquakes and can
provide critical data support for disaster loss assessment.

Keywords: damaged buildings; UAS; instance segmentation; Mask Transfiner; Luding Ms6.8 earthquake

1. Introduction

China is one of the most earthquake-prone countries in the world, with earthquake-
induced building damage being a major source of economic losses and casualties [1]. Iden-
tifying building damage information is critical for disaster assessment, providing essential
decision support for emergency rescue and post-disaster reconstruction [2]. Traditional
methods of obtaining building damage information primarily rely on manual surveys,
which are costly, time-consuming, and lack timeliness. Due to their advantages of low cost,
flexibility, rapid response, and the ability to capture images below cloud cover, UAS remote
sensing has garnered increasing attention from scholars for disaster information collection
and seismic damage assessment of buildings [3–9].
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In recent years, researchers have carried out extensive studies on identifying damaged
buildings using UAS remote sensing technology and deep learning methods [10–17]. Cur-
rent approaches for damaged building identification can be broadly classified into object
detection methods and semantic segmentation methods. Object detection uses disaster
imagery to enable computers to locate damaged buildings by outputting horizontal bound-
ing boxes and category labels for the identified regions [18]. Tilon et al. proposed a deep
learning approach to post-disaster building damage detection using anomaly detection
and generative adversarial networks. Through verification of the post-earthquake drone
dataset, it was found that the model trained by this method can detect building damage
caused by earthquakes [10]. Jing et al. proposed a network based on the YOLOv5s network
that uses BiFPN for multi-scale feature fusion. The model has good accuracy and real-time
performance [11]. Pi et al. applied a series of convolutional neural network (CNN) models
to detect objects in drone orthophotos after disasters and found that these models can iden-
tify damaged and undamaged building roofs [12]. Focusing on the real-time performance
of model recognition, Wang et al. proposed a real-time detection method for building
damage areas suitable for embedded systems, which is suitable for practical applications
in post-earthquake scenarios [13]. Semantic segmentation replaces the fully connected
layers in CNN with convolutional layers, employing upsampling to restore image size
and classifying each pixel to locate the information on damaged buildings [19]. Hong
et al. proposed a convolutional neural network called EBDC-Net for building damage
assessment. The network uses a feature extraction encoder module to extract semantic
information, and a classification module to combine global features and contextual features
to improve accuracy [14]. Zhang et al. utilized multi-scale segmentation and object-oriented
classification methods to extract roof damage features from UAS oblique photography
imagery. They introduced a normalized digital surface model to identify height-related
damage features and used a lightweight CNN model for the preliminary evaluation of
building facades [15]. Wang et al. proposed the QCNet-M-N model, which has a flexible
configuration of M encoding stages and N embedded convolution operations. The model
can identify earthquake-damaged buildings at the pixel level and achieve robust and stable
segmentation accuracy under various weather conditions, such as abnormal lighting, rain,
and fog [16]. Khankeshizadeh et al. proposed the WETUM, which predicts building dam-
age maps by integrating three independently trained U-NET networks through a proposed
grid search technique [17].

Although the above-mentioned UAV-related studies on post-earthquake damaged
building assessment have achieved promising results, they still face some noteworthy
challenges and gaps that should be well addressed. First, after an earthquake, quickly
locating damaged buildings and accurately obtaining the contour information of damaged
buildings are equally important for post-disaster rescue and reconstruction, but the above-
mentioned methods for identifying damaged buildings usually only focus on one of the
tasks. Object detection methods only provide bounding boxes for damaged buildings,
while semantic segmentation methods provide segmentation masks. These approaches
cannot simultaneously provide both the target range and accurate polygon information
for the damaged buildings. In addition, due to the characteristics of UAS images and
complex post-earthquake scenes, the contours of damaged buildings obtained by existing
segmentation methods are coarse. The recognition results of the target edge are not fine
enough; especially, there is a phenomenon of misidentifying multiple adjacent damaged
buildings as one.

Instance segmentation can classify all pixels in an image, providing accurate polygons
for targets as well as bounding boxes for detected objects. This technique can distinguish
different instances of the same category [20] and better meet the actual task requirements
of post-earthquake damaged building identification. A representative algorithm is Mask
R-CNN [21], which builds on the ideas of Faster R-CNN [22]. It uses a region proposal
network (RPN) to generate candidate regions with high recall at low cost and then detects
the location of bounding boxes. Additionally, it adds a fully convolutional network (FCN)
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branch to segment each RoI region, resulting in the segmentation mask. Other algorithms
such as PolarMask [23], YOLOACT [24], and SOLO [25] eliminate the proposal generation
and feature re-pooling steps, integrating detection and segmentation into a single network
to achieve more efficient results. Inspired by DETR [26], algorithms such as SOLQ [27],
QueryInst [28], and FastInst [29] treat segmentation as a set prediction problem and use
queries to represent the interested objects and jointly perform classification, detection, and
mask regression on them. However, there is still a significant gap between the detection
and segmentation performance for the algorithms, and the quality of the masks still needs
improvement. In 2022, Ke et al. proposed a high-quality and efficient instance segmentation
method called Mask Transfiner [30]. This network follows a coarse-to-fine feature extraction
approach. Initially, the coarse mask of the target is obtained using a base detector, and then
a Transformer [31] structure is employed to refine the coarse mask. Unlike methods that
operate directly on dense tensors, this algorithm decomposes the image into a quadtree.
Within the Transformer structure, only the error-prone nodes of the quadtree are corrected
in parallel, rather than processing continuous images. Consequently, the model can predict
highly accurate instance masks at a lower computational cost. The Mask Transfiner network
was first applied in the field of marine pollution monitoring. Zou et al. introduced the
Mask Transfiner into a floating-algae detection network and proposed CA-ResNet by
integrating coordinate attention into the ResNet structure to model both the channel and
position dependencies [32]. Subsequently, Yang et al. modified the classification branch
of the Mask Transfiner by increasing the resolution of the feature map of each Region of
Interest (RoI) region, incorporating a dual attention mechanism, and leveraging a center
loss function, named RefinePod [33]. This model was used for high-throughput soybean
pods, high-quality segmentation, and accurate seed-per-pod estimation. Panboonyuen
et al. first applied the quadtrees in Mask Transfiner to anomaly detection and proposed a
method for automotive damage recognition based on the Mask Attention Refinement with
Sequential quadtree nodes (MARS) structure [34]. In this algorithm, MARS represented
self-attention mechanisms to draw global dependencies between the sequential quadtree
nodes layer and quadtree Transformer to recalibrate channel weights and predict highly
accurate instance masks.

As a high-quality instance segmentation method, Mask Transfiner has a great advan-
tage in obtaining accurate segmentation masks. In our study, we collected UAS remote
sensing orthophotos of the Luding Ms6.8 earthquake in Sichuan Province, China. We
conducted an in-depth analysis of the characteristics of damaged buildings in UAS images
and attempted to transfer Mask Transfiner to the identification of damaged buildings. To
address the challenges mentioned above, we proposed a high-quality instance segmenta-
tion network for extracting damaged buildings from post-earthquake UAS images. The
primary contributions and innovations of this paper are as follows:

1. Different from the existing damaged building identification methods, this paper
proposes a high-quality instance segmentation method to extract damaged buildings,
which can accurately obtain the location and fine contour of damaged buildings. Each
polygon predicted by the proposed method is almost consistent with the contours of
damaged buildings.

2. To enhance the accuracy of collapsed building recognition, we use deformable convo-
lution to replace standard convolution in the backbone part. This allows the network
to capture more detailed features of irregularly shaped objects, thereby adapting to
the arbitrariness of the shape of collapsed buildings.

3. An enhanced bidirectional feature pyramid network is proposed to fuse multi-scale fea-
tures. It can enhance the feature expression ability of targets of different sizes, thereby
improving the model’s ability to recognize damaged buildings of different sizes.

4. We propose a more lightweight Transformer sequence encoder. This improves the effi-
ciency of global feature extraction and the refinement of target edges when processing
pixels in incoherent areas.
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2. Study Area and Data
2.1. Study Area

At 12:52 PM on 5 September 2022, the Ms6.8 earthquake struck Luding County, Garze
Tibetan Autonomous Prefecture, Sichuan Province, in China. The epicenter was located
at 29.59◦N latitude and 102.09◦E longitude with a focal depth of 16 km. The maximum
intensity of the earthquake reached IX, with areas experiencing intensity VII and above
covering approximately 3608 km2. Due to the sudden occurrence of the earthquake and
the inadequate seismic resistance of rural buildings [35,36], substantial damage and even
collapse of structures were observed in regions with intensity VI and above. According
to local government statistics, the earthquake resulted in 93 deaths, 25 people missing,
and over 420 injuries in Luding County. Additionally, more than 50,000 buildings were
damaged, and the number of affected individuals exceeded 110,000 [37]. Luding County,
being the most severely impacted area, experienced the highest intensity (IX) in most
affected regions, including Moxi Town (a and c), Detuo Town (b, d, g), Fawang village (e),
and Wandong village (f), as illustrated in Figure 1. The predominant building structures
in the study area include frame, brick–concrete, beam–column wood, brick (earth)–wood,
and flagstone types. Notably, 80% of the buildings have relatively low seismic resistance,
comprising brick–concrete, beam–column wood, and brick (earth)–wood structures, and
some self-built rural buildings fail to meet seismic fortification standards [38].

2.2. Damaged Buildings Dataset

The disaster imagery was acquired using the Dajiang Mavic 2 drone equipped with a
Sony 35 mm lens. The imaging period was on 6–13 September 2022, with flying heights of
120 to 150 m. After mosaicking with Pix4Dmapper software (version 4.3.31), the generated
orthophoto images have a resolution ranging from 0.03 to 0.15 m. Figure 2 illustrates a
sample of the orthophoto images, with a total of seven regions being captured. Among
these, images a–d were used to produce the damaged buildings dataset for model training,
validating, and testing, while images e–g were taken to test the applicability of the pro-
posed model to verify the identification performance and to test its robustness. The seven
orthophoto images were cropped to a uniform size of 640 × 640 pixels for both model
training and inference.

The damaged buildings within the study area primarily consist of brick–concrete,
beam–column wood, and brick (earth)–wood structures. By comparing aerial imagery
with field survey data, the extent of damage and key characteristics are illustrated in
examples shown in Figure 2a,b. Unlike semantic segmentation tasks, instance segmentation
tasks employ two annotation formats: bounding box annotations and mask segmentation
annotations [39]. This study annotated each image in both formats by Labelme software
(version 5.2.1), resulting in a dataset for model training. For each image, both types of
annotation information are stored in a single JSON file. The visualized annotations are
displayed in Figure 2c,d. After cropping images, a total of 10,876 images were obtained.
After data cleaning, each annotated image was ensured to contain at least one damaged
building, resulting in a final dataset of 704 images, including 1372 damaged buildings. The
details of the damaged buildings dataset are shown in Table 1.

Table 1. Specifications of the subdatasets employed for training, validating, and testing. These
samples originated from the four UAS images shown in Figure 1B(a–d).

Dataset-Labeled Total Images Total Sample

Training 480 935
Validation 120 231

Testing 104 206
Sum 704 1372
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Figure 1. The study area and UAS orthophotos after the earthquake in Luding County, Sichuan
Province. (A) study area; (B) UAS orthophotos: (a,c) Moxi town; (b,d,g) Detuo town; (e) Fawang
village; (f) Wandong village.
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Figure 2. The samples of damaged buildings and labels: (a) Field investigation photos; (b) UAS
images, the red fan-shaped marker representing the viewing angle of the observation location;
(c) Labeled bounding boxes; (d) Labeled instance masks, the color of the polygon masks represents
different instance objects.

3. Methodology
3.1. Overview of the Mask Transfiner Model

Unlike conventional convolutional networks, Mask Transfiner is a high-precision in-
stance segmentation network based on Transformers [30]. In this network, the Transformer
structure is not used as a feature extraction module within the backbone but rather as a
mechanism to refine the predicted coarse masks. Existing instance segmentation models
often exhibit roughness around object boundaries, resulting in a significant number of
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misclassified pixels. Mask Transfiner, utilizing Transformers, focuses solely on correct-
ing these error-prone pixel nodes detected during the segmentation process, effectively
addressing inaccuracies.

Specifically, as shown in Figure 3, the network begins with a base detector [21], which
utilizes feature extraction via a ResNet-FPN method [40,41] and employs a two-stage
instance segmentation strategy. Initially, it detects bounding boxes and subsequently
predicts coarse masks for the objects. Based on these coarse masks and the hierarchical
features from the base detector, an incoherence detector is employed to identify incoherent
regions (error-prone pixels) and generate a quadtree [30]. The quadtree sequence is then
input into a Transformer encoder and a decoder with small two-layer MLPs, which classify
each pixel to produce a refined mask. Although these error-prone pixels represent only
a small fraction of the total, they are crucial for the final mask quality, enabling Mask
Transfiner to predict highly accurate instance masks with relatively low computational cost.
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3.2. Improvement of Mask Transfiner

Mask Transfiner achieves high-quality segmentation masks and demonstrates superior
segmentation and detection performance compared to contemporaneous methods. To adapt
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to the application of building damage identification in post-earthquake UAS imagery, this
study has made enhancements to the Mask Transfiner model in three aspects: the CNN of
the base detector, the feature pyramid network (FPN) of the base detector, and the sequence
encoder Transformer of mask head. The modified model is named DB-Transfiner, and its
network architecture is illustrated in Figure 4. The DB-Transfiner model primarily includes
the following three modules:
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Figure 4. The improved network architecture for DB-Transfiner. Deformable convolution is employed
in the backbone. The FPN is replaced by enhanced BiFPN to fuse the multi-scale features, and, in this
study, a lightweight sequence encoder is adopted for efficiency.

1. Deformable Convolution Feature Extraction Module (as shown in Figure 4( 1⃝)): Im-
provements were made to the CNN component of the base detector in Mask Trans-
finer by replacing standard convolutions with deformable convolutions [42,43]. This
enhancement allows the network to capture more detailed features of irregularly
shaped targets, making it better suited for detecting collapsed building shapes with
arbitrary forms.

2. Multi-Scale Feature Extraction and Fusion Module (as shown in Figure 4( 2⃝)): The
FPN component of the base detector in Mask Transfiner was improved by proposing
an enhanced bidirectional feature pyramid network (BiFPN) based on Path Aggre-
gation Network (PANet) [44]. This modification facilitates multi-scale feature fusion,
improving the model’s ability to represent features of objects with various scales and
enhancing its capability to recognize damaged buildings of different sizes.
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3. Lightweight Transformer Global Feature Refinement Module (as shown in Figure 4( 3⃝)):
The Transformer sequence encoder of the encoder was upgraded to use a lightweight
Transformer sequence encoder. This improvement enhances the efficiency of global
feature extraction and the refinement of object boundaries by processing incoherent
region pixels.

3.2.1. Deformable Convolution Feature Extraction Module

In the Mask Transfiner model, standard convolutions are used in ResNet for feature
extraction. However, the receptive field of standard convolutions cannot adapt to complex
variations and fails to capture fine-grained features effectively [42]. Therefore, we introduce
the concept of deformable convolutions within the ResNet architecture, designing a de-
formable convolution feature extraction module, as shown in Figure 5. Specifically, all 3 × 3
standard convolutions in stages 3 to 5 of ResNet (Conv3_x, Conv4_x, and Conv5_x) [40]
are replaced with deformable convolutions, while stages 1 and 2 (Conv1 and Conv2_x)
continue to utilize standard convolution operations.
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used at each stage. The first two stages use standard convolution, and the last three stages use
deformable convolution. (a) Standard convolution; (b) Deformable convolution.

As shown in Figure 5a, the standard convolution slides a fixed-size filter (convolution
kernel) over the input image to compute features [45]. Taking a 3 × 3 convolution as an
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example, for each output y(p0), 9 positions are sampled from x. These 9 positions form a
grid shape centered around x(p0), defined as follows:

R = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)} (1)

For the feature output at point P0, the standard convolution operates through the
following formula:

y(p0) = ∑
pnϵR

ω(pn)·x(p0 + pn) (2)

However, standard convolution is limited by fixed convolution kernels when dealing
with targets with significant geometric deformation, making it unable to adapt to defor-
mations and irregular structures in the input image and effectively capture the features
of deformed targets. Deformable convolution introduces learnable offsets ∆pn [42] on
the basis of standard convolution, allowing the positions of the convolution kernels to be
dynamically adjusted to accommodate geometric deformations and irregular structures in
the input image, as shown in Figure 5b. For each output y(p0), the equation is as follows:

y(p0) = ∑
pnϵR

ω(pn)·x(p0 + pn + ∆pn) (3)

This computation method (DCN v1) [42] may introduce irrelevant contextual areas
that interfere with feature extraction, potentially reducing the algorithm’s performance.
Therefore, in DCN v2 [43], a weight coefficient was added to differentiate whether the
introduced areas are regions of interest, as shown in Equation (4):

y(p0) = ∑
pkϵR

ω(pk)·x(p0 + pk + ∆pk)·∆mk (4)

where ∆pk and ∆mk are the learnable offset and modulation parameter at the k-th position,
with ∆mk ∈ [0, 1] and ∆pk being arbitrary values.

In this paper, the feature extraction module using deformable convolution adopts
DCNv2, which adaptively adjusts the positions of the convolution kernels. This enables a
more accurate focus on the features of damaged buildings, better capturing the geomet-
ric deformations and structural changes in the targets, thus improving the accuracy of
target recognition.

3.2.2. Multi-Scale Feature Extraction and Fusion Module

Mask Transfiner employs FPN to fuse low-level features and high-level semantic
features, thereby improving the detection of multi-scale objects. As shown in Figure 6,
it utilizes a top-down pathway to extract multi-scale feature maps from different layers
of the backbone network. Initially, a 1 × 1 convolution is used to reduce the channel
dimensions of feature maps. Through successive upsampling, high-level feature maps are
gradually upsampled to the same size as low-level feature maps. Lateral connections are
then employed to fuse the upsampled high-level feature maps with the corresponding
low-level feature maps, followed by a 3 × 3 convolution to produce the final features at that
level. In neural networks, higher layers contain richer semantic information while lower
layers capture more detailed information. However, for the identification of damaged
buildings, precise information on object boundaries is crucial. Low-level networks contain
abundant edge and detail features [44], which are highly valuable. In FPN, the long path
for low-level information propagating to high-level levels can lead to significant detail
loss. Moreover, FPN treats features of different scales equally during fusion, assuming
that features at different levels contribute equally to the fused features [46], which may not
balance the information from various scales effectively.
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To address these issues, we introduce an enhanced BiFPN based on the concept of
Path Aggregation Network (PANet) [46]. This enhancement includes a bottom-up pathway
to strengthen low-level features and additional weights to allow the network to better
understand the importance of different level features. The design of enhanced BiFPN is
shown in Figure 6. Specifically, after high-level features are upsampled and fused with
low-level features, we downsample low-level features and fuse the high-level features. To
address the issue of feature sharing across levels, a weight-sharing strategy is employed to
reduce network parameters. Additionally, three lateral connection paths are introduced
to integrate more feature information without significantly increasing computational bur-
den, enhancing the expressive capability of the feature maps and improving detector
performance. Here, we take the Ci layer features and fuse them directly instead of using
convolution and fusion. The module integrates more detailed information, allowing the
network to better focus on small buildings while accurately identifying large objects, thus
improving the model’s detection accuracy.

Additionally, an adaptive feature pooling mechanism is employed. We leverage feature
levels from N2 to N5 for mapping the RoI feature maps onto feature maps of different scales,
thereby enhancing the flexibility and accuracy of feature aggregation. The construction
method of the RoI feature pyramid is as follows:

k = ⌊k0 +log2

(√
WH/size

)⌋
(5)

where W and H represent the width and height of the RoI, respectively; size is set to 320,
indicating half of the input image size; and k0 is set to 4, representing the starting level of
the feature pyramid.

According to Equation (5), when the size of an RoI exceeds 3202, the features of the
object will be mapped from N4. When the size of a RoI is within the range of [1602, 3202],
the object features will be mapped from N3. For RoIs smaller than 1602, the object features
will be mapped from N2.

3.2.3. Lightweight Transformer Global Feature Refinement Module

Mask Transfiner employs Vision Transformer to refine the coarse masks predicted
by the model. Its sequence encoder is composed of three Transformer structures, each
utilizing four-headed self-attention to process different parts of the features in parallel [30].
Although the sequence encoder only calculates sparse feature points in incoherent regions,
the large number of parameters in the Transformer structure results in high computational
costs and extended training times. Additionally, the four-headed attention mechanism
has limited capability in feature representation for damaged buildings. To quickly and
accurately identify damaged buildings, we have designed a lightweight Transformer
global feature refinement module to improve the efficiency of global feature extraction and
edge refinement.
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As shown in Figure 7, we employ a Transformer module with an eight-headed self-
attention mechanism. We replace the three stacked Transformer modules with a single
Transformer module to reduce computational load and improve the efficiency of global
feature extraction. Given the uneven destruction of post-disaster buildings, we utilize
an eight-headed self-attention mechanism to process different parts of the features in
parallel [31], capturing richer features and thus enhancing the model’s ability to refine the
edges of the targets. This not only improves the efficiency of identifying damaged buildings
but also increases the model’s recognition accuracy.
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3.3. Implementation Details

The hardware configuration for this experiment includes an Intel Core i7-8700 @
3.7 GHz six-core processor, 32 GB of RAM, and an NVIDIA A30 GPU. The software
environment is a Linux operating system with GCC 5.5 as the compiler.

Our model is implemented using the Pytorch framework, with Python 3.7.16 as the
programming language. The GPU computing platform is CUDA 11.3, and the CUDNN 8.0.5
deep learning library is used for GPU acceleration. Models in our experiment uniformly
use ResNet50 as the backbone, which uses pretrained weights from ImageNet by Microsoft
Research Asia. The model was trained using an initial learning rate of 0.0005, Batch Size 2.
Adam’s optimization method was used, with a maximum number of epochs of 100.

3.4. Evaluation Metrics

To measure the performance of the model, we need some quantitative evaluation met-
rics. According to the evaluation metrics of MS COCO, we comprehensively evaluate the
model in this paper [41], mainly including the evaluation of the predicted bounding boxes
and mask segmentation results. In this study, accuracy (Acc ), kappa coefficient (Kappa),
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and average precision (AP) were used as indicators to evaluate the model performance.
The formulas are as follows:

Acc =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

IoU =
TP

(TP + FP + FN)
(9)

Kappa =
Po − Pe

1 − Pe
(10)

where true positive (TP) is the area that is actually a damaged building and is predicted as
a damaged building, true negative (TN) is the area that is actually a non-damaged building
and is predicted as a non-damaged building, false negative (FN) is the area that is actually
a damaged building but is predicted as a non-damaged building, and false positive (FP) is
the area that is actually a non-damaged building but is predicted as a damaged building.
Po is the observed agreement, which is the proportion of times the model’s predictions
match the true labels; Pe is the expected agreement, which is the proportion of agreement
expected by chance based on the distribution of the classes.

Average precision (AP) is a mainstream evaluation metric for instance segmentation
models, describing the model’s prediction results based on Precision and Recall. The average
precision for a given IoU (APIoU) can be expressed as follows:

APIoU =
∫ 1

0
p(r)dr (11)

where r denotes Recall, while p(r) represents the Precision–Recall (PR) curve, and the value
of APIoU is the area under the PR curve. AP is the average of APIoU at 10 IoU thresholds
ranging from 0.50 to 0.95 with a step size of 0.05, which can be obtained by the following:

AP =
1

10∑0.95
IoU=0.5 APIoU (12)

where AP0.5 and AP0.75 signify the computed AP at IoU thresholds of 0.5 and 0.75, re-
spectively. Additionally, APL, APM, and APS, respectively, evaluate the models’ ability to
recognize large, medium, and small targets. The equation is as follows:

AP =


APS i f pixel area < 322

APM i f 322 < pixel area < 962

APL i f pixel area > 962
(13)

We also use Frames Per Second (PFS) to evaluate the recognition efficiency of different
methods. The formula is as follows, where T represents the time taken by the model to
infer a single image.

PFS =
1
T

(14)

4. Results
4.1. Comparison of Model Performance

To validate the accuracy of the models, the same damaged building dataset is used for
training and validating. DB-Transfiner is a damaged building detection model built upon a
deformable convolution feature extraction module (DCNM), multi-scale feature extraction
and fusion module (MEFM), and lightweight Transformer global feature refinement module
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(LTGM). We compared the performance of our model with other existing models based on
several accuracy assessment metrics.

Figure 8 depicts the training set loss and validation set loss of the model during the
training process. With the increase in training epochs, the training loss gradually decreases
from 3.5 to approximately 0.25. The trends of training loss and validating loss are generally
consistent, with the loss function curve gradually stabilizing. During the first 10 epochs,
the loss quickly drops to around 1.25, and the loss function curve converges quickly, with
significant fluctuations. Between 10 and 60 epochs, the model’s convergence speed slows
down, and there is fluctuation in the loss curve. From 60 to 100 epochs, the loss gradually
becomes stable.
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The quantitative results are as follows in Table 2. From the results, it can be observed
that our model demonstrated a significant advantage over other algorithms in terms of
AP, Acc, and Kappa evaluation metrics. Specifically, for AP, our model outperforms other
methods in both segmentation (APseg) and detection (APbox). The proposed DB-Transfiner
with an APseg value of 54.85% managed to improve the APseg value of the Mask R-CNN,
PolarMask, YOLOACT, SOLO, SOLQ, QueryInst, and FastInst networks by 9.07%, 12.20%,
13.62%, 7.40%, 5.35%, 5.07%, and 5.86%, respectively (see Figure 9). Moreover, compared
to the widely adopted Mask R-CNN method, the DB-Transfiner model exhibited an en-
hancement of 13.58% and 0.21 in accuracy and Kappa values, respectively, indicating that
the proposed approach substantially improves the accuracy of post-earthquake damaged
building identification.

Notably, our model achieved an FPS (Frames Per Second) value of 14.1, which is an
increase of 0.9 compared to the Mask Transfiner. This demonstrates that the DB-Transfiner
model reduces computational and inference time to some extent, thereby enhancing model
efficiency. This advantage is attributed to the use of a lightweight Transformer-based
global module (LTGM) in DB-Transfiner, which employs fewer Transformer structures,
consequently reducing the number of model parameters.
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Table 2. Quantitative results for all models of instance masks. APS is null because the damaged
buildings are more than 32 × 32 pixels in the UAS imagery. The best results are indicated in bold.

Model APseg (%) AP0.5
seg (%) AP0.75

seg (%) APbox (%) AP0.5
box (%) AP0.75

box (%) Accseg (%) Kappa (%) T (ms/img) FPS (img/s)

Mask R-CNN 45.78 67.10 50.56 48.88 67.17 51.14 68.41 0.49 48.3 20.7
PolarMask 42.65 65.70 46.52 45.14 65.81 47.32 64.02 0.42 39.8 25.1
YOLOACT 41.16 65.24 45.35 44.32 65.30 46.10- 62.45 0.41 12.1 82.8

SOLO 47.45 67.88 53.74 49.74 68.15 53.94 70.68 0.53 32.1 31.2
SOLQ 49.50 69.23 56.10 53.12 69.40 56.12 73.92 0.58 73.5 13.6

QueryInst 49.78 69.79 56.45 52.09 69.89 56.55 74.17 0.58 51.3 19.5
FastInst 48.99 68.91 54.62 51.47 69.02 54.80 73.51 0.57 15.4 65.1

Mask Transfiner 50.78 70.72 57.62 51.42 70.49 57.60 75.88 0.60 75.8 13.2
DB-Transfiner

(ours) 54.85 70.75 62.20 56.42 71.97 60.50 81.99 0.70 70.9 14.1
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We also qualitatively compared the inference results of the Mask R-CNN, Mask Trans-
finer, and DB-Transfiner models on the test set to visualize the effectiveness of damaged
building recognition. By overlaying the predicted bounding boxes and binary masks onto
the original images and similarly visualizing the labels, we can better assess the perfor-
mance. This visualization is shown in Figure 10. We found that, compared to the Mask
R-CNN method, both Mask Transfiner and DB-Transfiner accurately detect and segment
multiple damaged buildings in post-earthquake scenes. Specifically, the results from Mask
R-CNN are relatively coarse, with instances of missed or false detections, particularly in
images containing multiple damaged buildings. In contrast, Mask Transfiner and DB-
Transfiner show almost no missed detections or false alarms, indicating that the Transfiner
mask branch performs better in instance segmentation.

Further, to validate the accuracy of the segmentation performance of DB-Transfiner,
we visualized only the binary masks predicted by the model. The results demonstrate that
the instance segmentation results of DB-Transfiner are closer to the contours of the original
target and can identify damaged buildings with high quality. Mask R-CNN produces
relatively blurry contours, struggles to distinguish the boundaries between damaged
buildings and the background, and misses small targets (e.g., the target in the lower left
corner of the third row of Figure 11). Although Mask Transfiner adapts to different-sized
targets and generates relatively accurate results for single damaged buildings, its masks
appear to stick together when identifying multiple damaged building targets, like Mask
R-CNN. DB-Transfiner delivers superior recognition results for damaged buildings, with clearer
boundaries that accurately distinguish different instances within the same damaged structure
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(e.g., targets 1⃝and 2⃝in the upper left corner of Figure 11). It also shows excellent adaptability
for multi-target recognition and targets of various sizes. Our method not only avoids missing
targets and false alarms but also produces better high-quality segmentation results.
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4.2. Ablation Study

To validate the effectiveness of the proposed DCNM, MEFM, and LTGM modules, we
conducted ablation experiments on the damaged building dataset. The table below shows
the results of progressively adding the three improvements. Here, the baseline represents the
Mask Transfiner method, and “+” indicates the inclusion of the corresponding improvement.

The detecting and segmenting results are presented in Tables 3 and 4. Compared to the
baseline method, the Mask Transfiner + DCNM model, which includes a deformable convo-
lution feature extraction module, achieved significant improvements with AP for detection
bounding boxes and segmentation masks increasing by 2.30% and 2.39%, respectively. After
adding MEFM, the model showed notable improvements in the large object accuracy metric
(APL) and medium object accuracy metric (APM) over only using baseline DCNM, with
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increases of 5.17% and 2.16% in detection bounding boxes, respectively. This demonstrates
that the MEFM can extract more features of different sizes, enhancing the ability to perceive
objects of varying scales in UAS remote sensing images. When using DCNM, MEFM, and
LTGM on the model, the proposed model further improved the AP, AP0.75, APL, and APM
for segmentation masks by 4.07%, 4.58%, 4.13%, and 6.10%, respectively, compared to the
baseline method.

Table 3. Ablation experiments of bounding boxes. The improvement is indicated in bold.

Model AP (%) AP0.5 (%) AP0.75 (%) APL (%) APM (%) Accuracy(%) Kappa (%)

Baseline 51.42 70.49 57.60 59.01 31.42 76.14 0.61
Baseline + DCNM 53.72 (+2.30) 72.76 (+2.27) 60.06 (+2.46) 60.36 (+1.35) 35.60 (+4.18) 79.03 (+2.89) 0.66 (+0.05)

Baseline + DCNM + MEFM 55.20 (+3.78) 69.29 (−1.20) 60.47 (+2.87) 65.53 (+6.52) 37.76 (+6.34) 81.75 (+5.61) 0.70 (+0.09)
Baseline + DCNM + MEFM +

LTGM 56.42 (+5.00) 71.97 (+1.48) 60.50 (+2.90) 66.72 (+7.71) 37.89 (+6.47) 82.93 (+6.79) 0.72 (+0.11)

Table 4. Ablation experiments of segmentation masks. The improvement is indicated in bold.

Model AP (%) AP0.5 (%) AP0.75 (%) APL (%) APM (%) Accuracy(%) Kappa (%)

Baseline 50.78 70.72 57.62 59.82 27.42 75.88 0.60
Baseline + DCNM 53.17 (+2.39) 72.90 (+2.18) 61.30 (+3.68) 60.80 (+0.98) 30.87 (+3.45) 78.52 (+2.64) 0.67 (+0.07)

Baseline + DCNM + MEFM 54.50 (+3.72) 69.20 (−1.50) 61.84 (+4.22) 63.86 (+4.04) 32.90 (+5.48) 80.80 (+4.92) 0.69 (+0.09)
Baseline + DCNM + MEFM +

LTGM 54.85 (+4.07) 70.75 (+0.03) 62.20 (+4.58) 63.95 (+4.13) 33.52 (+6.10) 81.99 (+6.11) 0.70 (+0.10)

We observed that with the addition of DCNM, MEFM, and LTGM one by one, the
model’s AP and AP0.75 metrics increase in both segmentation and detection tasks, while
AP0.5 fluctuates and sometimes drops significantly. This is because the model has more
stringent evaluation conditions at higher IoU thresholds (e.g., 0.75). This suggests that
the model has improved detection and segmentation capabilities under stricter matching
conditions (high IoU) but performs less effectively under more lenient conditions (low
IoU). This reflects that the model generates more precise and compact prediction boxes
and masks results, thus improving the overall accuracy.

4.3. Feature Maps Visualization

We observed that the accuracy of Mask Transfiner improved significantly after incor-
porating DCNM. Furthermore, the model’s performance in recognizing damaged buildings
of different sizes was notably enhanced by adopting the MEFM. To explain to our DB-
Transfiner model how to make decisions, we visualized the heatmaps before and after
the operations of these two modules using gradient-weighted class activation mapping
(Grad-CAM) [47]. Class activation maps (CAMs) [48] display the regions of an image that
contribute most to the prediction of a particular category, helping to understand the model’s
decision-making process. Grad-CAM is an improved method that generates more detailed
class activation maps using gradient information. We presented key Grad-CAM heatmaps
before and after employing DCNM and MEFM. The results are shown in Figure 12.

From these heatmaps, it is visually apparent which regions of the image the DB-
Transfiner network focuses on when making classification decisions regarding damaged
buildings. In the heatmap of the Conv2_x layer of DCNM, the high-intensity values are
mainly distributed over the buildings, and some damaged buildings show high intensity
values. This indicates a strong correlation between the network and building features at this
layer. In the heatmap of the Conv5_x layer after DCNM using a deformable convolution
operation, the high intensity values are concentrated on the damaged buildings, closely
aligning with the targets. Collapsed buildings also exhibit high intensity values, suggesting
that the model, after using deformable convolutions, can capture more features of collapsed
buildings. However, there is still a slight deviation from the actual targets at this stage.
When the MEFM is employed, the high intensity regions in the N5 layer heatmap fall
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precisely on the damaged buildings. The heatmap shows areas that perfectly match the
boundaries of the damaged buildings, with every damaged building of different sizes
being highlighted.
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The base detector in DB-Transfiner extracts features and then refines the generated
coarse segmentation masks. To explain how the LTGM, our model, was adopted, we
visualized the feature maps of the coarse masks before and after the LTGM, as shown in
Figure 13. We observed that, before using the LTGM, the model can focus on the polygonal
shapes of the targets but also tends to highlight local similar features that are unrelated to
the targets, leading to inaccurate segmentation masks. However, after refinement with the
LTGM, the model pays more attention to the global information of the targets, resulting in
contours that more closely resemble the actual targets.
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4.4. Applicability of DB-Transfiner Model

To verify the identification performance of our model in recognizing damaged build-
ings in practical application, we used UAS images from the three areas mentioned in
Section 2.2, as shown in Figures 14 and 15. We conducted a visual interpretation of the
damaged buildings in the images of these three areas, identifying a total of 514 damaged
buildings: 197 buildings in area e, 131 buildings in area f, and 186 buildings in area g. The
corresponding statistical results for the three areas are presented in Table 5.

Table 5. Visual interpretation and automatic identification for damaged buildings in the 3 test areas
(Figure 1B(e–g)). The time here is how long the DB-Transfiner model takes to identify damaged
buildings in a certain area.

Test Area Ground
Truth

Detection
Number

Wrong
Number

Omission
Number Time(s) Correctness

(%)

e 197 162 6 35 249 82.23
f 131 108 3 23 192 82.44
g 186 164 5 22 86 88.17

Average
Correctness - - - - - 84.28
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We found that most of the targets identified by the model are correct, with only a few
misidentifications. The model accurately identified 162, 108, and 164 damaged buildings in
areas e, f, and g, with correctness rates of 82.23%, 82.44%, and 88.17%, respectively, resulting
in an average correctness rate of 84.28%. This demonstrates the better performance of DB-
Transfiner in detecting and segmenting post-earthquake damaged buildings in UAS images.
However, there were also some missed damaged buildings. The omissions were mainly
due to two reasons: first, the poor imaging quality of certain dark areas in the images
and second the obstruction by surrounding objects such as fallen walls, piled debris, and
nearby trees.
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4.5. Generalization Capability of the Model in Yangbi Earthquake

In this study, we also tested the generalization of the model. We applied the DB-
Transfiner model to the 21 May 2021, Yangbi M6.4 earthquake in China. As shown in
Figure 16, we obtained two UAS remote sensing images and constructed a dataset of
damaged buildings from the Yangbi earthquake to test the model’s generalization capability.
Image (a) is located in Huaian village, while image (b) is situated in the urban area of
Yangbi town. The resolution of both images is 0.05 m.

We evaluated the model’s performance on the test set, as presented in Table 6 and
Figure 17. In the Yangbi earthquake, APseg scored 53.08%, slightly lower than the score
of 54.85% for the Luding earthquake. Accuracy exceeded 80%, reaching 80.12%, demon-
strating good recognition capability for targets. All of these results indicated that damaged
buildings can be identified by our model with good accuracy, especially finer detection at
the building edges, demonstrating that the model has a good generalization capability to
new data.

Table 6. The generalization experiment of DB-Transfiner for segmentation masks.

Dataset APseg (%) AP0.5
seg (%) AP0.75

seg (%) APL
seg (%) APM

seg (%) Accuracy (%) Kappa (%)

Luding earthquake 54.85 70.75 62.20 63.95 33.52 81.99 0.70
Yangbi earthquake 53.08 68.97 60.86 61.02 31.15 80.12 0.68
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Figure 17. UAS imagery samples of damaged buildings from the Yangbi earthquake. (a) The red
irregular polygons denote the damaged buildings. (b) The bounding boxes and polygon masks are
the visualized results of our model. The colors represent different instance objects.

However, some limitations may be encountered when applying our method to dif-
ferent places, including similar spatial resolution, analogous backgrounds, and identical
types of building structures. For example, in both the Luding earthquake and the Yangbi
earthquake, the damaged buildings are mainly beam–column wooden structures.
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5. Discussion

Accurately obtaining fine contour information of damaged buildings after earthquakes
is a challenging problem. UAS can obtain high-resolution remote sensing images immedi-
ately after a disaster, which provides data support for earthquake damage assessment [3–5].
Existing deep learning-based methods [10–17] including object detection methods and
semantic segmentation methods cannot simultaneously provide the accurate location of
each target and the fine contours of damaged buildings, but this information is particularly
important for accurate post-disaster loss assessment. We built a dataset for damaged
buildings in UAS images. Based on this, we proposed DB-Transfiner, a high-quality in-
stance segmentation network designed for post-earthquake damaged building detection in
UAS-based optical remote sensing imagery.

We first addressed the challenge of irregular shapes in collapsed buildings, which
standard convolutions struggle to capture effectively. We incorporated deformable con-
volutions in DCNM to enhance the ability to capture these deformation features, which
increases the model’s APseg and APbox by 4.07% and 5.00%, respectively. In addition, we
employed an enhanced BiFPN in MEFM for multi-scale feature fusion, which strengthens
the representation of features for objects at different scales, resulting in a 4.13% and 6.10%
improvement in the model’s segmentation performance for APL and APM, respectively.
Finally, in the segmentation mask head, we implemented LTGM with a lightweight Trans-
former encoder to handle pixels in incoherent regions defined by Mask Transfiner. This
improves the efficiency of global feature extraction and object edge refinement, reducing
the inference time by 4.9 ms per image.

In summary, as an instance segmentation method, the proposed network can not
only accurately locate the location of damaged buildings but also obtain fine contours of
damaged buildings. It is mentioned in the study by Jing et al. [11] that the proposed model
cannot provide accurate footprints of damaged buildings, while our method does not
have this limitation. Recently, Zou et al. [49] proposed an instance segmentation method
for damaged building assessment. Although this method can better detect buildings
with different damage levels, the outline of damaged buildings it identifies needs to be
further improved. Our model can accurately predict the instance mask, and the segmented
polygons are very consistent with the contours of the target building.

Despite the progress made, there remain several limitations and challenges that require
further research. As shown in several cases in Figure 18, due to the varying perspectives
of UAS images, occlusions and shadow effects caused by differences in object heights
pose challenges for identifying the contours of damaged buildings in densely populated
areas. Moreover, seismic damage assessment demands a balance between model accuracy
and inference speed. Although the proposed model can process 0.9 more images per
second compared to Mask Transfiner, it still incurs considerable computational cost when
identifying damaged buildings across large areas, indicating a need to further optimize the
processing speed. Notably, our method may encounter certain limitations when applied
to different earthquakes, including similar damage levels, analogous backgrounds, and
the same types of building structures. Our method performs well for obvious damage,
but the model is less sensitive to some minor damage. This may be due to the roof being
affected by accumulated debris. When the damaged building is other types of structures,
such as brick–concrete or frame structures, the identification results of our method are
not satisfactory. This is because the primary type of damaged buildings in the Luding
earthquake were beam–column wooden structures [40], and we used these samples to train
the model.
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In future work, we will explore several potential directions. First, we plan to employ
rotated bounding boxes with angle information instead of horizontal bounding boxes [50]
to reduce background interference and improve the model’s performance in densely built
areas. Additionally, we aim to simplify or replace some redundant components in the
model to further advance research toward lightweight and efficient processing.

6. Conclusions

In this paper, we proposed a high-quality damaged building instance segmentation
method, DB-Transfiner, to accommodate the problems of high but inconsistent spatial
resolution, variations in different target scales, and complex post-earthquake scenes in
aerial remote sensing imagery. To obtain better bounding boxes and fine segmentation
masks of damaged buildings, we conducted DCNM, MEFM, and LTGM modules to study
the Mask Transfiner network. DCNM can effectively capture the deformation characteristics
of damaged buildings and enhance the network’s ability to recognize the irregular shapes
of completely collapsed buildings. The MEFM significantly improves the representation of
features for objects of different sizes, thereby boosting the model’s recognition performance.
LTGM not only improves the model’s global feature extraction and object edge refinement
capabilities but also reduces the model’s size and thus improves computational efficiency
and inference speed. We implemented comprehensive experiments using UAS images
from multiple regions affected by the Luding Ms6.8 earthquake in Sichuan Province.
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The results demonstrated that this method can accurately obtain fine masks of damaged
buildings and can identify damaged buildings with high quality. It shows high applicability
and generalization capability in the identification and assessment of post-earthquake
building damage.
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