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Abstract: To overcome the problems of the high sidelobe levels and low computational efficiency
of traditional Capon-based beamformers in optimizing the two-dimensional (elevation–azimuth)
beampatterns of conformal arrays, in this paper, we propose a robust Capon beamforming method
with sparse group constraints that is solved using the alternating-direction method of multipliers
(ADMM). A robustness constraint based on worst-case performance optimization (WCPO) is imposed
on the standard Capon beamformer (SCB) and then the sparse group constraints are applied to
reduce the sidelobe level. The constraints are two sparsity constraints: the group one and the
individual one. The former was developed to exploit the sparsity between groups based on the
fact that the sidelobe can be divided into several different groups according to spatial regions in
two-dimensional beampatterns, rather than different individual points in one-dimensional (azimuth-
only) beampatterns. The latter is considered to emphasize the sparsity within groups. To solve
the optimization problem, we introduce the ADMM to obtain the closed-form solution iteratively,
which requires less computational complexity than the existing methods, such as second-order cone
programming (SOCP). Numerical examples show that the proposed method can achieve flexible
sidelobe-level control, and it is still effective in the case of steering vector mismatch.

Keywords: robust Capon beamforming (RCB); sparse group constraints; alternating-direction method
of multipliers (ADMM); two-dimensional beampatterns

1. Introduction

In the past decades, conformal arrays have been widely used in sonars [1–3] and
radars [4,5] because they improve the dynamic characters of vehicles and offer three-
dimensional observation. The core function of conformal arrays is beamforming, which
performs weighted summation on the received data of arrays to suppress noise and inter-
ference [6], improving the postprocessing performance in applications such as detection [7].
The beampattern can evaluate the performance of the spatial filtering of the beamforming,
which is worthy of proper design. Unlike the azimuth-only beampatterns of linear and
circular arrays, the beamformers of conformal arrays can be steered at an arbitrary spatial
angle without the direction ambiguity found in elevation–azimuth beampatterns, which
has attracted much attention in relevant fields.However, the implementation of the beam-
forming of conformal arrays is more difficult than for other arrays due to the complexity of
their array geometry and computation. Up to now, beamforming algorithms have been
mainly applied to linear and circular arrays, so the study of the beamforming of conformal
arrays is urgently needed.

Among the many beamfomers, theoretically, the Capon beamformer [8] can adap-
tively suppress interference and minimize the output noise power while maintaining the
distortionless response of the desired signal. However, a Capon beamformer often suffers
from severe performance degradation in practical applications, which is mainly caused by
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various types of steering vector (SV) mismatch. This SV mismatch not only causes signal
self-cancellation in the mainlobe, but it also leads to an intolerable increase in the sidelobe
level (SLL). Several approaches have been developed to improve robustness against SV
mismatch. The diagonal loading technique (DL) [9] is adopted to alleviate the imperfect
information in the covariance matrix of training data. To determine the diagonal loading
factor reasonably, a series of algorithms based on uncertainty sets of SVs have been pro-
posed, such as worst-case performance optimization (WCPO) [10,11] and robust Capon
beamforming (RCB) [12]. On this basis, several approaches to synthesizing beampatterns
with robust sidelobe control [13,14] have been developed.

Even if the problem of SV mismatch has been resolved, the inherent SLL of the beam-
patterns of conformal arrays is still too high to meet practical requirements, being restricted
by geometry [15], aperture [16], and other factors [17]. It is necessary to artificially impose
constraints to further optimize the SLL of the beampattern. Sidelobe control algorithms
based on adaptive array theory [18,19] can be applied to arbitrary geometry arrays by
adding virtual interference in the sidelobe region to reduce the SLL of the beampattern.
The drawbacks of these algorithms are that the convergence is highly reliant on the iter-
ation gain and that there is no clear criterion to determine the mainlobe region in each
iteration.To reduce the computational complexity and improve flexibility, accurate array re-
sponse control algorithms [20–22] have been developed; these are able to control multipoint
responses simultaneously using closed-form solutions. For the design of two-dimensional
(2D) beampatterns of conformal arrays, increased constraints in the sidelobe region reduce
the degree of freedom of the beamformer, and a higher amount of computation is con-
sumed. Consequently, finding a principle to reduce the SLL with as few constraints as
possible has become an important issue. One method is to use the concept of the sparsity
constraint [23], which refers to the requirement that the vector being sought or optimized
must have as few non-zero entries as possible. Recently, this has been used for sidelobe
suppression [24–26], and it was shown to be flexible and effective for the adjustment of
the SLL and increased robustness. The sidelobes in azimuth-only beampatterns can be
discretized into different single directions, and l1 regularization [27] is usually employed to
achieve individual sparsity. The sidelobes in 2D beampatterns can be further divided into
block-regions composed of local directions, which suggests that group sparsity [28] with
l2,1 regularization is more appropriate for describing the features of the sidelobes in 2D
beampatterns than individual sparsity. Up until now, group sparsity has not been utilized
in beampattern optimization.

Besides the above problems, computational complexity is another important issue in
the study of 2D beampattern optimization with conformal arrays. The number of spatial
angles scanned using the elevation–azimuth beampattern of conformal arrays increases
exponentially compared with that scanned using the azimuth-only beampattern of linear
or circular arrays; hence, the design of 2D beampatterns entails a high computational cost.
The algorithms in Refs. [10,12,13,24–26] can be easily transformed into the form of either
second-order cone programming (SOCP) or semidefinite programming (SDP), followed
by the use of software packages such as CVX [29]. The interior-point method used in CVX
suffers from a high computational burden, so it is not applicable in the scenario of 2D
beampattern optimization. To alleviate the complexity arising from additional computation,
recently, the alternating-direction method of multipliers (ADMM) [30] has attracted much
attention and has been applied to RCB [31] and beampattern synthesis [32–36], as well
as other areas of signal processing [37,38]. The ADMM decouples the global problem
into several more local subproblems that are easier to solve, and it obtains the solution
of the global problem by coordinating the solutions to the subproblems. Benefiting from
fast processing and good convergence, it is suitable for solving large-scale beamforming
optimization problems. However, ADMM has not been exploited to solve the optimization
problem of a 2D beampattern with sparsity constraints.

This paper is dedicated to the 2D beampattern optimization problem of a Capon
beamformer with conformal arrays. We developed a robust Capon beamformer utilizing
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sparse group constraints that can reduce the SLL flexibly and achieve a robustness of
interference suppression in the case of the SV mismatch. We first explore the properties of
the 2D beampattern, introducing the group sparsity constraints [39] into the optimization
problem, which forms the sparse group constraints together with the individual sparsity
constraint. Based on the RCB, the sparse group-constrained robust Capon beamformer (SG-
RCB) is then proposed. In order to reduce the computational complexity of the SG-RCB, the
ADMM is employed to determine its weight vector. The optimization problem of the SG-
RCB is divided into two independent subproblems with the help of a generalized sidelobe
canceler (GSC) [40]; one is the WCPO, used to obtain the SV of the desired signal, and the
other is the sparse group least absolute shrinkage and selection operator (SGLASSO) [41],
used to solve adaptive weight in the GSC. Combining the solutions of the two subproblems,
the weight vector is derived in closed form. We show that the proposed beamformer can
dramatically reduce the SLL of the 2D beampattern without requiring heavy computational
cost, which is significant in practical applications.

The rest of the paper is organized as follows. In Section 2, we review the signal model
and concepts on the Capon beamforming and beampatterns. In Section 3, the RCB with
sparse group constraints is proposed. In Section 4, the ADMM is introduced to solve the
optimization problem of the SG-RCB. In Section 5, we demonstrate the improvement of the
proposed method on the 2D beampattern of a conformal array. In Section 6, conclusions
are drawn.

Notation 1. Let us denote matrices and vectors as bold upper-case and lower-case letters, respec-

tively. In particular, 1 denotes an array of all ones and I stands for the identity matrix. j
△
=
√
−1.

R and C denote the sets of real and complex numbers, respectively. ℜ(·) and ℑ(·) are the real
part and imaginary part of the argument, respectively. The superscripts (·)T and (·)H denote the
transpose operator and the conjugate-transpose operator, respectively. ∥·∥p denotes the lp norm of
the input vector (p = 0, 1, 2). P(·) is the principle component of the input matrix.

2. Problem Formulation
2.1. Signal Model

Consider an array with an arbitrary configuration composed of identical M omnidi-
rectional hydrophones. The m hydrophone’s position in the three-dimensional Cartesian
coordinate system is represented as

pm = (px, py, pz)
T = [rm sin θm cos ϕm, rm sin θm sin ϕm, rm cos θm]

T (1)

where
rm: the length of the mth hydrophone’s radius vector.
(θm, ϕm): the elevation and azimuth angles of the m hydrophone, respectively.
Suppose that a source in the farfield is in the direction of (θ, ϕ) where θ ∈ [0, π] and

ϕ ∈ [0, π]. The SV of the plane wave of this source is defined as

a(k, θ, ϕ) =
[
e−jkTp1 , e−jkTp2 , · · · , e−jkTpM

]T
(2)

where k =
2π f

c
· [sin θ cos ϕ, sin θ sin ϕ, cos θ]T represents the wave number of the plane

wave, where f is the frequency and c is the speed of sound.
As shown in Figure 1, suppose there are D far-field narrowband uncorrelated signals

(plane waves) impinging on the array, one of which is the desired signal while the other
D− 1 are interferences. The signals received by the array can be written as [6]

y(t) = a0s0(t) +
D−1

∑
d=1

adsd(t) + n(t) (3)
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where
t: the arbitrary sampling time.
y(t) ∈ CM×1: the received data sampled by the array.
a0: the actual SV of the desired signal.
ad: the SV of the dth interference.
s0(t): the wavefront of the desired signal.
sd(t): the wavefront of the dth interference.
n(t): the zero-mean Gaussian white noise, representing additive noise in the environ-

ment received by the array.

Figure 1. Illustration of the array with arbitrary geometry, in which (θ0, ϕ0) is the incidence angle of
the desired signal and (θd, ϕd) is the incidence angle of the dth interference.

Assuming that the desired signal, interferences, and noise are uncorrelated with each
other, the noise on each hydrophone is also uncorrelated. The covariance matrix of y(t) is
given as

Ry = E
[
y(t)yH(t)

]
= Rs + Rint+n

= σ2
s a0aH

0 +

(
D−1

∑
d=1

σ2
d adaH

d + σ2
n I

) (4)

where
E[·]: the statistical expectation.
Rs = σ2

s a0aH
0 : the covariance matrix of the desired signal.

Rint+n = ∑D−1
d=1 σ2

d adaH
d + σ2

n I: the covariance interference-plus-noise matrix.
σ2

n I: the covariance matrix of the Gaussian white noise.
σ2

s : the power of the desired signal.
σ2

d : the power of the dth interference.
σ2

n: the power of noise.
The signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) of the dth interfer-

ence are defined as [6], respectively, σ2
s /σ2

n and σ2
d /σ2

n. In practice, the covariance matrix of
y(t) is estimated with a finite number of samples. The sample covariance matrix of y(t) is
written as

R̂ =
1
L

L

∑
t=1

y(t)yH(t) (5)

where L denotes the sample size.
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2.2. The Two-Dimensional Beampattern

Beamforming is a technique of weighted summation of the received signals to obtain
the beam output of the array [6]. The output of the beamformer is

p = wHy(t) (6)

where w ∈ CM×1 denotes the weight vector of the beamformer.
The beampattern is an important measurement to evaluate the performance of the

beamformer, which describes the response of the beamformer to a signal impinging on the
array in the direction of (θ, ϕ). The response is defined as

b(θ, ϕ) = wHa(θ, ϕ) (7)

For symmetric configuration arrays such as uniform linear arrays (ULA), the beam-
former can be only steered in the azimuth. The resulting beampattern is mathematically
represented as a one-dimensional vector b

(
θ, ϕ1:Nϕ

)
=
[
b(θ, ϕ1), b(θ, ϕ2), · · · , b

(
θ, ϕNϕ

)]
,

where Nϕ is the number of scanning points in the azimuth (as shown in Figure 2a).

(a)

(b)

Figure 2. Implementation of (a) one-dimensional (azimuth-only) beampatterns; (b) 2D beampat-
terns. The arrows in blue represent the reshaping operation and the arrows in black represent the
beamforming operation.

As a result, it can not be employed in applications where full beam steering in
three-dimensional space is needed. Arrays similar to that shown in Figure 1 offer three-
dimensional steering of the beamformer, which is defined as the elevation–azimuth steering
in the coordinate system. The resulting beampattern is mathematically represented as a
two-dimensional matrix (as shown in Figure 2b).

B(θ, ϕ) =
[
bT
(

θ1, ϕ1:Nϕ

)
, bT
(

θ2, ϕ1:Nϕ

)
, · · · , bT

(
θNθ

, ϕ1:Nϕ

)]T
(8)
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where Nθ is the number of scanning points in the elevation. It can be seen from Figure 2
that a beampattern is derived by solving a weight vector w.

2.3. Capon-Based Beamforming

The standard Capon beamformer (SCB) minimizes the output power of the interference-
plus-noise under the distortionless constraint of the desired signal. Then, the w of the SCB
is obtained by solving the following optimization problem:

min
w

wH Rint+nw, s.t. wHa0 = 1 (9)

In practice, the Rint+n is often unavailable and replaced with the sample covariance
matrix R̂. Substituting R̂ into (9), the solution to (9) is given by

wSCB =
R̂−1a0

aH
0 R̂−1a0

(10)

The SCB should achieve the optimal performance if the covariance matrix and steering
vector are accurately known. In practical scenarios, the estimated matrix R̂ carries imprecise
knowledge of the real one, leading to an increase in the SLL of the beampattern and affecting
its suppression ability. There exists a mismatch between the presumed steering vector and
the actual one; the beampattern of the SCB rejects the desired signal as interference and
suffers robustness degradation.

When there is a mismatch between the presumed SV and the actual one (denoted as
ã), an improved Capon beamformer against the SV mismatch can be designed by

min
w

wH R̂w

s.t. aH
0 w− 1 ≥ ε0∥w∥2

(11)

where ε0 specifies the uncertainty level of the norm of difference between the actual SV
and the presumed one. The optimization problem (11) is well known as WCPO [10], which
has been proven to be a diagonal loading method [9]. The weight vector of the WCPO
improves the robustness of the SCB to a certain extent, but the 2D beampattern’s SLL of the
WCPO is still high.

It can be seen from Figure 2 that the implementation of the 2D beampattern is more
complex and computationally intensive than that of the one-dimensional beampattern in
the past. Based on (11), the objective of beamforming in this paper is to find a weight vector
w through a computational efficient algorithm, such that it can reduce the SLL of the 2D
beampattern on the basis of maintaining robustness.

3. The Proposed Robust Capon Beamformer with Sparse Group Constraints
3.1. Individual Sparsity Constraint

The sidelobe control is an important task of beampattern optimization. For the desired
beampattern, we hope that the SLL is as low as possible to suppress noise and interference.
Now, we consider the fact that the mainlobe region is much smaller than the sidelobe region
in the spatial domain, and the average beam response of the mainlobe is much higher than
that of the sidelobe. Therefore, the beam response of the 2D beampattern has the property
of sparsity distribution, that is, the values of the responses in the mainlobe are far greater
than zero, and the rest is equal or approximate to zero. The sparsity constraint is introduced
to reduce the SLL based on (11), and the optimization problem (11) is rewritten as

min
w

wH R̂w + λ1

∥∥∥AH
SLw

∥∥∥
1

s.t. aH
0 w− 1 ≥ ε0∥w∥2

(12)
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where
λ1: the individual sparse parameter that is usually determined empirically.
ASL: the array manifold matrix of the sidelobe region.
Mathematically, l1 norm regularization is adopted to describe the sparsity constraint.

The smaller the l1 norm of the beam response in the sidelobe region, the lower the SLL
of the 2D beampattern. The objective function in (12) is a remarkable model called the
least absolute shrinkage and selection operator (LASSO) [42] , and (12) is called the robust
Capon beamforming with a sparse constraint (S-RCB). The constraint in (12) assumes that
the elements in the constrained vector are independent of each other. Such constraint
emphasizes controlling each beam response individually in sidelobe region, which meets
the condition of the design of the one-dimensional (or azimuth-only) beampattern. This
sparsity can be further subdivided into individual sparsity.

3.2. Group Sparsity Constraint

Compared with one-dimensional beampatterns, the property of the sidelobe region of
2D beampatterns is changed. Figure 3 shows the sketch of a 2D beampattern, and we will
interpret this property in combination with it.

Figure 3. Sketch of the top view of a 2D beampattern.

In Figure 3, we assume that the ordinate is the elevation and the abscissa is the azimuth,
both of which are discretized into several scanning points (the number of scanning points is
Nθ and Nϕ, respectively). Any set of coordinates on the two-dimensional grid determines
one direction of the spatial angles. A complete 2D beampattern is composed of the beam
responses in all scanned directions.

Interference can be properly suppressed without errors according to the nature of
Capon beamforming. If the errors are considered, the directions of the interference esti-
mated from the sample covariance matrix are disturbed, which are too “small” to identify
on the whole grid plane. In order to improve the tolerance of interference suppression, the
interference directions are expanded into small areas centered on the presumed interference
directions (black regions in Figure 3). The sidelobe region can be further divided into
normal sidelobe regions (green regions in Figure 3) and regions adjacent to the interferences
(blue regions in Figure 3) due to the presence of interference.

The sidelobe regions of a 2D beampattern can be briefly divided into the three types
mentioned above. The beam responses within each region have approximately the same
design requirements, while regions are independent due to their different locations. We
hope that the beam responses in the interference regions are lowest in the beampattern. At
the same time, the beam responses of the regions adjacent to the interferences should be
lower than the normal regions to improve the robustness of interference suppression and
the display effect of the beampattern.

Combining the above with the introduction of Figure 3, it can be concluded that
the sidelobe of the 2D beampattern is expected to have “regional sparsity” in addition
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to individual sparsity, and the object subject to sparsity constraints is expanded from
a single azimuth to a region composed of multiple spatial angles. Mathematically, this
“regional sparsity” is defined as group sparsity [28], which acts like the individual sparsity
at the group level. Replacing the individual sparsity in (12) with the group sparsity, the
optimization problem (12) is rewritten as

min
w

wH R̂w + λ2

Q

∑
q=1

√
nq ·

∥∥∥AH
q w
∥∥∥

2

s.t. aHw− 1 ≥ ε0∥w∥2

(13)

where
λ2: the parameter of group sparsity that is usually determined empirically.
Aq: the qth array manifold matrix of ASL, i.e., ASL =

[
A1, A2, · · · , Aq, · · · , AQ

]T ,
where Q is the number of sidelobe regions.

nq: the regional sparsity parameter of the qth sidelobe region, and we define nQ =[
n1, n2, · · · , nq, · · · , nQ

]T .
The l2,1 norm is introduced in (13), which is a rotational invariant of the l1 norm [43]

and defined as

∥x∥2,1 =
Q

∑
q=1

∥∥xq
∥∥

2 (14)

where x =
[
x1, x2, · · · , xq, · · · , xQ

]T . The l2,1 norm in (13) represents the l1 norm of beam
responses of the Q sidelobe regions. Therefore, the sparse constraint in (13) is applied to
sidelobe regions rather than directions of spatial angles. The objective function in (13) is
called the group LASSO (G-LASSO) model [44], based on the LASSO. When nq = 1 and
Q = NSL = Nθ · Nϕ, (13) is equivalent to (12). Equation (13) is called the robust Capon
beamforming with a sparse group constraint (G-RCB).

3.3. Robust Capon Beamforming with Sparse Group Constraints (SG-RCB)

Combining (12) and (13), the optimization problem of the 2D beampattern with both
sparsity constraints in this paper is finally given by

min
w

wH R̂w + λ1

∥∥∥AH
SLw

∥∥∥
1
+ λ2

Q

∑
q=1

√
nq ·

∥∥∥AH
q w
∥∥∥

2

s.t. aHw− 1 ≥ ε0∥w∥2

(15)

The objective function in (15) is called the sparse group LASSO (SG-LASSO) model [41],
which takes advantage of the sparsity at both the group and individual level within groups
in the 2D beampattern. Now, we finally refer to the method of 2D beampattern optimization
as the robust Capon beamforming with the sparse group constraints (SG-RCB), which can
be seen as a generalization of the S-RCB(λ2 = 0) and G-RCB(λ1 = 0). Optimization
problems like (12), (13), and (15) are usually solved by convex optimization toolboxes
utilizing the interior-point method (IPM). In this paper, the ADMM framework is adopted
to obtain iterative solutions with lower computational complexity that are suitable for
large-element array processing.

4. The Solution of the SG-RCB via ADMM
4.1. The Generalized Sidelobe Canceler

To simplify the process of solving the optimization problem (15), first we introduce
the GSC. The weight vector to be solved in (15) is written as

w = ã/M−Ug (16)
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where ã represents the actual steering vector and is also the unadaptive weight in the GSC;
g is called the adaptive weight of the GSC; U ∈ CM×(M−1) represents the block matrix,
which is a semi-unitary matrix orthogonal to ã, i.e., UHU = I and UH ã = 0. Here, U is
selected as the principal component of P⊥ã : U = P

(
P⊥ã
)

, where P⊥ã = I − ã
(
ãH ã

)−1ãH .
The structure of the GSC is shown in Figure 4.

Figure 4. Structure of the SG-RCB based on GSC.

Substituting (16) into (15), (15) is rewritten as

min
ã,g

1
2

∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥2

2

+ λ1

∥∥∥AH
SLã/M− AH

SLUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·

∥∥∥AH
q ã/M− AH

q Ug
∥∥∥

2

s.t. aH ã/M− aHUg − 1 ≥ ε0∥ã/M−Ug∥2

(17)

Combining (16) and (17) with Figure 4, the following corollaries can be drawn:

Corollary 1. The value of ã essentially depends on the source, propagation environment, and
physical feature of the array. Assuming that they remain unchanged in the problem, once ã is
determined, it remains unchanged in the whole optimization problem, and so does U. Therefore, the
solving process of ã is independent to that of g and the sparsity constraints, and ã can be solved by
transforming WCPO into RCB [12].

Corollary 2. The GSC appropriately adjusts g according to the received data and constraints to
meet the design requirements. Combined with Figure 4 and Corollary 1, it can be seen that the
sparsity constraint can only affect the value of g.

Corollary 3. The bottom branch of the GSC is to suppress noise and interference in the received
data according to the nature of the Capon beamformer. Combining Corollary 1, Corollary 2, and
Figure 4, it can be seen that the influence of the robustness constraint on the value of g is fixed once
the values of ã and U are known; that is to say, the robustness constraint only affects the value of g
through the quadratic term of the objective function in (15) or (17).

Corollary 4. Based on Corollary 1–Corollary 3, the unadaptive weight and the adaptive weight are
orthogonal and can be solved independently because ãHUg = 0.

Although ã and g are coupled in (17), due to the separable structure of the GSC,
the optimization problem (17) can be divided into two independent subproblems, one
for solving ã and the other for solving g, which can be efficiently executed through the
ADMM framework.
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4.2. Subproblem One: Solve ã Using the ADMM-RCB

Ignoring the sparse constraints, (17) is simplified to the WCPO of (11). The WCPO is
equivalently written as

min
ã

ãH R̂−1ã

s.t. ∥ã− a∥2
2 ≤ ε2

0

(18)

Let us define the steering vector and the sample covariance matrix in real domain:

a =
[
ℜ
(

aT
)

,ℑ
(

aT
)]T

(19)

ã =
[
ℜ
(

ãT
)

,ℑ
(

ãT
)]T

(20)

R̂−1
=

 ℜ(R̂−1
)
−ℑ

(
R̂−1

)
ℑ
(

R̂−1
)
ℜ
(

R̂−1
)  (21)

where a, ã ∈ R2M×1 and R̂−1 ∈ R2M×2M.
Let δ = ã− a. Constructing the auxiliary variable z and substituting (19)–(21) into

(18), (18) is rewritten as

min
δ

δH R̂−1
δ + δH R̂−1a + aH R̂−1

δ + aH R̂−1a

s.t. δ = z

∥z∥2
2 ≤ ε2

0

(22)

The augmented Lagrangian function (ALM) corresponding to (22) is

Lρ(δ, z, u) = δH R̂−1
δ + δH R̂−1a + aH R̂−1

δ + uH(δ− z) +
ρ

2
∥δ− z∥2

2 (23)

where
u: Lagrangian multiplier.
ρ: penalty factor.
The ADMM fixes the remaining variables to remain unchanged when updating a vari-

able in one iteration, iterating the unknown variables in the objective function alternately
until all variables converge. One iteration is as follows:

Step 1: Updating δ.

δ(k+1) = argmin
δ

Lρ

(
δ, z(k), u(k)

)
(24)

Step 2: Updating z.

z(k+1) = argmin
z
Lρ

(
δ(k+1), z, u(k)

)
s.t. ∥z∥2

2 ≤ ε2
0

(25)

Step 3: Updating u.

u(k+1) = argmin
u
Lρ

(
δ(k+1), z(k+1), u

)
(26)

where k denotes iterations. The specific process of each step is described below.
Step 1: Updating δ.
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In iteration k + 1, let the partial derivative of Lρ(δ, z(k), u(k)) with respect to δ equal to
zero. Then, δ in iteration k + 1 is obtained:

δ(k+1) =

(
R̂−1

+
ρ

2
I
)−1(ρ

2
z(k) − u(k) − R̂−1a

)
(27)

Step 2: Updating z.
In the (k + 1)th iteration, we ignore the terms unrelated to z and write the ALM

corresponding to (25):

Lz =
(

u(k)
)H(

δ(k+1) − z(k)
)
+

ρ

2

∥∥∥δ(k+1) − z(k)
∥∥∥2

2
+ λ

[(
z(k)

)H
z(k) − ε2

0

]
(28)

Let
∂Lz

∂z
= 0 The updated z in iteration k + 1 is then derived by

z(k+1)
i =

u(k)
i + ρ/2
λ + ρ/2

(29)

where zi is the ith element of z(k+1).

If
∥∥∥z(k+1)

∥∥∥2

2
< ε2

0, the inequality constraint in (25) is not activated, and the obtained

z(k+1) is a solution that satisfies (25). On the contrary, the value of
∥∥∥z(k+1)

∥∥∥2

2
is obtained on

the boundary of the inequality constraint, i.e.,
∥∥∥z(k+1)

∥∥∥2

2
= ε2

0, and substituting it into (28)

to obtain λ, the updated zi in z in the (k + 1)th iteration can be represented by

z(k+1)
i = ε0 ·

(
u(k)

i +
ρ

2
δ
(k+1)
i

)/∥∥∥u(k)
i +

ρ

2
δ
(k+1)
i

∥∥∥
2

(30)

Step 3: Updating u.

Let
∂Lρ

(
δ(k+1), z(k+1), u

)
∂u

= 0. The updated u in the (k+ 1)th iteration is then derived
as

u(k+1) = u(k) + ρ(δ(k+1) − z(k+1)) (31)

In the ADMM of subproblem one, steps 1–3 are alternately cycled until the following
two termination conditions are met simultaneously:

eprimal =
∥∥∥δ(k+1) − z(k+1)

∥∥∥
2
≤ ζ primal

edual =
∥∥∥z(k+1) − z(k)

∥∥∥
2
≤ ζdual

(32)

where ζ primal > 0 and ζdual > 0 are the tolerances of the feasibility conditions, respectively,
and ”primary” and ”dual” refer to the primal feasibility and the dual feasibility, respectively.
Their values are determined jointly by the absolute tolerance and the relative tolerance [30].
The complex solution of subproblem one is finally obtained according to the relationship
shown in (19) and (20):

ã = a + δ(1 : M) + j · δ(M + 1 : 2M) (33)

U is also determined with ã derived. The algorithm of solving subproblem one is called
the robust Capon beamforming based on the alternating-direction method of multipliers,
abbreviated as the ADMM-RCB and summarized in Algorithm 1.



Remote Sens. 2024, 16, 421 12 of 27

Algorithm 1 : ADMM-RCB

Input: the sample covariance matrix R̂, the presumed SV of the desired signal a, and the
uncertainty level ε0;

Output: the actual SV of the desired signal ã;

1: Perform the eigenvalue-decomposition of R̂ and obtain R̂−1, a, and ã defined by
(19)–(21);

2: Let δ = ã− a and initialize δ, z and u;
3: while eprimal > ζ primal or edual > ζdual do
4: Update δ(k+1) by (27);
5: Update z(k+1)

i in z(k+1) by (30);
6: Update u(k+1) by (31);
7: k← k + 1;
8: end while

4.3. Subproblem Two: Solve g Using the ADMM-SGLASSO

When ã and U have been solved, (17) can be simplified as the standard SGLASSO:

min
g

1
2

∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥2

2

+ λ1

∥∥∥AH
SLã/M− AH

SLUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·

∥∥∥AH
q ã/M− AH

q Ug
∥∥∥

2

(34)

We now define the following real variables:

g =
[
ℜ
(

gT
)

,ℑ
(

gT
)]T

(35)

U =

[
ℜ(U) −ℑ(U)
ℑ(U) ℜ(U)

]
(36)

ASL =

[
ℜ(ASL) −ℑ(ASL)
ℑ(ASL) ℜ(ASL)

]
(37)

where g ∈ R(2M−2)×1, U ∈ R2M×(2M−2), and ASL ∈ R2M×2NSL . By substituting (20), (21),
and (35)–(37) into (34), it can be rewritten as

min
g,r

1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1

∥∥∥ASL
H ã/M− ASL

HUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·

∥∥rq
∥∥

2

s.t. ASL
H ã/M− ASL

HUg = r

(38)

where R̂1/2 is derived by substituting R̂1/2 into (21), r =
[
rT

1 , rT
2 , · · · , rT

q , · · · , rT
Q

]T
repre-

sents the auxiliary variable, and rq is the qth group of auxiliary variables, which corresponds
to the beam responses of each spatial angle in the qth sidelobe region. The ALM corre-
sponding to (38) is written as follows:

Lρ(g, r, u0) =
1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1

∥∥∥ASL
H ã/M− ASL

HUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·

∥∥rq
∥∥

2

+ uH
0

(
ASL

H ã/M− ASL
HUg − r

)
+

ρ

2

∥∥∥ASL
H ã/M− ASL

HUg − r
∥∥∥2

2

(39)

where u0 is the Lagrange multiplier. One iteration of the subproblem two is as follows:
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Step 1: Updating g.

g(k+1) = argmin
g
Lρ

(
g, r(k), u(k)

0

)
(40)

Step 2: Updating r.

r(k+1) = argmin
r
Lρ

(
g(k+1), r, u(k)

0

)
(41)

Step 3: Updating u0.

u(k+1)
0 = argmin

u0

Lρ

(
g(k+1), r(k+1), u0

)
(42)

The specific process of each step is described below:
Step 1: Updating g.
Constructing the auxiliary variable z, in the (k + 1)th iteration, (40) can be equivalently

expressed as

g(k+1) = argmin
g
Lρ

(
g, r(k), u(k)

0

)
, s.t. ASL

H ã/M− ASL
HUg = z (43)

which can also be iteratively solved by the ADMM. The ALM corresponding to (43) is

Lρ

(
g, r(k), u(k)

0 , z, u1

)
=

1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1∥z∥1

+
[
u(k)

0 + u1

]H(
ASL

H ã/M− ASL
HUg

)
−
[
u(k)

0

]H
r(k) − uH

1 z

+
ρ

2

[∥∥∥ASL
H ã/M− ASL

HUg − r(k)
∥∥∥2

2
+
∥∥∥ASL

H ã/M− ASL
HUg − z

∥∥∥2

2

] (44)

where u1 is the Lagrange multiplier. For step 1, r(k) and u(k)
0 are regarded as constants, and

g, z, and u1 are the variables that need to be iteratively solved. This is similar to subproblem
two; step 1 in subproblem two can be solved by the ADMM as follows:

Substep 1.1: Updating g.

g
(

k
′
+1
)
= argmin

g
Lρ

(
g, r(k), u(k)

0 , z
(

k
′)

, u

(
k
′)

1

)
(45)

Substep 1.2: Updating z.

z
(

k
′
+1
)
= argmin

z
Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z, u

(
k
′)

1

)
(46)

Substep 1.3: Updating u1.

u

(
k
′
+1
)

1 = argmin
u1

Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z

(
k
′
+1
)

, u1

)
(47)

where k
′

denotes the iterations in step 1. The following describes the specific process:
Substep 1.1: Updating g.
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In the (k
′
+ 1)th iteration, by taking the partial derivative of the ALM in (45) with

respect to g and then making it zero, the expression of g
(

k
′
+1
)

is derived as

g
(

k
′
+1
)
= Q−1b

(
k
′)

(48)

where
Q =

[
2UH

(
R̂ + ρASL ASL

H
)

U
]

(49)

b
(

k
′)

= 2UH R̂ã/M + ρUH ASL

[
2ASL

H ã/M +

(
u(k)

0 + u

(
k
′)

1

)/
ρ− r(k) − z

(
k
′)]

(50)

where R̂ is in the real form of R̂.
Substep 1.2: Updating z.
In the (k

′
+ 1)th iteration, ignoring terms unrelated to z, (46) is written as

z
(

k
′
+1
)
= argmin

z
Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z, u

(
k
′)

1

)

= argmin
z

2λ1

ρ
∥z∥1 +

∥∥∥∥∥z−
(

u

(
k
′)

1 /ρ + ASL
H ã/M− ASL

HUg
(

k
′
+1
))∥∥∥∥∥

2

2

 (51)

Let t
(

k
′)

= u

(
k
′)

1 /ρ + ASL
H ã/M − ASL

HUg
(

k
′
+1
)

. The last row of (51) is the proximal

mapping of t
(

k
′)

. For a given t
(

k
′)

, the elements in z
(

k
′
+1
)

can be expressed by soft
thresholding as

z

(
k
′
+1
)

i = Sλ1/ρ

[
t

(
k
′)

i

]
=


t

(
k
′)

i − λ1/ρ t

(
k
′)

i > λ1/ρ

0

∣∣∣∣∣t
(

k
′)

i

∣∣∣∣∣ ≤ λ1/ρ

t

(
k
′)

i + λ1/ρ t

(
k
′)

i < −λ1/ρ

(52)

where Sλ1/ρ

[
t

(
k
′)

i

]
represents the soft thresholding operator, the diagram of which is

shown in Figure 5a. It can be seen from Figure 5a that the operator performs a “zero” on
some elements of the argument, thereby satisfying the sparsity constraint.

Substep 1.3: Updating u1.
Let the partial derivative of the ALM regarding u1 in (47) be zero. Then, u1 in the

(k + 1)th iteration is derived as

u

(
k
′
+1
)

1 = u

(
k
′)

1 + ρ

(
ASL

H ã/M− ASL
HUg

(
k
′
+1
)
− z

(
k
′
+1
))

(53)

Substeps 1.1 to 1.3 are alternately cycled until both of the following iteration termina-
tion conditions are met:

eprimal =

∥∥∥∥ASL
H ã/M− ASL

HUg
(

k
′
+1
)
− z

(
k
′
+1
)∥∥∥∥

2
≤ ηprimal

edual =

∥∥∥∥z
(

k
′
+1
)
− z

(
k
′)∥∥∥∥

2
≤ ηdual

(54)

where ηprimal > 0 and ηdual > 0 are the tolerances of the feasibility conditions, respectively.
g is yielded as the output of the (k + 1)th iteration in subproblem two.
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(a) (b)

Figure 5. Diagrams of two soft thresholding operators: (a) the soft thresholding operator Sλ1/ρ

[
t

(
k′
)

i

]
;

(b) the block soft thresholding operator S√nqλ2/ρ

[
v(k)

q

]
].

Step 2: Updating r.
According to (38), the auxiliary variable r is divided into Q groups for the group

sparsity, and each rq has its own regional sparsity parameter, so it needs to be calculated
separately. Ignoring the terms unrelated to r, in the (k + 1)th iteration, the optimization
problem on rq in (41) can be expressed as

r(k+1)
q = argmin

rq

Lρ

(
g(k+1), rq, u(k)

0,q

)
= argmin

rq

[2√nqλ2

ρ

∥∥rq
∥∥

2 +
∥∥∥rq −

(
u(k)

0,q /ρ + ASL,q
H ã/M− ASL,q

HUg(k+1)
)∥∥∥2

2

] (55)

where u(k)
0,q represents the part of u(k)

0 corresponding to r(k+1)
q . Similar to (51), let v(k)

q =

u(k)
0,q /ρ + ASL,q

H ã/M− ASL,q
HUg(k+1). Then, the elements in r(k+1)

q can be expressed by
block soft thresholding as

r(k+1)
q =S√nqλ2/ρ

[
v(k)

q

]
=

 0
∥∥∥v(k)

q

∥∥∥
2
= 0

max
(

0, 1−
(√nqλ2/ρ

)/∥∥∥v(k)
q

∥∥∥
2

)
· v(k)

q otherwise

(56)

where S√nqλ2/ρ

[
v(k)

q

]
is the block soft thresholding operator. max(0, ·) is the function that

indicates the maximum value after the input and zero are compared. The diagram of
S√nqλ2/ρ

(
v(k)

q

)
is shown in Figure 5b. Here, it can be seen that the value less than√nqλ2/ρ

in the augment is set to zero, and the remaining value is reduced. r(k+1) is obtained
by performing the operator in (56) on each r(k+1)

q corresponding to the qth region and
combining them together.

Step 3: Updating u0.
Let the partial derivative of the ALM with respect to u0 in (42) be zero. Then, u(k+1)

0 is
expressed as

u(k+1)
0 = u(k)

0 + ρ
(

ASL
H ã/M− ASL

HUg(k+1) − r(k+1)
)

(57)
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In subproblem two, steps 1–3 are performed alternately until the following two itera-
tion termination conditions are met simultaneously:

eprimal =
∥∥∥ASL

H ã/M− ASL
HUg(k+1) − r(k+1)

∥∥∥
2
≤ ϵprimal

edual =
∥∥∥r(k+1) − r(k)

∥∥∥
2
≤ ϵdual

(58)

where ϵprimal > 0 and ϵdual > 0 are the tolerances of feasibility conditions, respectively.
The solution of subproblem two is finally obtained according to the vector relationship
shown in (35):

g = g(1 : M− 1) + j · g(M : 2M− 2) (59)

The complete method for solving subproblem two is called the sparse group LASSO based
on the alternating-direction method of multipliers, abbreviated as the ADMM-SGLASSO
and summarized in Algorithm 2. Substituting (33) and (59) into (16) yields the weight
vector of the SG-RCB beamformer. The flowchart of the SG-RCB is shown in Figure 6.

Algorithm 2 : ADMM-SGLASSO

Input: the sample covariance matrix R̂, the actual SV of the desired signal ã, the block
matrix U, the array manifold matrix of the sidelebe region ASL and λ1, λ2, nq

Output: the adaptive weight g;

1: Obtain ã, R̂1/2, g, U and ASL defined by (20),(21),and (35)-(37);

2: Initialize g, r =
[
rT

1 , rT
2 , · · · , rT

q , · · · , rT
Q

]T
, u0 and Q;

3: while eprimal > ϵprimal or edual > ϵdual do
4: Update g(k+1) by ADMM for g:
5: Initialize z and u1;
6: while eprimal > ηprimal or edual > ηdual do

7: Calculate b
(

k
′)

by (50);

8: Update g
(

k
′
+1
)

by (48);

9: Update z

(
k
′
+1
)

i in z
(

k
′
+1
)

by (52);

10: Update u

(
k
′
+1
)

1 by (53);
11: k

′ ← k
′
+ 1;

12: end while
13: Update r(k+1)

q in r(k+1) by (56);
14: Update uk+1

0 by (57);
15: k← k + 1;
16: end while

4.4. Computational Complexity Analysis

We describe the computational complexity of the proposed SG-RCB as measured by
the number of multiplication operations. The SG-RCB consists of two algorithms, the
ADMM-RCB and the ADMM-SGLASSO. As Algorithms 1 and 2 show, each algorithm is
divided into two stages: preprocessing and iteration. For simplicity, the complexity of
one iteration is discussed.

In the preprocessing stage of the ADMM-RCB, R̂−1 and R̂−1a are calculated in advance,
resulting in costs of O

(
M3) and O

(
M2), respectively. In one complete iteration, the computa-

tional costs of steps 4–6 in the ADMM-RCB are O
(

M2), O(M), and O(1), respectively.

In the preprocessing stage of the ADMM-SGLASSO, Q−1, UH R̂ã, ASL
HU, and ASL

H ã
are calculated and fixed in irritations, which cost O

(
M3 + M2NSL

)
+ O

(
M2 + MNSL

)
mul-
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tiplications in total. At the iteration stage, the computational costs of steps 7–10 in the
ADMM-SGLASSO are O(MNSL), O

(
M2), O(MNSL), and O(1), respectively.

Start

Input: R̂, ASL, a, λ1, λ2, ε0

ADMM-RCB

The solution
of subprob-

lem one: ã, U
ADMM-SGLASSO

ADMM for g

The solution
of subprob-
lem two: g

Output: the weight
vector of SG-RCB:
w = ã/M − Ug

End

Figure 6. Flowchart of the SG-RCB.

The computational costs of steps 13 and 14 in the ADMM-SGLASSO are O(MNSL) +
O(NSL) and O(1), respectively. Therefore, the dominant order of the per-iteration com-
putational complexity of the proposed SG-RCB is O

(
M2 + MNSL

)
. The computation in

the preprocessing only needs to be calculated once, which has little impact on the overall
complexity of the SG-RCB, although its complexity increases rapidly with the increase in
the dimension of variables.

Now, let us compare the SG-RCB with other ADMM-based beamforming methods, for
instance, the methods proposed in Refs. [35,36]. In the preprocessing stage, the dominant
order of the computational costs of the method in Ref. [35] is O

(
M3 + MN2

SL
)
, while the

computational complexity in this stage is not discussed in [36]. In practice, the number of
hydrophones is lower than the number of scanning directions in the sidelobes; thus, the
computational complexity of the SG-RCB in the preprocessing stage is lower than that of
the method in Ref. [35]. In the iteration stage, both methods proposed in Refs. [35,36] have
same dominant cost of O

(
M2 + MNSL

)
in per iteration, which is also equal to that of the

SG-RCB.
Next, we discuss the complexity of the SOCP for comparison. In the preprocessing

stage, the computational cost of the SOCP is of the same order as that of the SG-RCB, i.e.,
O
(

M3 + M2NSL
)
+ O

(
M2). In the iteration stage, however, the SOCP adopts the IPM,
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which costs O
(

M2NSL
)

at each iteration. The overall computational complexity of the
SG-RCB is lower than that of the SOCP solved by the IPM with the variable dimension
becoming larger; thus, the proposed SG-RCB has a significant advantage in computational
complexity in the case of large-element conformal arrays.

5. Simulation Results
5.1. Parameter Setting

A half-cylindrical conformal array consisting of 40 hydrophones is analyzed in this
section. The geometry and parameters of the conformal array are shown in Figure 7. Table
1 presents the relevant parameters shown in Figure 7d.

We consider the simulation being implemented in an underwater free field where
the sound velocity is constant at 1500 m/s. The point sources are single-frequency with a
frequency of 10 kHz. The receiving array is located in the far field relative to the source,
and the transmission loss is not considered.

(a)
(b)

(c)

(d)

Figure 7. Diagram of the half-cylindrical conformal array (HCCA) configuration: (a) three-dimensional
diagram (solid black dots represent hydrophones); (b) front view (the top left circle represents
hydrophone number 1, the bottom right circle represents hydrophone number 40, and the labels of
hydrophones increase from top left corner to bottom right corner); (c) side view; (d) the real object.

Table 1. The physical parameters of the HCCA in Figure 7.

Length of the Bus Bar Radius Number of Hydrophones Spacing between
Hydrophones Operating Frequency

h = 0.775 m r = 0.25 m 40 d = 0.075 m 6–10 kHz

Assuming that the look direction is (45◦, 45◦), the signal-to-noise ratio (SNR) of the
desired signal is 10 dB. There are two interferences in the direction of (−30◦, 60◦) and
(−10◦, 30◦), and their interference-to-noise ratios (INRs) are 35 dB. The grouping of the
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sidelobe is shown in Figure 8, in which the number of regions of sidelobes and interfer-
ences are indicated, respectively. The scanning intervals of elevation and azimuth are 1◦,
respectively, and the interval of the interference regions in the elevation and azimuth are
both 10◦. Our codes were written in MATLAB R2023a. All our numerical experiments were
conducted on a laptop computer with an AMD CPU (3.20 GHz) and 32 GB RAM running
Windows 11.

Figure 8. Grouping of sidelobe regions. The numbers indicate the sequence numbers of the different
sidelobe regions.

5.2. Cpu Times

Some existing methods were selected to compare the ADMM to in order to show its
advantage in terms of computational efficiency. Here, the ADMM-RCB in subproblem
one is compared with the RCB with the SOCP solved by CVX [29], which is abbreviated
as the SOCP-RCB, and the ε0 in (18) is set to 1. For the SG-RCB, the SOCP is selected for
comparison, which is abbreviated as the SOCP-SG-RCB. The λ1 and λ2 in (12), (13), and
(15) are set to 0.01 and 0.1 [41,45], respectively. In the ADMM-based methods, the values
of the absolute tolerance and the relative tolerance are unified and set to 10−4 and 10−2,
respectively [30].

Figure 9 shows the computing time (CPU time) of the different studied methods. We
compare the ADMM-RCB with the SOCP-RCB in Figure 9a. It is easily observed that the
CPU time of the ADMM is much shorter than that of the SOCP. The average time of the
SOCP-RCB is 0.3293 s, while that of the ADMM-RCB is 0.009 s.

(a) (b) (c)

Figure 9. Boxcharts of the computing times of different methods: (a) ADMM–RCB and SOCP–RCB;
(b) SOCP–SG–RCB; (c) ADMM–SG–RCB.
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Next, we compare the computing time of different methods to solve the SG-RCB.
Figure 9b,c show the CPU time of the SOCP, as well as of the ADMM for solving the SG-
RCB. The SOCP-SG-RCB involves a long running time, and its average time is 105.6675 s.
The SOCP belongs to interior-point method; it is not applicable to the 2D beampatterns
because of its high computational complexity. Comparing Figure 9c with Figure 9b, it can be
found that the CPU time of the ADMM-SG-RCB is much less than that of the SOCP-SG-RCB
(15.8016 s).

5.3. Beampatterns of Different Methods

In this subsection, we further explore the 2D beampatterns of different beamformers.
All used parameters are the same as those in Section 5.2. First, we present the beampatterns
of some fundamental beamformers in Figure 10, in which the beam responses of two
interferences are labeled. It is observed that the CBF beampattern can not suppress two
interferences, while the SCB beampatterns distort and their SLL is even higher than the
response in the actual signal direction. In accordance with Figure 9a, the ADMM-RCB
beampattern is superior to that of the SOCP-RCB, even though their beampatterns are close.

(a) (b)

(c) (d)

Figure 10. Beampatterns of some fundamental beamformers: (a) CBF; (b) SCB; (c) SOCP–RCB;
(d) ADMM–RCB.

Then, the beampattern of the SG-RCB is analyzed, while the S-RCB and G-RCB are
run for comparison. Figure 11 shows the beampatterns of the three beamformers, in which
the first row is the three-dimensional view and the second is the top view. It can be seen
from Figure 11d that the S-RCB makes the beam responses of sidelobe regions as low as
possible at the cost of increasing the mainlobe width. In Figure 11e, the mainlobe width
of the G-RCB is narrower than that of the S-RCB, but its SLL is higher. The constraint
of the G-RCB is imposed on regions of the sidelobe and interferences separately, and the
beam responses of the interferences of the G-RCB are lower than those of the sidelobes.
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The SG-RCB’s beampattern in Figure 11c,f can be seen as a combination of the above two
beamformers, which ensures a low SLL and a narrow mainlobe width while keeping the
beamformer from losing its interference suppression capability.

(a) (b) (c)

(d) (e) (f)

Figure 11. Beampatterns among the S–RCB,G–RCB and SG–RCB: (a) 2D beampattern of the S–RCB
(λ1 = 0.01 and λ2 = 0); (b) 2D beampattern of the G–RCB (λ1 = 0 and λ2 = 0.1); (c) 2D beampattern
of the SG–RCB (λ1 = 0.01 and λ2 = 0.1); (d) top view of the S–RCB result; (e) top view of the G–RCB
result; (f) top view of the SG–RCB result.

In Table 2, we compare the specific performance of the beampattern obtained by
different beamformers in terms of the width of the mainlobe (taking a −3 dB beam width
as an example (BW−3dB)), the SLL, and the beam responses of the interferences. It is
shown that the beampattern optimized by the G-RCB has the narrowest mainlobe width
instead of that of the CBF among the beamformers in Table 2 with respect to the conformal
array. The similarity of the three sparsity-constrained beamformers is that the SLL is
significantly reduced, in which the SLL of the S-RCB is more than 4 dB lower than that of
the conventional beamforming (CBF). The SG-RCB combines the advantages of the S-RCB
and G-RCB, which can achieve the optimal interference suppression while maintaining the
mainlobe width almost unchanged. It is also implied that the SG-RCB can make a flexible
tradeoff between the mainlobe width and the SLL by adjusting the values of λ1 and λ2
according to the actual situation.
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Table 2. Performance comparison of beampatterns of different beamformers. The red indicates the
optimal value in this column.

Beamformers BW−3dB/◦

(Elevation, Azimuth)
SLL/dB Beam Response of

Interference One/dB
Beam Response of

Interference Two/dB

CBF (22.17, 35.45) −11.7779 −15.2244 −34.8355

SOCP-RCB (22.49, 34.11) −11.1561 −52.7997 −48.0525

ADMM-RCB (22.44, 34.22) −11.7801 −57.8118 −49.714

S-RCB
(λ1 = 0.01, λ2 = 0)

(23.48, 31.55) −15.9865 −56.199 −56.4141

G-RCB
(λ1 = 0, λ2 = 0.1)

(20.76, 28.63) −13.7339 −48.4772 −51.3741

SG-RCB
(λ1 = 0.01,λ2 = 0.1)

(21.92, 29.93) −14.171 −58.5509 −64.5806

5.4. SINRout versus SNR and the Sample Size

Now, we compare SINRout of the SG-RCB with other methods, which is calculated by

SINRout =
wH Rsw

wH Rint+nw
=

σ2
s
∣∣wHa0

∣∣2
wH Rint+nw

(60)

Particularly, the optimal SINRout is calculated by the SCB with the theoretical covariance
matrix Ry for performance evaluation. It is observed from Figure 12a that the SCB suffers
a poor performance. The SINRout of other methods is similar, with a low SNR(≤10 dB).
With the increase in the SNR, an inaccurate estimation of the sample covariance matrix
is amplified so that the SINRout of these methods slightly decreases. The SINRout of the
S-RCB, G-RCB, and SG-RCB is higher than that of the RCB; furthermore, the SINRout of
the SG-RCB increases by approximately 3 dB compared to the RCB. Figure 12b shows that
three sparsity-class methods do not only quickly converge to their corresponding optimal
values, but their SINRout is also higher than that of the RCB in the case of a low number of
samples. Figure 12 indicates that the RCB with sparsity constraints is basically effective in
optimizing 2D beampatterns, although a certain SINRout is lost when SNR is high.

(a) (b)

Figure 12. Performance comparison of different methods: (a) SINRout versus SNR, L = 800; (b) SINRout

versus the sample size. SNR = 10 dB.
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5.5. Beampatterns with Different Regional Sparsity Parameters

In Sections 5.2–5.4, we uniformly set the regional sparsity parameters nQ to 110×1, i.e.,
nQ = [n1, n2, · · · , n10]

T = [1, 1, · · · , 1︸ ︷︷ ︸
10×1

]T . In this subsection, the influence of the regional

sparsity parameters on the beampattern is verified.
According to the grouping in Figure 8, one value of nQ in this subsection is set

as follows:
nQ,1 = [1, 1, 1, 1, 1, 1, 1, 1, 10, 10]T (61)

where the two number 10s represent the parameters of the interference regions (black
regions) in Figure 8. Substituting (61) into (15), the beampattern of the SG-RCB based on
(61) is shown in Figure 13, in which the regions of the sidelobes adjacent to interferences and
the interferences are marked out by the red dashed line and the red solid line, respectively.
It can been seen from Figure 13b that the nulls in the interference regions are widened so
that the interferences can be correctly suppressed.

(a) (b)

Figure 13. Influence of nQ,1 on the beampattern of the SG–RCB: (a) two–dimensional view; (b) top view.

The other value of nQ is set blow.

nQ,2 = [1, 1, 1, 1, 5, 1, 5, 1, 10, 10]T (62)

where the two number 5s represent the parameters of the sidelobes adjacent to the in-
terferences (blue regions in Figure 8). The beampatterns of the SG-RCB using nQ,2 are
shown in Figure 14. It is observed that the beam responses in the fifth and seventh sidelobe
regions marked by the red dashed line decrease further, but the cost is that the mainlobe
is obviously widened. As a summary, the beam responses in the sidelobe regions can be
adjusted by the regional sparsity parameters. The greater the parameters, the lower the
responses, but their values need to balance the relationship between the mainlobe width
and the SLL.

5.6. Interference Suppression in the Presence of the SV Mismatch

The array manifold of the conformal array is susceptible to distortion caused by various
factors, especially the scattering of baffles. The robustness of the SG-RCB is tested in this
subsection. The SVs of the desired signal and interferences in this subsection are obtained
by the finite-element software COMSOL [46] to guarantee the model in practice [47], which
converts the physical model into the finite-element mesh model and then carries out the
numerical calculation.
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(a) (b)

Figure 14. Influence of nQ,2 on the beampattern of the SG–RCB: (a) two–dimensional view; (b) top view.

First, we consider nQ = 110×1. Substituting such SVs into the optimization problem
of the SG-RCB, the resulting beampatterns are shown in Figure 15. The mainlobes of the
beampatterns are not distorted under the robustness constraint, but each beamformer has
poor performance in interference suppression due to the SV mismatch.

(a) (b)

(c) (d)

Figure 15. Beampatterns in the case of the SV mismatch: (a) ADMM–RCB; (b) S–RCB; (c) G–RCB;
(d) SG–RCB.

Then, we investigate the effect of nQ,1 and nQ,2 on interference suppression. The
beampattern using nQ,1 is shown in Figure 16. It is observed that the beam responses of the
two interferences are reduced by about 10 dB compared with the results of Figure 15d.
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(a) (b)

Figure 16. Performance of interference suppression of the SG–RCB using nQ,1: (a) two–dimensional
view; (b) top view.

Furthermore, by replacing nQ,1 with nQ,2 in the SG-RCB, the resulting beampattern is
obtained, as shown in Figure 17. It can be seen that the beam responses of the interferences
and the sidelobes decrease further at the cost of the mainlobe widening. It can be seen from
Figures 16 and 17 that setting the regional sparsity parameters properly can improve the
interference suppression without changing the overall performance of the 2D beampattern
when the SV mismatch exists.

(a) (b)

Figure 17. Performance of interference suppression of the SG–RCB using nQ,2: (a) two–dimensional
view; (b) top view.

6. Conclusions

In this paper, we developed the SG-RCB, which utilizes sparse group constraints based
on the RCB to reduce the SLL of the 2D beampattern for conformal arrays. By introducing
the GSC framework, the original optimization problem was divided into two subproblems.
The first is the RCB problem and the second is the SGLASSO problem. To handle these
problems, the ADMM was employed to solve them in closed form.

The main advantages of the proposed method for 2D beampattern optimization are as
follows: The SLL of the 2D beampattern is greatly reduced by the sparse group constraints.
The ADMM is applied to solve the optimization problem, which greatly improves the com-
putational efficiency compared with other existing methods. The interference suppression
of the proposed method in the presence of the SV mismatch can be recovered by adjusting
the regional sparsity parameters.

The SG-RCB has broad application prospects in various underwater scenarios. For
example, the SG-RCB can be applied to the arrays of autonomous underwater vehicles
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(AUV) or unmanned underwater vehicles (UUV) to realize the detection and direction of
arrival (D.O.A) estimation of the target. In addition, the SG-RCB has potential applications
in the real-time processing of received signals due to its significant computational efficiency.
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