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Abstract: Underwater sonar is the primary remote sensing and imaging modality within turbid
environments with poor visibility. The two-dimensional (2-D) images of a target near the air–sea
interface (or resting on a hard seabed), acquired by forward-scan sonar (FSS), are generally corrupted
by the ghost and sometimes mirror components, formed by the multipath propagation of transmitted
acoustic beams. In the processing of the 2-D FSS views to generate an accurate three-dimensional
(3-D) object model, the corrupted regions have to be discarded. The sonar tilt angle and distance from
the sea surface are two important parameters for the accurate localization of the ghost and mirror
components. We propose a unified optimization technique for improving both the measurements of
these two parameters from inexpensive sensors and the accuracy of a 3-D object model using 2-D
FSS images at known poses. The solution is obtained by the recursive updating of sonar parameters
and 3-D object model. Utilizing the 3-D object model, we can enhance the original images and
generate synthetic views for arbitrary sonar poses. We demonstrate the performance of our method
in experiments with the synthetic and real images of three targets: two dominantly convex coral
rocks and a highly concave toy wood table.

Keywords: 2-D imaging sonar; 3-D object modeling; multipath; sea-surface reflection; ghost object;
mirror image; image enhancement

1. Introduction

In addition to enabling the generation of environmental maps, building 3-D object
models from 2-D images provides information for automatic target recognition, establish-
ing the types, sizes, and relative spatial arrangement of various scene objects, collision-
free navigation, landmark-based positioning, reallocating objects within mapped sites,
and change detection.

For underwater applications, 2-D optical imaging has restricted range in relatively clear
waters and quickly becomes ineffective under poor visibility and turbidity—conditions that
are commonly encountered in polluted ports, shallow turbulent surf zones, rivers, marine
sanctuaries, lakes, ponds, and other still bodies of water. Here, sonar is the preferred and
primary visual sensing modality, by virtue of acoustic signal penetrability through silt,
mud, and other similar sources of water turbidity.

The imaging sonars have been commonly utilized in subsea remote sensing applica-
tions to generate 2-D visual and 3-D topographical maps of the ocean floor [1,2]. In one
deployment scenario, a side-scan sonar (SSS) operating at frequencies of 100–500 KHz can
map narrow strips of the terrain that extend up to several hundred meters on either side
of a ship [3,4]. The typical (across-track) range resolutions of several centimeters can be
improved to 1–2 [cm] at operating frequencies of about 1 MHz. This is achieved at the
cost of decreased maximum ranges of only 10’s of meters because the acoustic waves at
these high frequencies attenuate faster than those at lower frequencies that are commonly
employed for long-range applications.
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The Synthetic Aperture Sonar (SAS) technology [2,5,6] overcomes the decreasing SSS
resolution (when operating at the lower frequencies required for long-distance applications)
by integrating data collected over multiple sonar transmissions with a synthetic array. Here,
constant resolution with range can be achieved by scaling of the array; increasing the array
length for longer ranges.

The 2-D multi-beam FSS systems, originally developed in the early 2000s at operating
frequencies of 100’s KHz, have been commonly deployed near the front end of the hull
for obstacle-free navigation in shallow, poorly-chartered waters [7–9]. The advanced units
operating at 2–3 MHz produce high-resolution video images of small objects with sub-
centimeter resolution at 10–30 frames/s but a limited maximum range of about a dozen
meters; e.g., [10–12]. The mapping of relatively large areas of the sea bottom can be achieved
by image mosaicing [13–17]. The increasing use of these high-resolution FSS systems has
sparked interest in developing algorithms for automated 2-D sonar image processing,
interpretation, and 3-D object reconstruction.

In 2-D ranging systems, it is common to employ the spherical coordinate (ℜ, θ, ϕ)T for
the 3-D position of an object/scene surface points. Here, the elevation angle ϕ is lost in the
projection of these 3-D points onto the 2-D sonar image. The 3-D reconstruction from FSS
data involves the estimation of the unknown ϕ by various “shape from X” techniques [18].
For example, several 2-D images at a multitude of known poses can be used to generate
high-resolution 3-D object models [19–25], with key applications in target recognition,
environmental mapping, and marine scientific studies that rely on the distribution of object
types and sizes. However, satisfactory performance often requires certain implicit/explicit
restrictive assumptions and conditions about the environment, sonar trajectory, as well as
target shape. For example, nearby reflecting surfaces in cluttered scenes and (or) surface
patches within object concavities generate multipath that can corrupt and degrade the
target image. Thus, the key conditions to minimize data corruption for accurate 3-D
model reconstruction include the following: (1) dominantly convex targets (with only mild
concavities producing no more than negligible multipath reverberation); and (2) no nearby
surfaces with strong acoustic reflectance, e.g., air–sea interface, hard bottoms, and clutter.

The sonar images of targets resting on hard bottoms or in shallow water (floating)
near the air–water interface can be corrupted by the contributions from the multipath
propagation of acoustic beams [19,20,26,27]. These generate ghost regions that often overlap
with the target image (the multipath phenomenon also arises in deploying a high-resolution
radar on an autonomous road vehicle for environmental perception [25,28–31], where the
key objective is to locate the “ghost” vehicles in the scene images). Referring to each of
the four views of a coral rock in Figure 1, the indistinguishable overlapping ghost object
corrupts both the shape and intensity values of (some parts within) the coral image region.
Additionally, a mirror region is formed by the “virtual mirror object” above the water
surface (or below the seabed). As in (a), the mirror component (nearly) coincides with the
ghost region when the image plane is (roughly) parallel to the sea surface (or bottom). It
separates into a distinct blob upon rotating the sonar about the viewing axis; here, from 0◦

to 67.5◦ in steps of 22.5◦.

(a) (b) (c) (d)
Figure 1. Ghost component overlaps with and is indistinguishable from the object region in every
view. Mirror component at reference position (elevation axis pointing upward) overlaps with both
object and ghost regions (a). As the sonar rotates about the viewing direction (from 0◦ to 67.5◦ in
increments of 22.5◦, here), it separating from the object (b), and forms a distinct blob (c,d).
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In this work, we investigate the generation of a 3-D model for an object floating near
the sea surface, imaged by an FSS from a multitude of known poses. To this end, improved
3-D modeling performance directly depends on the accurate knowledge of sonar pose
relative to the air–water interface, allowing us to circumvent the shape distortion in the
3-D object modeling process. To be precise, the air–water interface distance and the sonar
tilt angle are two key pose parameters in localizing the ghost and mirror components.
Both parameters can be determined using relatively inexpensive sensors [32,33], but the
measurement inaccuracies are generally unacceptable. We propose to estimate these with
reduced uncertainty and (or) improved precision by devising an integrated recursive
optimization technique that builds on an earlier 3-D modeling framework [19,20]. Moreover,
we exploit the mirror contours, where distinct in certain views, as a regularizer to improve
the reconstruction accuracy.

Additionally, our method enables the generation of ghost-free object views from the
model-based synthetic images [26,27,34–36], using a look-up table that is constructed from
the intensity distributions within the uncorrupted object regions in the data and synthetic
images. Experimental results confirm that our method performs consistently with real and
computer-generated data under similar imaging conditions. The real data includes the
images at known poses of two dominantly convex coral rocks and a concave toy wood
table, recorded by a lens-based Dual-Frequency IDentification SONar (DIDSON) [10].

The remaining sections are organized as follows: Section 2 covers (1) some notations
and relevant technical background, including 3-D coordinate transformation, 3-D-to-2-D
sonar projection, representation of sonar data as a beam-bin array, and transformation to
generate a 2-D FSS image; (2) a unified optimization framework for 3-D target modeling
and sonar pose estimation, error metrics applied for the quantitative assessment of the
results, and the generation of ghost-free object images. In Section 3, we first present the
results of experiments with synthetic data, aimed at assessing the accuracy and convergence
rate of our optimization scheme for 3-D modeling and sonar pose estimation. Here, we
utilize the 3-D models of our three targets generated by a Kinect camera under the same
imaging conditions as the real data. We then give the results of experiments with real data.
We summarize our contributions in Section 4.

2. Materials and Methods
2.1. Notation, Coordinate Transformation and FSS Image Formation

The Cartesian P = (X, Y, Z) and spherical Π = (ℜ, θ, ϕ) coordinates of a 3-D point
transform according to the following equations:

P =

X
Y
Z

 = ℜ

cos ϕ sin θ
cos ϕ cos θ

sin ϕ

 −→ Π =

ℜθ
ϕ

 =


√

X2 + Y2 + Z2

tan−1(X/Y)
tan−1(Z/

√
X2 + Y2)

 (1)

Figure 2a depicts a single sonar beam in the azimuth direction θ. In a multi-beam FSS,
the horizontal field of view (FoV) |θ| ≤ Wθ is covered by Nb beams, each with a narrow
horizontal width δθ. The vertical FoV is fixed by the half-angle beam width Wϕ. For most
existing FSS systems, we have δθ = 0.25◦ − 1◦, 6◦ ≤ Wϕ ≤ 10◦ and 15◦ ≤ Wθ ≤ 65◦.

At various sample times, the round-trip times of flight Tto f of target echos in a direction
θ yield the range measurements ℜ = 1

2 Tto f υ, where υ is the sound speed within the
medium. Ideally, we calculate (ℜ, θ) from the so-called “beam-bin” (b, B) coordinates by
the following linear equations:

ℜ = ℜmin + (B − 1)δℜ (B = 1, 2, . . . , NB)
θ = −Wθ + (b − 1) δθ (b = 1, 2, . . . , Nb)

(2)

where NB range bins cover the minimum range ℜmin to maximum range ℜmax with
resolution δℜ = (ℜmax −ℜmin)/(NB − 1). In practice, deviations from these models are
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determined and rectified by calibration; e.g., a “mild” cubic equation models the b-to-θ
transformation in a lens-based DIDSON with lens distortion [37].

The beam-bin intensity array I(b, B) encodes the strength of (collective) echoes from
potentially several scene surface patches within the elevation arc Wϕ, leading to the inherent
many-to-one projection ambiguity of FSS imaging. We construct the 2-D FSS image I(x, y)
from the beam-bin data using the transformation[

x
y

]
= ℜ

[
sin θ
cos θ

]
(3)

The elevation angles ϕ of points on an object or scene surfaces (over some region of
interest) are lost in the 3-D-to-2-D projection process. The application of a 3-D reconstruction
technique involves the recovery of unknown ϕ from the radiometric and (or) geometric
cues in one or more FSS images. In this work, we utilize the data captured with a DIDSON
unit, for which an image formation model has been derived [26]; this enables synthesizing
images of a given object at known poses relative to the sonar.

(a)

(b) (c) (d)

Figure 2. (a) For a sonar beam in θ direction, image intensity I of pixel (x, y) depends on cumulative
echos from unknown number of surface patches within volumeVϕ arriving at sonar receiver simul-
taneously;Vϕ covers elevation-angle interval [−Wϕ, Wϕ], range interval [ℜ, ℜ+ δℜ] along the beam
covering azimuthal-angle interval [θ, θ+δθ]. (b) A coral rock with voxelated volume and triangular
surface mesh of SC solution. (c) Virtual mirror object geometry: transmitted sound waves in direction
RRR1 are scattered by surface at Ps. Reflected portion along “unique direction” RRR2 towards PW on water
surface (with surface normal nnn) is specularly reflected towards the sonar along RRR3, leading to the
appearance of a virtual mirror object point at Pm. (d) Virtual ghost object geometry: considering
the reverse direction of the mirror-point pathway, sound waves traveling along −RRR3 are specularly
reflected towards the object along −RRR2, and are scattered at Ps, of which components along −RRR1 are
captured by the sonar. This leads to the appearance of ghost point Pg along the sonar beam directed
at Ps (at a longer range RRRg).

2.2. 3-D Object Modeling

Applying the space carving (SC) paradigm [38], a 3-D reconstruction method has been
proposed [39] to generate an object surface model So from M images Im at distinct sonar
poses mm (m = 0, 1, . . . , M − 1). The M = Mp Mr poses are represented by 3-D translation
ti (i = 0, 1, . . . , Mp − 1) and rotation rj (j = 0, 1, . . . , Mr − 1) vectors relative to reference
pose m0 = [tT

0 , rT
0 ]

T . The carving efficiency is improved by acquiring Mr rotated images
at each of Mp positions around the object; through incremental roll rotations dωr=π/Mr
[rad] (about the viewing axis) from−π to−π+(Mr − 1)dωr (The shape complexity, namely,
convexity or concavity are two key factors in setting Mp and Mr).

The SC method exploits geometric cues solely. First, the 3-D space visible in all
sonar poses is discretized into volume elements (voxels). Each is examined to label as an
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object voxel if it projects onto the feasible region in every view; otherwise it is labeled
as a non-object voxel and discarded. The feasible region of each view is defined by the
object highlight and dark/shadow region behind it, onto which the object surface patches
occluded by the visible surfaces may project. The surface model So is the outer boundary
of the volume formed by all object voxels, as shown in Figure 2b for the coral-two rock in
our experiments. Referring to Figure 2b, the SC model So consists of a closed mesh of NT
triangles formed by Np vertices Po

l (l = 1, . . . , Np); the triangulation connectivity list Ts
fixes the NT triangles in So, formed by the triplet sets {Po

i , Po
j , Po

k}.
The 3-D model refinement scheme in [19,20] is an efficient implementation of the

optimization framework in [40] that utilizes the intensity data within object regions in
various views by minimizing the discrepancy between the data and synthetic target images,
generated by the sonar image formation model in [26]. Starting with the SC mesh model
So, the sought-after optimal model S̃ is the discrete approximation of the true continu-
ous surface Sc, defined by the Np displaced vertices P̃l = Po

l + Ṽl (l = 1, . . . , Np) of
the NT triangles in the triangular connectivity list Ts of So. The optimal displacements
Ṽ = [Ṽ1, Ṽ2, . . . , ṼNp ] are calculated iteratively by minimizing the sum-squared differ-
ence between the data Im and synthetic images Ĩm over all M poses:

Ṽ = arg min
S̃

E(S) =
M

∑
m=1

|Im − Ĩm(x, y; S)|2 (4)

At iteration t, the incremental 3-D vertex displacement field Ṽt (to revise the 3-D
model S̃t) is estimated from the 2-D motion fields vt

m that align the data and synthetic
images at “relevant” sonar poses mm (m = 1, 2, . . . M− ≤ M). Here, (M − M−) views may
be excluded if the vertices/patches are invisible or the 2-D motion vectors have large errors.

For targets imaged near the sea surface, we need to account for the impact of multipath
propagation, namely, the object region corrupted by the ghost component. To this end,
multipath modeling serves two purposes: (1) to localize and discard the ghost-corrupted
object region to avoid the distortion of the 3-D model; and (2) to exploit the geometric
constraints imposed by the mirror image boundaries in relevant views to improve the
3-D object modeling.It is noted that the multipath arising from reverberation within object
concavities and ground reflection for objects on the seabed have been incorporated in sonar
simulators [26,27,34–36,41–43]. However, these investigations offer no model validation
with real data and calibrated objects. In our work, we rely solely on geometric cues, i.e., the
ghost and mirror locations and the mirror contour, for 3-D model refinement.

2.3. Unified Optimization Famework

Inexpensive depth sensors with an accuracy of 0.1% have negligible error at depths
of a few meters [32]. However, a low-cost angle sensor with an uncertainty of ±0.6◦ [33]
can introduce large biases in localizing the ghost, mirror, and thus the uncorrupted object
regions. We next describe a unified optimization scheme by incorporating the estimation of
the two pose parameters within the 3-D target modeling framework.

Figure 3a depicts the block diagram of the process: recursively updating the pose
parameters and the 3-D shape. Here, we employ the 3-D object model estimate to calculate
the new values of sonar depth d and tilt angle β. These are adopted only if they yield
a smaller error, subsequently employed in the next iteration of 3-D shape refinement.
The iterative updating of the 3-D target model, detailed in [19,20] and depicted in Figure 3b,
consists of three key steps: (1) computation of 2-D motion vectors in various views for the
alignment of object regions in the data and synthetic images (constructed from the 3-D
model); (2) estimation of the 3-D motions of corresponding triangular-patch centers from
the 2-D image motion fields for all views; (3) transformation of 3-D motions from the patch
centers to the 3-D model vertices. Finally, we update the 3-D shape by displacing the model
vertices. The execution of the two-mode optimization continues as long as the objective
error function diminishes.
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(a)

(b)

Figure 3. (a) Block diagram of entire algorithm; (b) steps in 3-D shape optimization by displacement
of model vertices, computed from 3-D vertex motions that are estimated from the 2-D image motions
aligning the object regions in the data and synthetic views.

2.4. Sonar Pose Optimization

Referring to Figure 2d, the ghost image, generally overlapping with the more distant
region of the object image, is formed by the sound propagation along the longer multipath
routes. The paths for all visible surface patches are readily calculated based on the sonar
pose relative to the target and to the air–water interface [19,20]. However, inaccuracies in
the initial 3-D SC model (note that the 3-D model incorporates the relative sonar-to-target
pose) and the depth and tilt sensor measurements can lead to the imprecise location of the
ghost region, thus diminishing the effectiveness of utilizing the image intensity and contour
information for various views. We minimize both types of error through the optimization
method described next.

We employ superscript (·)O and (·)M for entities associated with the object and mirror
components, respectively; e.g., 3-D models SO and SM explicitly differentiate between
the true model and the virtual 3-D mirror object, respectively. For a sonar pose mm
(m = 1, 2, . . . , M), a frontal patch refers to the visible surface patch at shortest range along
each sonar beam, projecting onto a frontal contour point in the corresponding view.

Let CO
m = {cO

mk | k = 1, 2, . . . , NO
m} and CM

m = {cM
ml | l = 1, 2, . . . , NM

m } denote the
sets of frontal contour points of the object and mirror regions in image Im. Likewise,
C̃O

m = {c̃O
mi | i = 1, 2, . . . , ÑO

m} and C̃M
m = {c̃M

mj | j = 1, 2, . . . , ÑM
m } denote the same in the

synthetic image Ĩm. Note that NO
m ̸= ÑO

m and NM
m ̸= ÑM

m generally, for real quantized
data. We perform contour alignment by the Iterative Closest Point (ICP) algorithm [44,45],
namely, the iteratively reweighted least squares (IRLS) variant [46,47]. A key advantage of
the ICP methods is the applicability in registering two unequal-size unmatched point sets.

Figure 4 depicts these contours superimposed on a sample real image. The registration
of contours C̃O

m and CO
m with Ñ′O

m ≤ ÑO
m inlier matching points {c̃′Omi, cO

mk} (with indeces

{i, k(i)}) yields the planar transformation C̃ ′O
m = TO(C̃O

m) (C̃ ′O
m = {c̃′Omi | i = 1, 2, . . . Ñ′O

m })
(TO(.) involves 2-D translation and in-plane rotation).

The 2-D motion of contour C̃O
m is given by ṼO

m = {ṽO
mi | i = 1, 2, . . . , Ñ′O

m }, where
ṽO

mi = c̃′Omi − c̃O
mi.
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For each synthetic image Ĩm, the contour error is computed based on the discrepancy
between the contour pixels cO

mk(i) in the data Im and the transformed contour pixels c̃′Omi in

the synthetic view Ĩt
m:

CE( Ĩm) =
1

Ñ′O
m

Ñ′O
m

∑
i=1

|cO
mk(i) − c̃′Omi| (5)

Following the same steps for the mirror image, Ñ′M
m pairs {c̃′Mmj, cM

ml} of inlier mirror-

contour correspondences with indeces {j, l(j)} are established by the transformation C̃ ′M
m =

TM(C̃M
m ). This yields the 2-D mirror-contour motions ṼM

m = {ṽM
mj | j = 1, 2, ..., Ñ′M

m ≤ ÑM
m },

where ṽM
mj = c̃′Mmj − c̃M

mj.

(a) (b)

Figure 4. (a) The 2-D vectors {vO
mi, vM

mj} align the frontal contours {CO
m , CM

m } of the object and mirror

regions in the real images with counterparts {C̃O
m , C̃M

m } in the synthetic views; (b) magnified view of
relevant regions.

With accurate sonar pose parameters D and β, the 2-D motions ṼO
m and ṼM

m computed
from images Im and Ĩm (for pose mm) incorporate the inaccuracies of estimated 3-D models
S̃O and S̃M in a consistent manner.

To explain, we utilize the simplified notation {z | z = 1, 2, . . . , Zm} for the set of
Zm frontal patch indeces in view mm for both the true and estimated object-mirror pairs
{SO, SM} and {S̃O, S̃M}, respectively. Moreover, the 2-D motion vectors vO

mz and vM
mz

align the frontal contours of objects and mirror regions in the real and synthetic images,
respectively. Finally, the erroneous 2-D motion vectors based on imperfect knowledge of
sonar depth and tilt angle are denoted ṽO

mz and ṽM
mz.

Next, let the pairs {Pc
z

O, P̃c
z

O} represent the true and estimated 3-D frontal patch
centers on {SO, S̃O}, projecting onto matching 2-D object-contour points {cO

mz, c̃O
mz} in the

data Im and synthetic view Ĩm, respectively. In [19,20], we show how to calculate the 3-D

motion of the patch center ṼO
z = P̃c

z
O − Pc

z
O from the redundant 2-D object-contour motions

ṽO
mz in visible views m = 1, 2, . . . , M− ≤ M.

In the same manner, (1) the patch-center pair {Pc
z

M, P̃c
z

M} of true and estimated 3-D
mirror model pair {SM, S̃M} project onto matching 2-D mirror-contour pairs {cM

mz, c̃M
mz} in

the data Im and synthetic view Ĩm, respectively; and (2) the 3-D mirror patch-center motion

ṼM
z = P̃c

z
M − Pc

z
M is calculated from the redundant 2-D mirror-contour motions ṽM

mz over
the visible mirror patches.

The consistent manner means that mapping of the pair {Pc
z

O, P̃c
z

O} to two corresponding

3-D mirror pairs on {SM, S̃M} yields the same terminal points {Pc
z

M, P̃c
z

M} that are derived
from the 2-D mirror-contour motions ṽM

mz (calculated from all views where the mirror

surface patch centered at P̃c
z

M
is visible).
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This so-called consistency does not hold when sonar pose parameters are imprecise:
deviations arise in ṼO

z and ṼM
z due to the inaccurate 2-D motions calculated from the

dislocated object and mirror contours. First, we expect the 3-D motion vector ṼO
z to be

larger than the estimate based on precise sonar depth and tilt measurements. Accordingly,
we would seek sonar pose parameters that minimize ∥ṼO

z ∥. Next, inconsistency exists
between ṼM

z , calculated from the 2-D mirror contour motions, and VM
z based on the

mapping of 3-D patch-center motion from the object S̃O to the virtual mirror S̃M. We
can directly calculate the discrepancy ∥VM

z − ṼM
z ∥, which is also to be minimized by the

optimal sonar pose parameters. Collectively, we define and minimize the error metric
Eµ(D, β) that integrates the errors µm for all sonar poses:

µm =
1

Zm

Zm

∑
z=1

∥VO
z ∥+ ∥VM

z − ṼM
z ∥; Eµ(D, β) =

1
M

M

∑
m=1

µm (6)

The error metric Eµ(D, β) is a highly nonlinear function of parameters D and β,
requiring a computationally expensive non-linear optimization scheme (e.g., some variation
of iterative gradient descent [48]). Moreover, the convergence to the global minimum cannot
be guaranteed. Instead, we determine the optimal values D∗ and β∗ more efficiently by
multi-resolution grid search in a 2-D parameter space. That is, representing the uncertainty
bounds of sensor measurements D0 (of depth) and β0 (of tilt angle) by ±eD and ±eβ, we
calculate Eµ(D, β) over the 2-D grid Ug = [Do − eD, Do + eD; βo − eβ, βo + eβ] with (low to
high) grid resolution δD and δβ:

(D∗, β∗) = arg min
(D,β)∈Ug

Eµ(D, β) (7)

We update D and β in a “greedy” manner: (D∗, β∗) is accepted if it gives a smaller error
Eµ compared with the latest value; see the “Sonar Orientation Optimization” block in
Figure 3a. Next, we carry out the computational steps in the “3-D Model Optimization”
block as described in [20].

2.5. Error Metric

We define two error measures to assess the performance of our method [19,20]: to
quantify the 3-D object model error and the discrepancy between the data and synthetic
images generated from the 3-D model. Denoting Ĩ t = { Ĩt

m | m = 1, 2, . . . , M} the set
of synthetic beam-bin images at iteration t, we employ the average intensity error (IE)
comprising of pixel set Ωt

m within the uncorrupted object region of Ĩt
m, in calculating the

average intensity error (AIE) over the whole synthetic image set:

IE( Ĩt
m) =

1
|Ωt

m|
∑

(b,B)∈Ωt
m

| Ĩt
m(b, B)− It(b, B)| AIE(Ĩ t)=

1
M

M

∑
m=1

IE( Ĩm) (8)

where |Ωt
m| denotes the cardinality of set Ωt

m. We also compute the average contour error
(ACE) from (5):

ACE(Ĩ t) =
1
M

M

∑
m=1

CE( Ĩt
m) (9)

Finally, these two average errors (over the entire data set) are normalized with respect to
their initial values (using the synthetic images of the 3-D SC solution):

NAIE( Ĩt) = AIE( Ĩt)/AIE( Ĩ0) NACE( Ĩt) = ACE( Ĩt)/ACE( Ĩ0) (10)

and combined to establish the image error at iteration t:

EI(t) =
1
2
(NAIE( Ĩt) + NACE( Ĩt) (11)
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The 3-D modeling error can be quantified in terms of the volumes Vc = V(Sc) and
Ṽ = V(S̃) of the true and estimated 3-D object models. With no knowledge of Sc, we
instead utilize the model generated by a Kinect camera [49], albeit not perfect. Accordingly,
we define the normalized volumetric error at iteration t [39]:

Et
V =

Ṽt + Vc − 2VS̃t∩Sc

Ṽt + Vc − VS̃t∩Sc

; VS̃t∩Sc = V(S̃t ∩ Sc) (12)

The metric 0 ≤ EV ≤ 1 is the ratio of non-common volumes of the two 3-D models to their
union. Thus, zero error indicates two identical volumes, and the maximum unity error
corresponds to no common volume. We utilize EV primarily to determine the correlation
with EI and whether EI (which is computable) can serve as an indicator of EV (which we
cannot determine in practice).

2.6. Enhanced Target Images

As discussed, almost all object views are generally corrupted by the ghost image,
and only some by the mirror image component. For any arbitrary sonar pose, we can
synthesize a noise-free, uncorrupted image from the 3-D target model. In addition, it is
highly desired to generate enhanced real object views by removing the ghost contributions.

Let Io = ∪(IN
o , IO

o ) and Ig = ∪(IN
g , IO

g ) denote the intensity values of object and ghost
components, respectively, formed by the union of their respective overlapping and non-
overlapping regions (steps 2a and 2b in Figure 5b,c). Ignoring the impact of noise, IN

o and
IN
g are measured directly from the image. The object image enhancement involves the

generation of Io by the estimation of IO
o . In the process given below to generate the object

image, we assume the transformation to map the synthetic image to the real data within
the non-overlap object region can be reliably applied to estimate the intensity values of the
object within the overlap region. Referring to Figure 5, the complete process involves the
following steps:

(a)

synthetic synthetic
ghost         mirror

synthetic object

1. Sonar
image

generation
(c)

2b. real ghost 
image generation

𝐼!

synthetic  real  real 
           object  object  object

𝐼#

non-overlapping (top) and overlapping (bottom) regions

(b)

(d)

overlapping      overlapping       overlapping 
image                   object                   ghost

(e)

top: non-overlapping
bottom: overlapping

Figure 5. Processing steps in the decomposition of sonar data into object and ghost components.
(a) Generation of synthetic object image from image formation model, and localizing the ghost and
mirror components to identify regions overlapping with object image. (b) Segmentation of real
and synthetic object regions into overlapping and non-overlapping parts, using non-overlapping
region in generating the LUT for synthetic-to-real object transformation, and apply the LUT to
reconstruct overlapping object region to complete the object image by fusing with non-overlapping
part. (c) Segmentation of ghost area into overlapping and non-overlapping regions, producing the
non-overlapping part. (d) Discounting for the object image within overlap area to generate the ghost
component. (e) Generation of ghost image from overlapping and non-overlapping components.

1. Generation of synthetic logarithmic object image Lo based on the model in [26],
applied to the 3-D object model S̃ (step 1);

2. Localization of ghost region by employing the estimated sonar pose parameters [19,20]
(step 1);
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3. Segmentation of non-overlapping and overlapping object regions LN
o from LO

o , respec-
tively (step 2a), and the generation of normalized intensity values L̂N

o with zero mean
and unit variance;

4. Calculation of mean-variance pair { Ī, σI} of intensity values IN
o , and applying the

transformation LN
o = σI L̂N

o + Ī;
5. Construction of look-up table (LUT) to transform LN

o to IN
o by matching their his-

tograms (step 2a);
6. Computation of scaled intensity values LO

o = σI L̂O
o + Ī within overlapping object

region, and applying the LUT to map LO
o values to IO

o values (step 2a).

In some applications, including the development and verification of a ghost im-
age formation model, it may be desired to isolate the ghost component from the real
data. Figure 5c–e depicts the process, once the object image has been computed as de-
scribed above.

3. Results

Experiments with both synthetic and real images of three targets are presented to
demonstrate different aspects of our method. These include two “dominantly-convex”
coral rocks with mild local concavities and a concave “toy” wood table; see Figure 6.

The simulations with synthetic data allow us to assess the performance and conver-
gence of the unified optimization scheme, namely, errors in converged sonar depth and
tilt angle values, the discrepancy between the optimized 3-D model (initialized by the SC
solution) and the Kinect 3-D model, as well as the consistency of results from experiments
with synthetic and real data.

For ground truth, we employ the 3-D surface mesh models of these objects generated
by a Kinect camera, utilizing Kinect video while slowly rotating the target in air at a distance
of about 1 [m]. Although not perfect, various spot measurements confirm an accuracy
of better than an order of magnitude in comparison to the average error of 3-D models
generated from the 2-D sonar data. The real data for the two coral rocks comprises 16 total
images at two opposite, north (N) and south (S) sides of each object. At each position,
eight images are captured while the sonar rolls on a motorized rotator about the viewing
axis from −90◦ to 67.5◦, in increments of 22.5◦; the unrotated (zero-degree roll) at the S
position is the reference view. For the wood table, we have a total of 32 images from four
sides: east (E) and west (W), in addition to N and S.

coral rock-one coral rock-two wood table
H=22.4 [cm], Max. W=11.4 [cm] H=30 [cm], Max. W=16.4 [cm] H=16.5 [cm], Max. W=15.0 [cm]

Sonar tilt: 10.1◦ 11.3◦ 11.0◦

Sonar depth: 0.43 [m] 0.48 [m] 0.46 [cm]
Target Range: 2.05–2.18 [m] 2.03–2.20 [m] 2.05–2.20 [m]

Figure 6. Three targets—two dominantly convex coral rocks with mild local concavities and a highly
concave wood table—with height, maximum width, and imaging conditions.

We employ these sonar poses and the parameters of each experiment listed in Figure 6
to generate the synthetic images of the 3-D Kinect model by applying the DIDSON image
formation model [26]. In assessing convergence, all experiments are initialized with the
3-D SC model [39] and imprecise depth and tilt-angle values.

Finally, the mirror component overlaps with the object region in three views: at
the reference pose and two rotated views at roll angles of ±22.5◦. Discarding these,
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the optimization is applied to 10 images of each coral rock and 20 images of the wood
table (recall that we require a distinct mirror region boundary in the optimization process).
Moreover, we treat the discarded views as the new ones to compare with the computer-
generated images.

3.1. Experiments with Synthetic Data

Figure 7a–d depicts the results of the experiment with the coral-one data. The sonar
depth and tilt parameters in (a,b) approach the assumed values of 43 [cm] and 10.3◦ (shown
in red dashed lines) in seven iterations. In (d), we compare the initialized SC solution (top:
blue mesh) and optimized 3-D model (bottom: blue mesh), superimposed on the Kinect
model (black mesh). Decreasing in tandem, the image EI and volumetric EV errors in (c)
confirm that the reduced image error leads to an improved 3-D model. Thus, the measurable
EI serves as an indicator of incalculable 3-D modeling accuracy. Initialized with the SC
solution, the improved target model after seven iterations reduces the volumetric error by
about 16% and the image error by better than 20%.

Similar results are obtained for the second coral rock. Referring to Figure 8a–d,
the sonar depth in (a) and tilt angle in (b) approach the assumed values of 48 [cm] and
11.5◦ (red dashed lines), and the image and volumetric errors in (c) improve by better than
20% in four iterations.

A noteworthy observation is that the reconstructed 3-D models of both rocks preserve
(some of) the mild local concavities of their surfaces. For example, these are pronounced in
the XY and XZ views of coral-one; see columns 2–3 in Figures 7d and 8d.

The experimental results for the concave wood table are presented in Figure 9a–d
Here, the reverberation among the inner surfaces of the four legs leads to their inflated
appearances in different views. Minimizing the discrepancy between the data and synthetic
images yields a 3-D model with thickened legs. Consequently, the volumetric improvement
(with respect to the initial SC solution) in (c) is relatively insignificant, despite an image
error improvement of better than 20%. Still, the reconstructed 3-D model captures the
structural and topological properties of the shape, including the top surface, four legs, and
the deep concavity within these legs.

Moreover, the convergence of the sonar depth in (a) and tilt angle in (b) takes 10 iter-
ations. A notable observation in (c) is the non-monotonic convergence of the image (red
circles) and volumetric (blue squares) errors. These errors increase (before resuming the
improvement in accuracy) at iterations where the sonar pose parameters diverge from their
true values (red dashed lines).

3.2. Experiments with Real Data

Figures 7d’, 8d’, and 9d’ are the 3-D Kinect (red. mesh) and the optimized model
based on initialization with the SC solution (blue). The reconstruction accuracy of the
optimized model is consistent with those from the computer simulations, albeit at a slower
convergence rate; compare (c) and second row in (d) with (c’,d’) in each figure. The same
conclusion is drawn from the wood table reconstruction, despite inferior precision relative
to the two dominantly convex coral rocks. Interestingly, the convergence is achieved
monotonically and faster, directly tied to the same behavior for the sonar pose parameters.

Here again, some of the mild concavities of the two coral rocks are recovered, as in
the experiments with the computer-generated data. Moreover, the reconstructed model
captures the structural and topological properties of the wood table. The largest discrepancy
arises in the coral-two reconstruction over the SW–W and E–NE regions (e.g., see XY
projection). Here, the thickness variations are not replicated in the estimated model, mainly
due to the unavailability of data from the E and W directions (this has been confirmed in
an experiment with real-synthetic mixed data, using additional computer-generated views
from these two positions [19,20]).
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(a) (b) (c)

(d)

(a’) (b’) (c’)

(d’)

Figure 7. Coral-one experiment—(a–d) synthetic and (a’–d’) real data. (a,b,a’,b’) Optimization of
sonar depth and tilt parameters. (c,c’) Image EI and volumetric EV errors moving in tandem confirm
3-D model improvement with reduced image error. (d) Initialized SC solution (top) and optimized
3-D model (bottom), shown by blue surface mesh, are superimposed on Kinect model (black mesh);
(d’) optimized SC (blue mesh) and Kinect (red mesh) models.
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(a) (b) (c)

(d)

(a’) (b’) (c’)

(d’)

Figure 8. Coral-two experiment—(a–d) synthetic and (a’–d’) real data. (a,b,a’,b’) Optimization of
sonar depth and tilt parameters. (c,c’) Improving 3-D model leads to smaller volumetric EV and
image EI errors. (d) Kinect model (black mesh) superimposed on initialized SC solution (top) and
optimized 3-D model (bottom), shown by blue surface meshes. (d’) Optimized SC (blue mesh) and
Kinect (red mesh) models.



Remote Sens. 2024, 16, 3814 14 of 22

(a) (b) (c)

(d)

(a’) (b’) (c’)

(d’)

Figure 9. Wood table experiment— (a–d) synthetic and (a’–d’) real data. (a,b,a’,b’) Optimization of
sonar depth and tilt parameters. (c,c’) Improving 3-D model reduces both volumetric EV and image
EI errors. (d) Kinect model (black mesh) superimposed on initialized SC solution (top) and optimized
3-D model (bottom), shown by blue surface meshes. (d’) Optimized SC (blue mesh) and Kinect (red
mesh) models.
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Next, we present sample results of target image enhancement. For the first coral
rock, Figure 10 depicts three samples, out of five rotated views used in the optimization
at S (pos 1) and N (pos 2) sonar positions. Columns (a,b) include the original data and
the processed ghost-free image, respectively. Columns (c,d) are the synthetic images
constructed from the initial SC and optimized 3-D models, respectively. We can readily
confirm that the consistency within the object region in the data and synthetic images
improves in almost all views after optimization. The same conclusions are drawn from
the results for the second coral rock in Figure 11 and the wood table images in Figure 12
(despite the lower 3-D reconstruction accuracy of the optimized solution).

pos 1
rot −67.5◦

pos 1
rot 45◦

pos 1
rot 67.5◦

pos 2
rot −90◦

pos 2
rot −67.5◦

pos 2
rot 45◦

(a) (b) (c) (d)
Figure 10. Coral-one experiment—(a) data; (b) data over image region only; (c) initial and (d) opti-
mized synthetic view generated by the 3-D model.
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pos 1
rot −90◦

pos 1
rot −45◦

pos 1
rot 45◦

pos 2
rot −67.5◦

pos 2
rot −45◦

pos 2
rot 45◦

(a) (b) (c) (d)
Figure 11. Coral-two experiment—(a) data; (b) data over image region only; (c) initial and (d) opti-
mized synthetic view generated by the 3-D model.
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pos 1
rot −90◦

pos 1
rot −67.5◦

pos 2
rot −90◦

pos 2
rot −45◦

pos 3
rot −67.5◦

pos 4
rot −45◦

pos 4
rot 45◦

(a) (b) (c) (d)

Figure 12. Wood table experiment—(a) data; (b) data within object region only; (c) initial and
(d) optimized synthetic view generated by the 3-D model.

Sample sonar images at zero and ±22.5◦ roll angles (which are not used in the opti-
mization) are found in Figures 13 and 14. Here, results in the last column can be treated as
synthetic views at new arbitrary sonar poses and can be compared with the ghost-free data
in column (b) to assess accuracy in the presence of unmodeled environmental factors (of
the original data).
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pos 1
rot −22.5◦

pos 1
rot 0◦

pos 2
rot 0◦

(a1) (b1) (c1) (d1)

pos 1
rot −22.5◦

pos 1
rot 0◦

pos 1
rot 22.5◦

(a2) (b2) (c2) (d2)

Figure 13. Sets of images as in previous experiments for (a1–d1) coral-one and (a2–d2) coral-two views,
in which object, ghost, and mirror components overlap (not used in the optimization). (a1,a2) data;
(b1,b2) data within object region only; (c1,c2) initial and (d1,d2) optimized synthetic view generated
by the 3-D model.
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pos 1
rot −22.5◦

pos 1
rot 22.5◦

pos 2
rot 0◦

pos 2
rot 22.5◦

pos 3
rot 22.5◦

pos 4
rot −22.5◦

pos 4
rot 0◦

(a) (b) (c) (d)

Figure 14. Sets of wood table images as in previous figures for views in which object, ghost, and
mirror components overlap (not used in optimization process). (a) data; (b) data within object region
only; (c) initial and (d) optimized synthetic view generated by the 3-D model.

4. Conclusions

In this work, we address the reconstruction of a 3-D object model from 2-D FSS images
at known poses, with multipath propagation due to sea surface reflectance. To this end, we
propose a unified optimization framework to improve the accuracy of the two key sonar
pose parameters (measured by low-cost sensors) and the 3-D model. Embedded in the
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approach to localize and remove the ghost images formed by multipath is the generation of
synthetic views from the estimated 3-D object model based on the environmental conditions.
This has a number of applications, including the generation of a large volume of training
data under a variety of environmental conditions for object recognition. Moreover, a LUT
is generated from the distributions of object intensities within the non-overlap region in the
real and synthetic images and utilized in generating the object within the ghost-corrupted
overlap region.

The targets in three experiments with synthetic and real data are two dominantly
convex coral rocks and a concave toy wood table. Assuming the same setup as for the real
data, computer simulations with synthetic data highlight the accuracy and convergence
in 10 or fewer iterations of the estimated pose parameters and the 3-D target model.
Comparable performances are achieved in experiments with real data.

The results of the wood table experiment demonstrate the applicability of our method
in constructing shapes with deep concavities, albeit at lower accuracy. Here, the primary
complexity is the inability to account for the shape-dependent multipath without a priori
knowledge of the target shape. The multipath reverberations from object surfaces within
concavities lead to the thickened appearances of object parts. To decouple the direct and
multipath components, we require knowledge of the unknown 3-D object model. This
poses a chicken-and-egg problem, which is faced by most other methods for 3-D object
reconstruction from FSS imagery. Aside from collecting a much larger volume of data from
different poses looking into concavities at close ranges, further investigation is needed for
devising a suitable mechanism to accurately account for the multipath generated by the
surface patches within concavities.
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