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Abstract: Axial estimation is an important task for detecting non-cooperative space targets in orbit,
with inverse synthetic aperture radar (ISAR) imaging serving as a fundamental approach to facilitate
this process. However, most of the existing axial estimation methods usually rely on manually
extracting and matching features of key corner points or linear structures in the images, which
may result in a degradation in estimation accuracy. To address these issues, this paper proposes
an axial estimation method for spaceborne targets via ISAR image sequences based on a regression
network. Firstly, taking the ALOS satellite as an example, its Computer-Aided Design (CAD) model
is constructed through a prior analysis of its structural features. Subsequently, target echoes are
generated using electromagnetic simulation software, followed by imaging processing, analysis
of imaging characteristics, and the determination of axial labels. Finally, in contrast to traditional
classification approaches, this study introduces a straightforward yet effective regression network
specifically designed for ISAR image sequences. This network transforms the classification loss into a
loss function constrained by the minimum mean square error, which can be utilized to adaptively
perform the feature extraction and estimation of axial parameters. The effectiveness of the proposed
method is validated through both electromagnetic simulations and experimental data.

Keywords: axial estimation; inverse synthetic aperture radar (ISAR); regression network; image
sequence

1. Introduction

For most rigid spacecrafts, their attitudes in orbit can be expressed by axial attitude,
such as that of the main axis, solar panel axis, etc., which are important features for
describing the motion of space targets in orbit. Axial estimation has a wide range of
applications, including fault rescue, intent inversion, spacecraft docking, and re-entry
prediction [1]. Specifically, the attitude of a space target can be characterized by yaw, pitch
and roll angles in an orbital coordinate system [2]. Currently, adaptive optics telescopes
and inverse synthetic aperture radars (ISARs) are the primary surveillance technologies
employed for axial estimation. However, in practice, the quality of images obtained from
adaptive optics can be compromised by various factors, including sunlight, the Earth’s
shadow, atmospheric turbulence, and adverse weather conditions. In contrast, ISARs
possess all-weather imaging capability and are not influenced by lighting conditions,
making them an effective way to estimate the axial direction of spacecrafts. Nevertheless,
unlike optical imaging, ISAR images lack texture information and suffer from angular
scintillation [3]. Accordingly, estimating the axial direction of spacecrafts based on a
sequence of ISAR images remains a challenging task due to various environmental factors
and technological limitations.

Most existing methods for axial estimation based on ISAR image sequences rely on
manually extracting and matching features of key corner points or linear structures in
the images. Ferrara et al. [4–6] estimate the axial direction of the target by reconstructing
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the 3D structure from a sequence of multi-view ISAR images. This method necessitates
projection matrices corresponding to scattering points with various attitudes. However,
this method requires the acquisition of parallax angles through long observation intervals,
which complicates practical application. In addition, this method struggles to reconstruct
three-dimensional structures when the signal-to-noise ratio (SNR) is low, thus requiring a
high SNR to achieve reliable results. Morita et al. [7,8] employ the factorization method
for axial estimation, constructing a trajectory matrix by extracting dominant scatterers
from the ISAR image sequence. Then, the axial parameters of the space target are obtained
by decomposing the trajectory matrix. The disadvantage of this method is the reliance
on the strong scattering center, which refers to a point or region on the spacecraft that
reflects a significant amount of radar energy, making a dominant feature in the ISAR image.
Depending on such a feature makes this method vulnerable to errors if the strong scattering
center is not clearly visible or is affected by noise. Furthermore, this reliance leads to
insufficient algorithmic robustness, as the accuracy of the estimation heavily depends on
the presence and clarity of the strong scattering center. Rongzhen et al. [9] proposes a joint
estimation approach for ISAR and optical cameras that requires accurate feature extraction.
However, some features are not easily observed due to self-occlusion, and the accuracy of
feature extraction is also affected by the quality of ISAR data. Therefore, how to rapidly
and accurately estimate the axial orientation of a space target is particularly significant.

Compared with traditional feature extraction methods, both target recognition and
detection based on neural networks have shown advantages in terms of precision and
efficiency [10]. However, there are few axial estimation methods based on deep learning.
To address these issues, this paper proposes a satellite axial estimation method based on
image sequence and regression network, transforming traditional manual feature extraction
into neural network-based regression optimization. The proposed method can be directly
utilized for axial regression using ISAR image sequences, without reconstructing a 3D
model. This end-to-end estimation approach can effectively utilize the feature extraction
capability of neural networks to improve the accuracy of traditional methods based on
manual feature extraction [11]. Furthermore, the estimation speed achieves real-time
performance, which effectively extends the existing axial estimation methods.

Firstly, taking the ALOS satellite as an example, echoes from space targets at varying
attitudes are obtained by varying the pitch and yaw angles. The axial orientation cor-
responding to each ISAR image is determined based on the imaging coordinate system.
Then, the network structure for axial estimation applicable to ISAR image sequences is
constructed, and the corresponding hyperparameters are set for network training. After
completing training, the network can adaptively estimate the axial direction of spacecrafts.
Finally, experimental results validate the feasibility of achieving axial estimation through
neural networks, providing valuable technical support for refined situational awareness of
motion targets [12].

2. An Axial Estimation Method Based on Neural Networks

The specific process can be divided into three main parts: the first part is the definition
of the spacecraft attitude in orbit, and the second part involves the construction of a
characteristic dataset and the establishment of axial labels. The third part focuses on the
construction, training, and evaluation of regression networks. The overall framework of
axial estimation based on regression network is shown in Figure 1.

2.1. Definition of the Spacecraft Attitude in Orbit

In this part, the orbit coordinate system and the body coordinate system are introduced,
and then the in-orbit spacecraft attitude is defined as pitch and yaw angles. As shown in
Figure 2, the two coordinate systems are defined as follows:
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Figure 1. The overall framework of axial estimation.

(1) Orbit coordinate system Oi − XpYpZp

Figure 2 shows that the coordinate origin is Oi, with the direction of the spacecraft
toward the center of the Earth defining the Yp axis. The Xp axis points in the negative
normal direction of the orbit plane. Using the right-hand rule, the direction of the Zp axis is
determined, which also corresponds to the motion direction of the spacecraft.
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Figure 2. Definition of the orbit and body coordinate system.

(2) Body coordinate system Ot − XsYsZs

As shown in Figure 2, the coordinate origin is Ot. The Zs axis points along the main
axis of the spacecraft, the Ys axis points along the solar panel, and the Xs axis is determined
using the right-hand rule.

The attitude of the spacecraft in orbit can be represented by the body coordinate system
and the orbit coordinate system, specifically through the pitch and yaw angles, as shown in
Figure 3. OtZs is the direction of the main axis of the space object, and OtYs is the direction
of the solar panels. ∠ZsOtZ and ∠XpOtZ indicate the pitch and yaw angle, respectively.
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2.2. Imaging Characteristics and Dataset Construction

Taking the ALOS satellite as an example, its in-orbit schematic is illustrated in Figure 4a.
The CAD model of the satellite is established in Figure 4b, with the fundamental structure
including the main body, the surveying instrument, the solar panels, the optical lenses,
and the phased-array antenna. After obtaining the CAD model, system parameters for the
radar echo must be determined through simulation and testing. Subsequently, for the ISAR
imaging of space targets, the range resolution is determined by the bandwidth of the radar,
as follows:

ρr =
c

2B
(1)

where c is the speed of light. Meanwhile, the azimuth resolution is determined by the
relative rotation of the radar with respect to the target:

ρa =
λ

2∆θ
(2)

where λ is the wavelength and ∆θ is the relative angle of rotation. In order not to produce
deformation in the imaging result, the range resolution is usually made equal to the azimuth
resolution. Therefore, the required synthesized aperture should satisfy

∆θ =
B
fc

(3)
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Figure 4. ALOS satellite modeling and typical electromagnetic simulation imaging. (a) In-orbit
schematic of the ALOS satellite; (b) CAD model; (c) Schematic of imaging result.

A representative imaging result is given in Figure 4c, with specific parameters de-
scribed in Section 3.1. It can be observed that the imaging result is close to the real structure
of the target, which validates the effectiveness.

To intuitively analyze the imaging characteristics of the ALOS satellite, Figure 5
illustrates the imaging results obtained at various attitude angles: yaw angles ranging
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from 15◦ to 75◦ in 15◦ intervals, and pitch angles ranging from 30◦ to 150◦ in 30◦ intervals.
Taking a pitch angle of 45◦ as an example, the shape of solar panels of the ALOS satellite is
approximately rectangular, although some image distortion can be observed as the yaw
angle changes. This reflects the projection relationship between the target and the radar
line of sight at this attitude. Additionally, it is evident that the ALOS satellite is rotating
around the X-axis of the target coordinate system during this time. When the yaw angle is
fixed at 120◦, varying the pitch angle indicates that the ALOS satellite rotates around the
Y-axis of the target coordinate system during this period.
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Figure 5. Imaging results of the ALOS satellite at typical attitude angles.

For a given 3D target, one imaging result can serve as a reference while another
imaging angle is provided, allowing the human eye to directly infer the 3D axial direction.
Especially when sequential imaging results are available, the target attitude can be further
determined by comparing differences between these images. Given the complexity and
precision required for estimating target axial direction, using advanced algorithms is
essential. Based on this finding, this paper proposes the development of a regression
network for the automatic estimation of target axial direction.

2.3. Regression Network Construction and Training

Based on the dataset constructed in the first step, the dataset for the regression network
can be constructed. Inspired by references [13,14], a regression network is constructed,
which includes the ISAR image sequences X1, X2, X3, the center yaw angle Yc, and the
center pitch angle Pc. For the regression labeling of this dataset, the axial direction of the
center ISAR image is taken as the true value. The designed network structure is shown
in Figure 6. For each perspective, the backbone network consists of four modules, each
comprising convolution, batch normalization, activation, and max pooling. For these four
convolutional layers, the sizes of convolutional kernel are 5, 3, 3, and 3, and the number of
channels is 8, 16, 32, and 64.
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Since the results of neighboring images in the ISAR image sequence are similar, as
shown in Figure 7, the backbone networks for the remaining two viewpoints share weights.
This step is utilized to minimize the number of parameters in the network. Then, we
assume the dimension of the input data is H × W × C, where H, W, and C represent the
height, width, and number of channels of the image, respectively. Then, the output obtained
from each viewpoint image through the backbone network is H

16 × W
16 × 64. Following this,

these three outputs are combined along the channel dimension to obtain the backbone
features of the ISAR image sequence, resulting in a size of H

16 × W
16 × 192. The feature is

then processed through a 1 × 1 convolutional layer, resulting in an output feature of size
H
16 × W

16 × 64. The 1 × 1 convolutional kernel serves to reduce computational complexity
while reducing feature redundancy. Eventually, the yaw and pitch angles are separately
predicted by outputting through fully connected layers with a dimension of 1.

For this regression network, the loss function consists of two components and can be
expressed as follows:

L = Lp + λLy (4)

where λ is the balance coefficient of the loss function, which is set to 0.5 according to
the training loss variations. Ly and Lp represent the losses for yaw and pitch angles,
respectively, which can be defined based on the mean squared error as

Ly =
1
N ∑

n
(Ŷc − Yc)

2 (5)

Lp =
1
N ∑

n
(P̂c − Pc)

2 (6)
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where Ŷc and P̂c represent the estimated yaw and pitch angles, respectively, which are
output by the regression network after processing the ISAR image sequence. N denotes the
total number of training samples.
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3. Results and Performance Analysis

To validate the effectiveness of the proposed method, relevant experiments have
been designed and analyzed, which are mainly divided into three parts. The first part
focuses on establishing a CAD model of the ALOS satellite. Afterwards, the target echo
is obtained using electromagnetic calculation software, followed by imaging processing,
analysis of imaging features, and the determination of axial labels. Finally, feature ex-
traction is performed, and axial parameters are estimated using network adaptation. The
second part employs the Grad-CAM technique to visualize the process of network pre-
diction through heat maps, providing interpretability regarding the regression network.
The third part introduces measured data for validation to further enhance the comprehen-
siveness of the experiments and the applicability of the method. Testing on real measured
data is performed to verify the effectiveness and robustness of the proposed method in
practical environments.

3.1. Axial Estimation Utilizing Regression Networks

The ALOS satellite is used as the target for this study, with its typical structure and
imaging results illustrated in Figures 1 and 4. Thereafter, the radar simulation parameters
are described, with a carrier frequency in the Ka band (35 GHz). The bandwidth is approx-
imately 3 GHz, which achieves a range resolution of 5 cm. Simultaneously, the azimuth
resolution is set to 5 cm, resulting in a synthetic aperture length of 2.5◦. The instantaneous
attitude of the satellite target is defined by Euler angles, specifically the yaw and pitch
angles. It is determined by the angle between the body coordinate system of the target and
its orbit coordinate system. Subsequently, considering the symmetry of the ALOS satellite,
the yaw angle is set to range from 0◦ to 180◦ and the pitch angle is set to range from 0 to 90◦.
One ISAR image is obtained for each five-degree interval between yaw and pitch, resulting
in a total of 703 ISAR images.

The height and width of the images for each of the three views are 512. It is noted that
the images have already been resized compared to the original size after imaging, which
contributes to the reduction of network parameters. The dimensions of the output data
are 2 × 1, representing yaw and pitch angles, respectively. The dataset is divided into
training, validation, and test sets in a ratio of 7:1:2. To improve model robustness, data
augmentation techniques such as translation, contrast enhancement, and noise addition are
applied. Specifically, translation enhancement involves the horizontal and vertical image
shift, with the pixel number randomly generated from −15 to 15. Contrast enhancement is
the image application with gamma transform, with the gamma number randomized from
0.5 to 1.5. Noise addition is the pixel-by-pixel Gaussian noise addition with a probability
from 0.3 to 0.7. It should be emphasized that rotation and flipping are not adopted here,
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which can allow us to avoid the ambiguity of axis estimation. The initial learning rate is set
to 0.004, with a reduction factor of 0.9 applied every 30 training epochs. The total number
of training epochs is set to 200. The gradient decay parameter and the second-moment
decay parameter are set to 0.9 and 0.999, using the Adaptive Moment Estimation (ADAM)
optimizer.

Firstly, three test samples of representative ISAR images are taken as examples. The
intermediate ISAR imaging results for these samples are shown in Figure 8a. The true
values for these samples are listed in the first column of Table 1, and corresponding attitudes
are visualized using CAD models in Figure 8b. The predicted yaw and pitch, obtained
by training the model with ISAR sequences of three images at 5◦ intervals, are also listed
in the second column of Table 1. It is evident that the results are highly consistent with
the true values, showing a minimal overall mean error. This encompasses both the axial
direction of the true values and the predicted values.
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Figure 8. Typical ISAR imaging results with corresponding CAD modules. (a) Typical ISAR imaging
results; (b) CAD modules.

Table 1. Analysis of axial estimates for three samples.

Sample True Value (◦)
(Yaw, Pitch)

Prediction (◦)
(Yaw, Pitch)

True Value of Axis
Direction

Prediction of Axis
Direction

1 (95, 10) (92.94, 11.64) (−0.09, 0.98, 0.17) (−0.05, 0.98, 0.20)

2 (55, 20) (56.12, 20.20) (0.54, 0.77, 0.34) (0.52, 0.78, 0.35)

3 (160, 70) (158.85, 70.13) (−0.32, 0.12, 0.94) (−0.32, 0.12, 0.94)

Based on the initial findings, further experiments were conducted to investigate the
effects of significant angular variations between sequential ISAR images. Imaging results
with pitch and yaw angles separated by 10 degrees were used for the training and validation
sets, while the test set consisted of intermediate-value angles located in the intervals of 0 to
10 degrees, 10 to 20 degrees, etc. The experimental results are shown in Table 2, where the
mean errors of the estimated pitch and yaw angles are within acceptable limits. Despite the
increase in angular discontinuities, the network demonstrates strong robustness, indicating
its ability to effectively adapt to the substantial angular variations encountered during the
training phase.
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Table 2. Average errors of pitch and yaw angles under different data set intervals.

Data Set Intervals (◦) Average Pitch Angle Error (◦) Average Yaw Angle Error (◦)

5 1.05 2.10

10 3.23 5.61

In addition, experiments were conducted under varying signal-to-noise ratio (SNR)
conditions, specifically at levels of 0, 5, and 10, as shown in Table 3. The imaging results
corresponding to the same attitude across different SNR levels are presented in Figure 9.
The findings indicate that at an SNR of 0, while the prediction error exhibits a slight
increase, the overall decline in the estimation accuracy of the yaw angle is minimal. This
demonstrates that the method retains its robustness even in noisy environments. When
the SNR is increased to 5 and 10, the discrepancies between the predicted results and the
true values further decrease, with average errors of 0.24◦ and 0.63◦, respectively. These
results confirm the effectiveness of the method and highlight the subtle impact of SNR on
the accuracy of axial estimation.

Table 3. Average errors of pitch and yaw angles at different SNR levels.

SNR Average Pitch Angle Error (◦) Average Yaw Angle Error (◦)

0 1.5308 3.3392

5 1.4534 2.9668

10 1.2980 2.6946
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To quantitively assess the prediction accuracy of yaw and pitch angles, yaw error,
pitch error and mean estimation error are selected as quantitative metrics. In addition,
the accuracy of instantaneous axial estimation method based on a single ISAR image is
compared. The results are shown in Table 4. Compared to instantaneous axial estimation
based on a single ISAR image, the average estimation error based on a sequence of ISAR
images can be decreased by 0.6◦, which effectively improves the accuracy of the axial
estimation method. Furthermore, the prediction time for each image sequence is recorded
at 0.06 s once the network has been trained.

To further validate the performance of the proposed method under different loss
functions, mean-absolute-error (MAE) and Huber loss were introduced in addition to the
original mean-squared-error (MSE) loss. This allowed for a comparison of their accuracy
and robustness in estimating yaw and pitch angles. The experimental results, as shown in
Figure 10, indicate that while the three loss functions exhibit similar overall trends, MSE
loss achieves optimal accuracy. Specifically, MSE loss attained the lowest average error
in both yaw and pitch estimations, demonstrating high stability and applicability across
various environments and angular variations.
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Table 4. The axial estimation error based on ISAR image sequence and single ISAR image.

Method Yaw (◦) Pitch (◦) Average Estimation Error (◦)

Estimation error of a
single ISAR image 2.53 1.84 2.19

Estimation error of
the ISAR sequence 2.10 1.05 1.58
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Furthermore, we considered the impact of pitch angle variation on recognition per-
formance in domain adaptation. The ability of the regression network to estimate yaw
and pitch angles is evaluated by selecting pitch angles in the range of 15◦ to 75◦ with 15◦

intervals while varying the yaw angle at each pitch angle. The experimental results are
presented in Table 5, indicating that the average estimation error is at its maximum at
a pitch angle of 75◦, whereas it is minimized at 60◦. To facilitate further our analysis of
estimation performance across different yaw angles, the yaw angle range is segmented
into 15◦ intervals, resulting in a total of 12 intervals, The estimation error results for each
interval are shown in Figure 11. The maximum estimation error reaches 7.5◦ when the
pitch angle is 75◦ and the yaw angle ranges from 165◦ to 180◦, significantly increasing
the average estimation error. This is attributed to the fact that at this pitch angle, critical
components of the imaging results are obscured due to the extreme attitude, making it a
challenging sample for estimation.

Table 5. The axial estimation error at different pitch angles.

Pitch Angle (◦) Yaw (◦) Pitch (◦) Average Estimation Error (◦)

15 1.99 1.17 1.58

30 2.13 0.98 1.56

45 1.68 0.94 1.31

60 1.37 0.92 1.14

75 2.48 1.35 1.91

3.2. Visualization of the Network Prediction Process

Based on the Grad-CAM technique, the predicted values of yaw and pitch angles are
inversely activated. A heat map of the extracted regional features for each convolutional
layer is generated to provide a partial interpretability of the proposed network. The indi-
vidual convolutional layers of the proposed regression network are sequentially arranged
from top to bottom in Figure 12. The following conclusions can be obtained from the
observations:

(1) The first four convolutional layers function as the backbone layers for primary
feature extraction. Due to the shared weights, overall feature extraction is concentrated at
the edges of three images., which results in some feature responses corresponding to empty
sections in certain ISAR images. Moreover, the shallow features in the backbone feature
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extraction network are still extracting some local features, such as component corner points,
component line edges, and so on.

(2) The feature response of the convolutional layer in terms of yaw and pitch is holistic,
particularly focusing on the directional features at the beginning and end of prominent
components. This significantly impacts the accuracy of subsequent axial estimation.
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3.3. Real-Data Experiments

Here, we provide the experimental setup for our recent satellite imaging experiment,
where the radar and satellite were positioned with a separation distance of 780 m. Figure 13
presents optical images of the satellite at different attitudes. The approximate dimensions
of the target satellite are 6 m in length, 1.4 m in width, and 6 m in height. The main
experimental parameters are listed in Table 6, where “Frequency step length” represents
the step length of the carrier frequency between the adjacent subpulses in a burst, i.e., ∆ f .
Although the experimental frequency band differs from the simulation frequency band, the
core idea of the processing algorithm is consistent with the proposed approach.
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Table 6. Main experimental parameters.

Parameter Value

Carrier frequency 0.22 THz

PRF 10,000

Bandwidth 20 GHz

Frequency step length 8.3 MHz

Pulse width 5 µs

Due to limitations in the experimental setup, the pitch angle of the satellite is restricted
to 0 degrees. The yaw angle ranges from 0 to 360 degrees at intervals of 1.5 degrees to
form the dataset. Figure 14 shows typical imaging results at selected yaw angles. Owing
to the high resolution of the terahertz band, the structural features and key components
of the satellite target are clearly presented. The experiment utilized the same 7:1:2 ratio as
used in the simulated data for training, validation, and testing the network. In the initial
experiment, images captured at 1.5-degree intervals were used to validate the network,
with results displayed in the first row of Table 7. Following this, an additional experiment
was conducted using images at three-degree intervals for training and validation, while
images at 1.5-degree intervals served as the test set to assess the network’s accuracy for
angles not encountered during training. The results, presented in the second row of Table 7,
indicate a noticeable decrease in accuracy compared to the first experiment. This reduction
highlights the limitation of the network generalization when estimating target orientations
not covered in the training set. The decrease in performance under real-world measurement
conditions further emphasizes the significant challenge in achieving high accuracy with
measured data compared to simulated data. Attaining higher accuracy with measured
data, especially for unseen angles, remains a considerable challenge, and we are committed
to pursuing further improvements.
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Table 7. Comparison of average yaw angle error in different experiments.

Experiment Average Yaw Angle Error (◦)

Experiment 1:1.5◦ interval 5.5963

Experiment 2:3◦ interval 6.9973

4. Conclusions

An axial estimation framework based on a regression network with ISAR image
sequences is proposed in this paper, and it is capable of the real-time estimation of the
space target axial direction. Firstly, taking the ALOS satellite as an example, its echo data
for arbitrary attitude are obtained using a CAD model and electromagnetic simulation
software. ISAR image data and label libraries are established according to the system
resolution requirements. Subsequently, the axial estimation network tailored for ISAR
image sequences is constructed. In contrast to traditional methods based on classification
and detection, yaw and pitch angles are directly output by this network based on the
minimum mean squared error. Finally, the interpretability of the regression network is
evaluated through feature visualization, which contributes to the inverse design of an
improved framework for axial estimation networks. The attitude estimation errors in
yaw and pitch directions were 2.10◦ and 1.05◦, respectively, with an average attitude
estimation error of 1.58◦. After completing the training, the network takes approximately
0.06 s to predict a single ISAR image sequence. In addition to simulated data, testing
with real measured data further validated the effectiveness of the proposed framework
in practical environments, demonstrating its robustness in estimating target orientation.
Despite challenges posed by real-world conditions, the framework achieved reliable results,
reinforcing its potential for application in operational settings.
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