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Abstract: In the application of Compressive Sensing (CS) theory for sidelobe suppression in Random
Frequency and Pulse Repetition Interval Agile (RFPA) radar, the off−grid issues affect the perfor-
mance of target parameter estimation in RFPA radar. Therefore, to address this issue, this paper
presents an off−grid CS algorithm named Refinement and Generalized Double Pareto (GDP) distribu-
tion based on Sparse Bayesian Learning (RGDP−SBL) for RFPA radar that utilizes a coarse−to−fine
grid refinement approach, allowing precise and cost−effective signal recovery while mitigating the
impact of off−grid issues on target parameter estimation. To obtain a high-precision signal recovery,
especially in scenarios involving closely spaced targets, the RGDP−SBL algorithm makes use of a
three−level hierarchical prior model. Furthermore, the RGDP−SBL algorithm efficiently utilizes
diagonal elements during the coarse search and exploits the convexity of the grid energy curve
during the fine search, therefore significantly reducing computational complexity. Simulation results
demonstrate that the RGDP−SBL algorithm significantly improves signal recovery performance
while maintaining low computational complexity in multiple scenarios for RFPA radar.

Keywords: RFPA radar; off−grid CS recovery; Sparse Bayesian Learning (SBL); grid refinement

1. Introduction

Random Frequency and Pulse Repetition Interval Agile (RFPA) radar effectively
reduces the probability of interception by employing pseudo−random frequency and pulse
repetition interval (PRI) [1]. By synthesizing a wideband spectrum, the anti−interference
capabilities of the system are enhanced, and high resolution is achieved [2,3]. Furthermore,
this radar avoids fixed ambiguous range and velocity measurements [4]. Consequently, in
recent years, RFPA radar has emerged in the radar field as a prominent research topic [5].

However, applying matched filter methods to process RFPA radar echoes can result
in sidelobes with a noise−like appearance in the range−velocity plane [6,7], where high
sidelobe issues would possibly trigger false alarms or obscure smaller targets. Although
preemptively designing the carrier frequency sequence [8,9] may mitigate sidelobe effects,
this method does not account for scenarios involving multiple targets. As a result, it fails
to guarantee that the superimposed sidelobes from multiple targets maintain a low level,
severely affecting the sidelobe suppression performance. Therefore, sparse recovery based
on the Compressive Sensing (CS) theory [10] offers a fresh perspective for RFPA radar
sidelobe suppression and target parameter estimation, primarily for two reasons: (1) from
the perspective of radar information acquisition, high sidelobe levels can be attributed to
the information loss in the radar echoes [11]; and (2) parameter estimation in RFPA radar
requires grid point division based on range and velocity resolution, resulting in sparsity
in the observation scene due to significantly fewer observed data points compared to the
potential grid points [12]. Therefore, many efforts have been made to employ CS−based
sparse recovery algorithms for recovering RFPA radar signals [13], which achieves more
effective sidelobe suppression compared to linear methods like matched filtering [14].
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Currently, convex optimization algorithms and greedy algorithms are two primary
CS−based sparse recovery algorithms for agile radar. Convex optimization algorithms,
such as Basis Pursuit (BP) and Alternating Direction Method of Multipliers (ADMM), aim to
transform the norm Nondeterministic Polynomial (NP) problem into a norm optimization
problem to obtain a solution [15–17]. Greedy algorithms, including Orthogonal Matching
Pursuit (OMP), continuously seek local optimal solutions to achieve a globally optimal
solution [18,19]. However, when dealing with closely spaced targets in RFPA radar, the
correlation between the columns of the observation matrix may be enhanced due to the
overlapping echoes from nearby targets, affecting the reconstruction performance [20]. As
a result, Sparse Bayesian Learning (SBL) algorithms have been proposed as a more robust
alternative for sparse recovery in RFPA radar, utilizing Bayesian inference to model the
sparsity and noise of signals as probability distributions [21,22]. The SBL algorithm was
initially proposed in the field of machine learning [23]. In recent years, the SBL algorithm
has been extensively applied in areas such as Direction of Arrival (DOA) estimation [24],
radar imaging [25], and Multiple−Input Multiple−Output (MIMO) radar [26]. Since SBL
considers the prior distribution of RFPA radar echoes and accounts for the correlation
between columns of the observation matrix, it can enable robust reconstruction perfor-
mance in scenarios with closely spaced targets [27]. However, SBL requires performing
high−dimensional matrix inversions when computing the posterior covariance matrix
in each iteration [22]. This increased computational requirement limits practical appli-
cation when dealing with pulse−rich frequency−agile radar and large range−velocity
observation data.

The CS algorithms mentioned above [15–19,21,22] are designed for on−grid scenarios
in agile radar, assuming that targets are precisely located on predefined discrete grids.
However, real targets may exist in a continuous domain between these grids, potentially
leading to gridding errors in the estimation process. Consequently, when such off−grid
issues arise, grid−based CS algorithms may distribute the energy of the RFPA signal across
adjacent discrete grids, which may degrade reconstruction performance and, therefore, re-
duce the accuracy of target parameter estimation for RFPA radar [28,29]. Thus, researchers
typically employ grid refinement, continuous−domain parameter estimation, or Bayesian
learning−based methods to enhance reconstruction performance. These methods aim to
make the conventional CS algorithms more robust in coping with mismatches between the
actual signal parameters and the predefined discrete grids. For instance, Liu proposed the
CS−Iterative Grid Optimization (CS−IGO) algorithm based on the norm [30]. Huang pre-
sented an Adaptive Matching Pursuit with Constrained Total Least Squares (AMP−CTLS)
algorithm, which is based on the Matching Pursuit (MP) algorithm and can adaptively
update grid points and observation matrix [31]. Additionally, Chen proposed a weighted
Particle Swarm Optimization (PSO) algorithm based on the OMP algorithm [32]. Zhang
utilized the atomic norm minimization algorithm to estimate parameters in a continuous
domain, aiming to address the off−grid problem [33].

Nevertheless, current off−grid CS algorithms [30–33] in agile radar, primarily include
greedy−based and convex optimization−based methods, exhibit relatively low reconstruc-
tion performance in scenarios involving closely spaced targets. Considering the superior
signal recovery performance of the algorithms based on the SBL method under the on−grid
assumption, especially in scenarios involving closely spaced targets, thus there is an emerg-
ing consideration to employ the SBL algorithm in off−grid situations. At present, in the field
of radar, off−grid CS algorithms based on SBL are primarily applied in one−dimensional
DOA estimation of array signals. Yang modeled the array manifold steering vector and
proposed the Off−Grid Sparse Bayesian Inference (OGSBI) algorithm [34]. Dai introduced
the Root-SBL algorithm, which utilizes roots of polynomials to eliminate the modeling
error caused by off−grid issues, therefore enhancing computational efficiency [35]. Wang
proposed the Grid Interpolation−Multiple snapshot SBL (GI−MSBL) algorithm, which
employs grid interpolation to trisect between adjacent grid points, thus more accurately
estimating the closely spaced off−grid DOA signals [36]. However, the above−mentioned
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off−grid algorithms based on SBL are applied in one−dimensional DOA estimation of
array signals and are not directly applicable to the range−velocity estimation of RFPA
radar targets. The primary reason for this limitation lies in the differences between their
signal models. In DOA estimation, there is a uniformly arranged one−dimensional linear
array, which simplifies the construction of the observation matrix. In contrast, in RFPA
radar, the range and velocity parameters of targets are distributed on a two−dimensional
range−velocity plane, and the signals also exhibit random carrier frequency and pulse
repetition interval. These factors result in different methods for constructing observation
matrices for each case, and directly applying the aforementioned algorithms for DOA
estimation could adversely affect the effectiveness of sparse reconstruction. So, no off−grid
SBL algorithm specifically tailored for range−velocity estimation of RFPA radar targets has
been found in the literature. Moreover, the SBL algorithm facilitates the choice of diverse
prior distributions for the original signal based on various observation scenarios [37], but
the more complex the selected prior distribution is, the higher the computational com-
plexity of subsequent processing will be. Therefore, it is crucial to explore innovative
SBL−based off−grid CS methods that can maintain robust performance as well as compu-
tational feasibility in RFPA radar signal recovery, especially in scenarios involving closely
spaced targets.

In this paper, we present an off−grid CS algorithm for RFPA radar named grid Re-
finement and Generalized Double Pareto (GDP) distribution based on SBL (RGDP−SBL)
that combines SBL with grid refinement techniques, enabling accurate and robust sig-
nal recovery cost−effectively. As the SBL algorithm allows for the flexible selection of
different prior distributions based on various observation scenarios to ensure accurate
reconstruction performance, especially in scenarios involving closely spaced targets, a
three−level hierarchical prior model is first employed to align the original signal of the
RFPA radar with a GDP prior distribution. Then, the proposed RGDP−SBL algorithm
utilizes a coarse−to−fine grid refinement approach for improved robustness, which can
effectively alleviate the off−grid mismatch problem. Furthermore, the RGDP−SBL algo-
rithm efficiently utilizes diagonal elements during the coarse search and takes advantage
of the property that the grid energy curve approximates a convex function during the fine
search, therefore reducing computational complexity. Simulation results show that this
algorithm achieves more reliable recovery performance as well as computational feasibility,
therefore enhancing the accuracy of target parameter estimation for RFPA radar, especially
in scenarios involving closely spaced targets.

2. Materials and Methods
2.1. Signal Model

Given that an RFPA radar employs a rectangular pulse signal as the baseband signal,
it encompasses N pulses within one Coherent Processing Interval (CPI). Furthermore, the
RFPA radar scenario is stipulated to comprise noise and H moving point targets, each of
which exhibits motion at a constant velocity along the radar line of sight. Consequently,
the echo model for the n−th pulse of the H targets can be described as follows [1]

Sr(n, tr) =
H

∑
h=1

σhrect(tr,h −
2rh(0)

c
− (n +

1
U(n)

)Tr)

× exp(j2π fn(tr,h −
2vhtr,h + 2rh(0)

c
− (n +

1
U(n)

)Tr) + Nt (1)

For the h−th target, the variable tr,h represents the time when the radar receives its
echo. The parameters σh and vh, respectively, denote the complex backward scattering
coefficient and the radial velocity of the h−th target, while rect represents the unit rectangle
function. The initial distance between the h−th target and the radar at time t = 0 is
denoted by rh(0), with c representing the speed of light. The average PRI is denoted by
Tr, where 1/(U(n))Tr represents the PRI agility parameter of the n−th pulse, following a
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uniform distribution 1/U(n) ∈ {0, 1 − Tw/Tr}, and Tw is the pulse width. The frequency
agility parameter of the n−th pulse in RFPA radar is denoted by fn = fc + dn∆ f , where fc
and ∆ f are the central carrier frequency and the bandwidth of frequency−hopping step,
respectively. The frequency−hopping code sequence dn ∈ {0, . . . , M − 1} is a uniformly
distributed code with M as frequency agility points [33,38]. Nt represents the white
Gaussian noise.

The RFPA radar achieves a larger synthetic bandwidth by changing the carrier fre-
quency of each transmitted pulse. Specifically, the coarse−range cell is determined by
the bandwidth of each transmitted pulse, while the fine−range cell is related to the final
synthetic bandwidth. The sampled data of echoes is processed separately on different
coarse−range cells [16]. As a result, the proposed algorithm in this paper focuses on only
one coarse−range resolution cell. In the same coarse−range resolution cell, N pulse echoes
are collected. The specific process of acquiring observation data is shown in Figure 1.

Figure 1. Process of acquiring observation data.

When only the coarse−resolution cell is considered, the target movement distance
within the fast-time domain can be disregarded. Consequently, by isolating the phase term,
adding the envelope σh, and omitting the fast−time parameter, the n−th sampled echo can
be represented as

Sr(n) =
H

∑
h=1

σh exp(−j4π
1
c

fcrh(0)) exp(−j4π
1
c

dn∆ f rh(0))

× exp(−j4π
1
c

fnvh(n +
1

U(n)
)Tr) + Nt (2)

Then let 
γ̃h = σh exp(−j4π 1

c fcrh(0))
ph = −4π∆ f rh(0)dn/c
qh = −4π fcvh(n + 1

U(n) )Trζn/c

ζn = 1 + dn∆ f / fc

(3)

Here, the first term γ̃h can be considered to be a constant that is independent of pulse
variations. The second term ph represents the range phase term and is related to dn in the
pulse, which contains range information. The third term qh is the Doppler phase term,
which varies with the pulse sequence n and contains velocity information. Therefore,
Formula (2) can be rewritten as

Sr(n) =
H

∑
h=1

γ̃h exp(jph) exp(jqh) + Nt (4)
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According to the derived signal model, the RFPA radar echoes exhibit sparsity charac-
teristics in the range−velocity plane, as the number of targets within a coarse−resolution
range cell is considerably fewer than the number of grid points. Hence, it is possible to
utilize sparse recovery methods to discretize the range−velocity values into grid points,
facilitating the design of the observation matrix and observation equation. Both the velocity
and range values, initially continuous, are discretized into Q and P grid points, respectively.
This process results in each range grid point being associated with Q velocity grid points,
thus generating a total of P · Q = J grid points. As a result, the RFPA radar echo expression
is divided into two parts, namely the range dimension R and the velocity dimension V,
allowing us to construct the observation matrices for each dimension separately as follows:

ΦR ∈ CN×P = exp(−j4π
1
c

fcR) exp(−j4π
1
c

dn∆ f R),

R = Rp1 , . . . , RpP

ΦV ∈ CN×Q = exp(−j4π
1
c
(n +

1
U(n)

)Trζn fcV),

V = Vq1 , . . . , VqQ

Φ ∈ CN×QP =

 kron(ΦR1, ΦV1)
...

kron(ΦRN , ΦVN)



=

 ΦR p1 1 · ΦVq11 . . . ΦR pP 1 · ΦVqQ1
...

. . .
...

ΦR p1 N · ΦVq1 N . . . ΦR pP N · ΦVqQ N

,

n = 1, . . . N (5)

Here, ΦR and ΦV are the observation matrices for R and V, respectively. After
performing the Kronecker operation on ΦR and ΦV , the final observation matrix, Φ can be
obtained. According to the CS theory, the echo can be written as [10]

y = Φx + Nt (6)

y = [Sr(1), . . . , Sr(N)]H ∈ CN×L is the known observation data composed of the
received echoes with L snapshots, and x is the unknown original signal that contains both
range and velocity information. The aforementioned process is illustrated in Figure 2.

Figure 2. The signal observation model based on CS.

In each pulse, the bandwidth of the frequency data in the received echoes is only 1/M
of the frequency agility range, thus leading to information loss. Therefore, Formula (6)
represents an underdetermined equation, converting the range−velocity parameter estima-
tion of the RFPA radar into a problem of solving an underdetermined equation in the CS
framework. The objective of signal recovery is to reconstruct the signal x containing range
and velocity information based on the known observation matrix Φ and the observed data
composed of the received echoes y. Please note that the proposed algorithm takes y and Φ

as inputs and then proceeds with the signal recovery [39].
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2.2. Prior Distribution Assumption for Signals

The SBL algorithm assumes the original signal to be a random vector following a
certain prior distribution, utilizing the Bayesian theorem to reconstruct the original sig-
nal [37,40]. Consequently, to enhance the recovery performance of the SBL algorithm,
especially in scenarios involving closely spaced targets, it is essential to formulate a prior
distribution assumption that exhibits superior sparsity. Currently, the prior distributions
widely employed are complex Gaussian and Laplace distributions. The complex Gaus-
sian distribution has fewer parameters and a simpler model but exhibits poorer sparsity.
Utilizing the Laplace distribution increases the number of parameters but enhances the
sparsity of the signal to a certain extent. Notably, the GDP distribution can be derived by
adjusting the proportional mix of Laplace and complex Gaussian distributions. Moreover,
the log-distribution function of the GDP prior forms a sharper concave peak compared
to the aforementioned two prior distributions, therefore significantly enhancing spar-
sity [41]. Consequently, compared to complex Gaussian and Laplace distributions, the GDP
distribution exhibits stronger sparsity and more flexible parametric forms, allowing for
adjustments according to specific problems to achieve higher algorithmic performance.
Therefore, the proposed algorithm in this paper assumes that the original signal follows
the GDP distribution and its distribution function is of the form [41]

GDP(x; ρ, ε, µ) =
1

2ρ
(1 +

|x − µ|
ρε

)−(ε+1) (7)

ρ is the scale parameter, ε is the shape parameter, and µ ∈ R is the location parameter.
To ensure the GDP distribution serves as a convergent prior distribution, we set µ = 0. Since
the GDP distribution can only model real−valued signals, this paper adopts a three−level
hierarchical prior model [42] to enable its application in the complex domain, thus facil-
itating the sparse recovery in RFPA radar. However, employing a more complex GDP
distribution does introduce an increase in computational complexity. For this reason, the
proposed algorithm utilizes methods that significantly mitigate computational complexity,
with a comprehensive analysis of this process provided in Section 4.1.

In the first level of the prior distribution, it is assumed that elements in each column
of the original signal x follow a zero-mean complex Gaussian distribution. Its Probability
Density Function (PDF) can be written as

p(x|γ) =
L

∏
l=1

J

∏
j=1

CN(xjl |0, γj)

=
L

∏
l=1

CN(xl |0, Γ)

= π−JLΓ−L exp(−
L

∑
l=1

xH
l Γ−1xl) (8)

γ = [γ1, . . . , γJ ]
H is the hyperparameter of the original signal and γj is the variance of

the j−th row. The covariance matrix of the original signal is expressed as Γ = diag(γj), and
l ∈ {1, ..., L} represents each snapshot in the RFPA radar echoes. In the second level of the
prior distribution, to match the GDP distribution, it is assumed that each hyperparameter
γj in γ follows an independent Gamma distribution with a new hyperparameter ξ j. Thus,
the PDF of hyperparameter γ can be obtained.

p(γ|ξ) =
J

∏
j=1

Gamma(γj;
3
2

,
ξ2

j

4
) (9)

Gamma(σ; a, b) = (Γ(a))−1baσa−1 exp(−bσ) (10)
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Γ(a) =
∫ ∞

0
σa−1 exp(−σ)dσ (11)

Here, ξ = [ξ1, . . . , ξ j]
H is the signal hyperparameter, and a and b are the parameters of

the Gamma distribution. In the third level of the prior distribution, it is assumed that each
hyperparameter ξ j in ξ follows an independent Gamma distribution. Hence, its PDF can be
given as

p(ξ) =
J

∏
j=1

p(ξ j) =
J

∏
j=1

Gamma(δ, δ) (12)

δ is a small positive constant tending to zero, and its value can be adjusted. As shown
in [42], the probability distribution constituted by the three layers of hyperparameters
follows a GDP distribution. Assuming that the noise in the RFPA radar echoes follows
an independent complex Gaussian distribution, the RFPA radar echo y follows a complex
Gaussian distribution, with its PDF given by

p(y|x, β) =
L

∏
l=1

CN(yl |Φxl , β−1 I) (13)

β is the variance of the noise, and I is the identity matrix.

2.3. Coarse Search for RFPA Radar Targets

To perform a coarse search for RFPA radar targets based on the SBL framework, this
section provides iterative formulas for the signal hyperparameters and noise variance,
therefore laying a foundation for the subsequent fine search of the proposed algorithm. By
integrating the likelihood with the prior based on the Bayesian theorem, the posterior PDF
of the original signal x can be obtained.

p(x|y; Γ, β, ξ) =
p(y|x, β)p(x|Γ)p(γ|ξ)p(ξ)∫
p(y|x, β)p(x|Γ)p(γ|ξ)p(ξ)dx

(14)

The posterior mean µ and variance Σ of x are given by [43] as follows:

µ = ΓΦHΣy
−1y

Σ = Γ − ΓΦHΣy
−1ΦΓ

Σy = β−1 I + ΦΓΦH (15)

Σy represents the covariance matrix of y. To determine the hyperparameters and noise
variance, a Type II objective function is utilized for estimation [44]. The objective function
following the GDP distribution can be written as

LII(γ, ξ, β) =
∫

p(y|x, β)p(x|γ)p(γ|ξ)p(ξ)dx (16)

To derive the iterative formulas for the hyperparameters and noise variance, the
Expectation−Maximization (EM) algorithm is employed to maximize Formula (16) [45,46].
The EM algorithm includes two steps: the Expectation step (E−step) and the Maximization
step (M−step). In order to update the hyperparameters γ and ξ, the natural logarithm
of the objective function is taken in the E−step, and the expectation is computed while
neglecting the noise variance that is irrelevant to these two hyperparameters, which can be
obtained as follows:
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Q(γ, ξ)
∆
= Ep(y|x;γ,ξ,β){ln[p(y|x, β)p(x|γ)p(γ|ξ)p(ξ)]}
∆
= E{ln[p(x|γ)p(γ|ξ)p(ξ)]}
= E{ln[π−JL|Γ|−L exp(−xHΓ−1x)

J

∏
j=1

Gamma(γj;
3
2

,
ξ2

j

4
)

J

∏
j=1

Gamma(ξ j; δ, δ)]}

∝
J

∑
j=1

{−L ln γj −
ujuH

j + LΣjj

γj
−

ξ2
j

4
γj

+ ln
√

γj + ln ξ3
j − δξ j + (δ − 1) ln ξ j} (17)

Σjj represents the element in the j−th row and j−th column of Σ, and uj is the vector
of the j−th row of the posterior mean u of the output signal for each iteration. In the
M−step, the hyperparameters γ and ξ are updated separately to obtain the corresponding

iterative formulas. First, let Wj = −1 +
Σjj
γj

,thus the partial derivative of Formula (17) with
respect to γ is calculated as

∂Q(γ, ξ)

∂γj
= L

Wj

γj
+

ujuH
j

γ2
j

−
ξ2

j

4
+

1
2γj

(18)

Setting Formula (18) equal to zero yields the iterative formula for γ

γj
new =

(2LWj + 1) + 2
√
(1/2 + LWj)

2 + ujuH
j ξ2

j

ξ2
j

(19)

Σjj = γj − (γj)
2(ΦHΣ−1

y )jΦj (20)

Similarly, the partial derivative of Formula (17) with respect to ξ can be written as

∂Q(γ, ξ)

∂ξ j
= −

ξ j

2
γj − δ +

δ − 1
ξ j

+
3
ξ j

(21)

Setting Formula (21) equal to zero, we obtain the iterative formula for ξ

ξ j
new =

−δ +
√

δ2 + 2γj(δ + 2)

γj
(22)

The update process for the noise variance β follows the same steps as for the hyper-
parameters γ and ξ. In the E−step, the hyperparameters that are unrelated to the noise
are ignored, resulting in the expectation form of the natural logarithm of the objective
function as

Q(β)
∆
= Ep(y|x;γ,ξ,β){ln[p(y|x, β)p(x|γ)p(γ|ξ)p(ξ)]}
∆
= E{ln[p(y|x, β)}
= −NL ln(π) + NL ln(β)

− β(∥y − Φµ∥2
F + tr(B − BΣ−1

y B)) (23)

B = ΦΓΦH . In the M−step, the partial derivative of Formula (23) with respect to the
parameter β is calculated as

∂Q(β)

∂β
= NL

1
β
− (∥y − Φµ∥2

F + tr(B − BΣ−1
y B)) (24)
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Setting Formula (24) equal to zero yields the iterative formula for β

βnew =
NL

(∥y − Φµ∥2
F + tr(B − BΣ−1

y B))
(25)

Thus, by using the aforementioned algorithm, the approximate location of the target
in the range−velocity grid can be determined.

2.4. Fine Search for RFPA Radar Targets

Sparse recovery algorithms, by using non-linear methods that differ from matched
filter algorithms, can relatively effectively enhance the resolution of RFPA radar and surpass
the Rayleigh limit [11]. Thus, in this section, the algorithm searches between adjacent grid
points on the grid obtained from coarse searching, updating their signal hyperparameters
accordingly. According to Formula (16), considering only parameter γ, the cost function
with respect to γ can be written as:

Θ(γ) = −L ln
∣∣Σy

∣∣− L

∑
l=1

(yHΣy
−1y)

+
J

∑
j=1

{−
ξ2

j

4
γj + ln

√
γj} (26)

Assuming the grid points obtained through coarse searching is (Rp, vq), the actual
range−velocity of the target lies within the two−dimensional plane composed of (Rp−1,
vq−1, Rp+1, vq+1). To mitigate the impact of other targets, the fine search determines
the refinement grid range for each target based on the results of the coarse search. In
addition, the leakage of target energy into neighboring grid points can be eliminated by
updating the signal hyperparameters. We define the number of grid points within the
fine search range as k ∈ {1, . . . , K}, and the corresponding observation matrix should
be constructed as Φ̄(k)h. The signal covariance after leakage elimination is defined as
Σy−h = Σy − Φ̃hγhΦ̃

H
h , where Φ̃h and γh are the observation matrix of the grid points

around the h−th target and the hyperparameters of the h−th target, respectively. By
updating Σy−h a second time, the signal covariance matrix after eliminating the influence

of the new refined observation matrix is defined as Σ̄y = Σy−h + γ̄hΦ̄(k)hΦ̄(k)h
H , where

γ̄h is the hyperparameters associated with Φ̄(k)h. By replacing Σy with Σ̄y, the following
equation can be obtained.

Θ(k, γ̄h) = −L ln
∣∣∣Σy−h + γ̄hΦ̄(k)hΦ̄(k)h

H
∣∣∣

−
L

∑
l=1

yH(Σy−h + γ̄hΦ̄(k)hΦ̄(k)h
H)

−1
y

− ξh
2

4
γ̄h +

1
2

ln γ̄h, k = 1, . . . , K (27)

Let zh = Φ̄(k)h
H

Σy−h
−1Φ̄(k)h and qh = LΦ̄(k)h

H
Σy−h

−1Ry Σy−h
−1Φ̄(k)h. The up-

dated equation for γ̄h can be obtained by setting the partial derivative of Θ(k, γ̄h) with
respect to γ̄h to zero:

γ̄h =
−2( ξh

2

2 + Lzh) + 2

√
( ξh

2

2 + Lzh)
2
− ξh

2(Lzh − qh +
ξh

2

4 )

zhξh
2 (28)
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Substituting γ̄h into Θ(k, γ̄h), and choosing the point with the largest amplitude as the
updated grid point, we have

kh
new = arg max

kh

ℜ(Θ(kh)) (29)

ℜ(•) is the real part of Θ(kh). By converting the obtained grid point into a range−velocity
plane, the range and velocity parameters of the target can be determined. The process of
the RGDP−SBL algorithm for RFPA radar is outlined in Algorithm 1.

Algorithm 1: The Proposed RGDP−SBL Algorithm
1: Input: observed data composed of echoes y, error threshold ε, observation matrix Φ,

the number of snapshots L, the number of range−velocity grid points J, itermax,
pulse number N, parameter controlling the sparsity δ,

2: Initialization: iter = 0, γ0 = 1
JL

L
∑

l=1

∣∣∣ΦHy
∣∣∣, ξ0 = 1J×1, β0 = NL

0.1∥y∥2
.

3: while iter ≤ itermax do
4: iter = iter + 1.
5: Update µiter and (Σjj)iter by Formulas (15) and (20).
6: Update γiter and ξiter by Formulas (19) and (22).
7: Update βiter by Formula (25).

8: if ∥γiter−γiter−1∥2
∥γiter−1∥2

< ε

9: break
10: end
11: end while
12: Find H largest peak clusters in γ.
13: for h = 1, . . . , H do
14: Update γ̄h by Formula (28).
15: Update Θ(kh, γ̄h) by Formula (27).
16: Update kh

new by Formula (29).
17: end for
18: Output: µ, γ, kh

new, converting the grid points kh
new yields the range and velocity of the target.

3. Simulation Results
3.1. Simulation Setup

In this paper, simulations are conducted in two distinct cases: on−grid and off−grid.
The on−grid simulations are utilized to analyze computational complexity and the per-
formance of algorithms in scenarios involving closely spaced targets. Simultaneously, the
off−grid simulations are conducted to compare the algorithms in terms of their ability
to overcome off−grid issues. In the simulation setup shared across both on−grid and
off−grid cases, the transmission signal is configured with a central carrier frequency of
10 GHz, an average PRI of 10 µs, and 128 pulses in the same CPI. The bandwidth of the
frequency−hopping step is set to 1 MHz, while the frequency agility range is configured at
128 MHz. The PRI agility range is configured at 5 µs. The proposed algorithm is iterated
up to 100 times during the simulation, with an error threshold ε set to 0.01. The value
of the parameter controlling the sparsity δ will be examined in the subsequent section to
determine the most suitable value. Additionally, in off−grid simulation, the search ranges
for the coarse search are set at 2.5 m for range and 12.5 m/s for velocity, while the fine
search employs search ranges of 0.1 m for range and 0.1 m/s for velocity. For clarity, the
specific parameter settings of the RFPA radar are summarized in Table 1.
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Table 1. Simulation parameters for RFPA radar.

Parameters Symbols Values Units

Central Carrier Frequency fc 10 GHz
Average PRI Tr 10 µs
Pulse Width Tw 1 µs

Bandwidth of Frequency−Hopping Step ∆ f 1 MHz
Pulse Number N 128 -

Frequency agility range B 128 MHz
PRI agility range Tn 5 µs

The Root Mean Square Error (RMSE) is employed to evaluate the performance of algo-
rithms, and the range dimension RRMSE and the velocity dimension VRMSE are defined as

RRMSE =

√
1

Mc H ∑Mc
mc=1 ∑H

h=1

(
R̂mc

h − Rmc
h
)2

VRMSE =

√
1

Mc H ∑Mc
mc=1 ∑H

h=1

(
v̂mc

h − vmc
h
)2 (30)

Here, Mc is the number of Monte Carlo simulations, while H denotes the number of
targets to be detected. v̂ and R̂ correspondingly represent the real velocity and range of the
target, and v and R are the estimated velocity and range of the target, respectively. Please
note that seven scenarios with different signal−to−noise ratio (SNR) are established in
our simulation: (1) Scenario 1 is a single target scenario; (2) Scenario 2 consists of three
targets within different range−velocity cells; (3) Scenario 3 involves three targets, with two
in the same range−velocity cell, and is the main focus for further analysis; (4) Scenario 4
through Scenario 7 involve closely spaced targets with target numbers ranging from 4 to 7.
Notably, to assess the performance of the proposed algorithm under on−grid and off−grid
conditions, one target is set precisely on range−velocity grid points defined during the
coarse search part in Scenario 2 to Scenario 7. The range and velocity of the target accurately
located on grid points are 1080 m and 575 m/s. The parameters in each scenario are shown
in Table 2.

Table 2. Parameter settings for scenarios.

Scenarios Targets Range (m) Velocity (m/s) SNR (dB)

Scenario 1 Target 1 1011.57 521.3 20

Scenario 2
Target 1 1011.57 521.3 20
Target 2 1051.7 551.06 20
Target 3 1080 575 30

Scenario 3
Target 1 1011.57 521.3 20
Target 2 1010.7 520.06 20
Target 3 1080 575 30

Scenario 4

Target 1 1011.57 521.3 20
Target 2 1010.7 520.06 20
Target 3 1030.1 540.76 20
Target 4 1080 575 30

Scenario 5

Target 1 1011.57 521.3 20
Target 2 1010.7 520.06 20
Target 3 1030.1 540.76 20
Target 4 1031.7 541.06 20
Target 5 1080 575 30
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Table 2. Cont.

Scenarios Targets Range (m) Velocity (m/s) SNR (dB)

Scenario 6

Target 1 1011.57 521.3 20
Target 2 1010.7 520.06 20
Target 3 1030.1 540.76 20
Target 4 1031.7 541.06 20
Target 5 1050.7 550.1 20
Target 6 1080 575 30

Scenario 7

Target 1 1011.57 521.3 20
Target 2 1010.7 520.06 20
Target 3 1030.1 540.76 20
Target 4 1031.7 541.06 20
Target 5 1050.7 550.1 20
Target 6 1050.3 551.4 20
Target 7 1080 575 30

As shown in Table 2, it is observed that some of the target parameters are shared from
Scenario 3 to Scenario 7, and each target from Scenario 3 to Scenario 6 can be found in
Scenario 7. Additionally, Scenario 2 includes three targets within different range−velocity
cells. Therefore, for clarity, the positions of all targets in Scenario 2 and Scenario 7 with
respect to the range−velocity grid defined during the coarse search part are illustrated in
Figures 3 and 4.

From Figures 3 and 4, it can be observed that only Target 3 in Scenario 2 and Target 7
in Scenario 7 are precisely located on range−velocity grid points, while the other targets
are not exactly positioned on range−velocity grid points. This arrangement facilitates the
assessment of the performance of the proposed RGDP−SBL algorithm under on−grid and
off−grid conditions in subsequent simulations.

Figure 3. The real positions of the targets in Scenario 2.

Figure 4. The real positions of the targets in Scenario 7.
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3.2. GDP Parameters Analysis

As the value of parameters δ controls sparsity [42], to enforce sparsity and improve
signal reconstruction performance, we conducted a comprehensive analysis of the perfor-
mance of the proposed algorithm under different values of δ in Formula (12). Simulations
for the parameter δ, ranging from 10−7 to 100, are conducted under Scenario 3, with
200 independent Monte Carlo simulations performed for each value to calculate the re-
sults in terms of RMSE for range and velocity and the simulation results are presented in
Figure 5.

As depicted in Figure 5, it is evident that when the value of δ is significantly large,
the GDP distribution fails to effectively enhance sparsity, leading to a sharp increase in the
RMSE for range and velocity. Conversely, when the value of δ falls within the range of 10−7

to 1, the proposed algorithm consistently exhibits superior performance with lower RMSE
values for distance and velocity. Therefore, under the conditions of this simulation, any
value of δ within the range of 10−7 to 1 can be selected. In the subsequent simulations in
this paper, δ is set to 10−1.

(a) (b)
Figure 5. Impact on performance due to δ variations in Scenario 3: (a) Range RMSE. (b) Velocity RMSE.

3.3. Performance Analysis under Off−Grid Conditions with On−Grid Assumption

In this section, to compare the performance of different algorithms in scenarios in-
volving closely spaced targets under off−grid conditions, however, based on the on−grid
assumption, two simulations are conducted under the on−grid assumption. In the simula-
tion, first, the performance of SBL−based algorithms using different prior distributions
is compared in various scenarios. A complex Gaussian distribution and a two-stage hier-
archical form of Laplace distribution are employed to assess the performance of different
prior distributions. Simultaneously, the coarse search parts of different algorithms are
simulated in different scenarios. For comparison of different algorithms, four benchmark
algorithms are employed: a greedy algorithm based on OMP, a convex optimization al-
gorithm based on the ADMM algorithm, the SBL algorithm as described in [22], and the
GI−MSBL algorithm in [36].

3.3.1. Impact of Performance Due to Different Prior Distributions

To validate the superiority of the proposed algorithm utilizing the GDP distribution in
signal recovery in scenarios involving closely spaced targets, 200 Monte Carlo experiments
are conducted using SBL−based algorithms with complex Gaussian distribution, Laplace
distribution, and GDP distribution in Scenario 1, Scenario 2, and Scenario 3, respectively.
The simulation results are shown in Table 3.

From Table 3, it can be observed that in Scenario 1, due to the simplicity of the
observation scenario, the RMSE of each algorithm is at a relatively low level. However, as
the observation scenarios become more complex and the targets become closer in range
and velocity, the values of RMSE for algorithms using complex Gaussian and Laplace
distributions sharply increase. In contrast, the values of RMSE for the algorithm using GDP
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distribution are less affected by changes in the observation scenario. This is attributed to
the three−level hierarchical GDP distribution, which manifests higher sparsity in contrast
to the other two distributions, therefore facilitating more accurate estimation of range and
velocity parameters in scenarios involving closely spaced targets for RFPA radar.

Table 3. Impact on performance due to scenario variations.

Scenarios Distribution RRMSE (m) VRMSE (m/s)

Scenario 1
complex Gaussian 0.93 3.70

Laplace 0.93 3.70
GDP 0.67 3.70

Scenario 2
complex Gaussian 1.09 2.72

Laplace 0.72 2.70
GDP 0.70 2.22

Scenario 3
complex Gaussian 2.51 4.01

Laplace 0.90 3.85
GDP 0.72 3.97

3.3.2. Performance of Algorithms with the Coarse Search Parts

To compare the signal recovery performance of convex optimization algorithms,
greedy algorithms, and SBL−based algorithms under the on−grid assumption in sce-
narios involving closely spaced targets, 200 Monte Carlo simulations are, respectively,
conducted for the OMP algorithm, ADMM algorithm, SBL algorithm in [22], GI−MSBL
algorithm, and the proposed algorithm in Scenario 1, Scenario 2, and Scenario 3. Please
note that the simulations in this subsection are conducted under the on−grid assumption,
and the OMP algorithm, GI−MSBL algorithm, and the proposed RGDP−SBL algorithm
are integrated with grid refinement. Therefore, for a more objective comparison of the
performance of each algorithm, it is sufficient to simulate only the coarse search part of
the OMP algorithm, GI−MSBL algorithm, and the proposed RGDP−SBL algorithm. For
clarity, OMP−C, GI−MSBL−C, and RGDP−SBL−C, respectively, denote the coarse search
part of the corresponding algorithms. The simulation results are presented in Table 4.

Table 4. Impact on performance due to scenario variations.

Scenarios Algorithms RRMSE (m) VRMSE (m/s)

Scenario 1

OMP−C 0.81 6.10
ADMM 0.76 6.10

SBL 0.93 3.70
GI−MSBL−C 0.93 3.70

RGDP−SBL−C 0.67 3.70

Scenario 2

OMP−C 0.71 2.11
ADMM 0.71 2.31

SBL 1.01 2.22
GI−MSBL−C 0.71 2.22

RGDP−SBL−C 0.70 2.22

Scenario 3

OMP−C 1.38 3.78
ADMM 0.99 5.82

SBL 2.51 4.18
GI−MSBL−C 0.71 3.85

RGDP−SBL−C 0.67 3.56
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It can be seen from Table 4 that under the on−grid assumption, the performance of
the coarse search part of each algorithm is similar. It is worth noting that in Scenario 3, with
closely spaced targets, the proposed RGDP−SBL algorithm has the best performance among
all algorithms. Additionally, the RMSE of each algorithm is relatively large, indicating that
under the on−grid assumption, the off−grid issues introduce significant errors, therefore
affecting the performance of parameter estimation for RFPA radar. Therefore, it is essential
to address the off−grid issue using grid mismatch techniques.

3.4. Performance Analysis under the Off−Grid Condition with Off−Grid Assumption

In this section, three simulations are conducted to assess the performance of various
algorithms in overcoming the off−grid problem. For comparison, four benchmark algo-
rithms in Section 3.3 are employed. Notably, the grid refinement approach for the OMP
algorithm is based on the results of the coarse search part, with the refinement of the step in
the range−velocity observation matrix to achieve grid refinement. However, in the existing
literature, there are no specific ADMM or SBL algorithms incorporating grid refinement
techniques for range−velocity estimation of RFPA radar in off−grid scenarios. Therefore,
to ensure a more objective comparison, this study developed grid refinement algorithms
for both the ADMM and SBL methods in [22] that are equivalent to the grid refinement
approach used for the OMP algorithm. However, the OMP algorithm only restructures the
observation matrix to achieve grid refinement. In contrast, the proposed RGDP−SBL algo-
rithm conducts two rounds of hyperparameter updates during grid refinement, therefore
eliminating the leakage of target energy into neighboring grid points and mitigating the
influence of the newly refined observation matrix. For clarity, in subsequent simulations,
OMP−G, ADMM−G, SBL−G, and GI−MSBL−G, respectively, denote the algorithms of
each method utilizing grid refinement techniques.

3.4.1. Impact of Performance Due to Different Scenarios

Each algorithm is simulated in 200 Monte Carlo simulations in Scenario 1, Scenario 2,
and Scenario 3, respectively, to assess the performance of each algorithm under different
scenarios. The simulation results are presented in Table 5.

Table 5. Impact on performance due to scenario variations.

Scenarios Algorithms RRMSE (m) VRMSE (m/s)

Scenario 1

OMP−G * 0.57 0.70
ADMM−G * 0.42 0.66

SBL−G * 0.05 0.45
GI−MSBL−G * 0.03 0.10
RGDP−SBL ** 0.03 0.06

Scenario 2

OMP−G * 0.45 1.89
ADMM−G * 0.71 2.23

SBL−G * 0.46 0.71
GI−MSBL−G * 0.11 0.23
RGDP−SBL ** 0.04 0.14

Scenario 3

OMP−G * 1.37 3.56
ADMM−G * 0.97 4.85

SBL−G * 1.37 3.56
GI−MSBL−G * 1.02 1.13
RGDP−SBL ** 0.41 0.96

* “−G” refers to the use of combining with grid refinement algorithm. ** “RGDP−SBL” refers to the proposed
algorithm with the fine search part.

In Table 5, it is evident that in Scenario 1, the proposed algorithm exhibits comparable
performance to other algorithms in addressing off−grid issues. This can be attributed to
the fact that Scenario 1 is relatively simplistic in comparison to other scenarios, which might
not fully reflect the distinctive characteristics of each algorithm. In the context of multiple
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targets, the proposed algorithm outperforms other algorithms in Scenario 2 and Scenario
3. It is worth noting that as the targets transition from non-neighboring to close in both
range and velocity, the RMSE of each algorithm exhibits an increasing trend, indicating
that closely spaced targets severely impact the performance. It can also be observed that
the proposed algorithm is less affected in this case due to the use of the SBL framework
with the GDP distribution. It is noted that although the performance of the GI−MSBL
algorithm is inferior to that of the proposed RGDP−SBL algorithm, it is superior to other
algorithms. Consequently, a detailed comparison of the specific simulation results between
the GI−MSBL algorithm and the proposed RGDP−SBL algorithm is also undertaken.
During the simulation, it was observed that the entire range−velocity plane exhibited
multiple high-energy false targets in the simulation result of the coarse search, which could
potentially affect the identification of the true target. However, the positions of these false
targets on the range−velocity plane are random. Therefore, by employing a method of
multiple detections, the randomly positioned false targets could be disregarded, retaining
only the true targets that have a fixed position on the range−velocity plane. The method
of multiple detections involves conducting three coarse searches, retaining targets that
appear at least twice at the same location, and discarding targets that emerge randomly.
The specific simulation results of the GI−MSBL algorithm and RGDP−SBL algorithm in
Scenario 1, Scenario 2, and Scenario 3 are shown in Figures 6–11. In each set of figures,
the results include the coarse search results from two detections, the coarse search results
after multiple detections, the results of the local fine search, and the overall effect on the
range−velocity plane.

From these figures, it can be observed that the proposed RGDP−SBL algorithm
achieves accurate signal recovery for targets precisely located on grid points, therefore
obtaining precise range and velocity information of the targets. Meanwhile, the proposed
algorithm attains high-precision target parameter estimation for targets under off−grid
conditions, surpassing the performance of algorithms based on on−grid assumptions,
therefore achieving a superior level of performance. Therefore, the proposed RGDP−SBL
algorithm can accurately obtain the range and velocity information of targets in these
scenarios. Moreover, the GI−MSBL algorithm produces more false targets in each scenario
compared to the proposed RGDP−SBL algorithm, therefore increasing the probability of
false alarms for single detection. Additionally, it is clearly observable that in each scenario,
there is a significant difference in the fine search results of these two algorithms. The fine
search results of the proposed RGDP−SBL algorithm exhibit a narrower main lobe with
smaller sidelobes and more concentrated energy. In contrast, the fine search results of the
GI−MSBL algorithm show a broader main lobe with numerous sidelobes around it, leading
to a more dispersed energy distribution. This may be attributed to the stronger sparsity
of the GDP distribution utilized in the RGDP−SBL algorithm. Therefore, the proposed
algorithm demonstrates higher accuracy and more effective sidelobe suppression compared
to the GI−MSBL algorithm.
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(a) (b)

(c) (d)

(e)
Figure 6. Simulation results of the GI−MSBL algorithm in Scenario 1: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search. (e) The overall effect on the
range−velocity plane.
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(a) (b)

(c) (d)

(e)
Figure 7. Simulation results of the RGDP−SBL algorithm in Scenario 1: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search. (e) The overall effect on the
range−velocity plane.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 8. Simulation results of the GI−MSBL algorithm in Scenario 2: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search for Target 1. (e) Result of the local
fine search for Target 2. (f) Result of the local fine search for Target 3. (g) The overall effect on the
range−velocity plane.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 9. Simulation results of the RGDP−SBL algorithm in Scenario 2: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search for Target 1. (e) Result of the local
fine search for Target 2. (f) Result of the local fine search for Target 3. (g) The overall effect on the
range−velocity plane.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 10. Simulation results of the GI−MSBL algorithm in Scenario 3: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search for Target 1. (e) Result of the local
fine search for Target 2. (f) Result of the local fine search for Target 3. (g) The overall effect on the
range−velocity plane.



Remote Sens. 2024, 16, 403 22 of 28

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 11. Simulation results of the RGDP−SBL algorithm in Scenario 3: (a) The coarse search result
of the first detection. (b) The coarse search result of the second detection. (c) The coarse search
result after multiple detections. (d) Result of the local fine search for Target 1. (e) Result of the local
fine search for Target 2. (f) Result of the local fine search for Target 3. (g) The overall effect on the
range−velocity plane.
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3.4.2. Impact of Performance Due to Different SNR Values

To assess the robustness of each algorithm under different SNR conditions and their
capability to detect weak targets in scenarios involving closely spaced targets, based on the
range and velocity parameters of the targets in Scenario 3, the SNR of Target 1 and Target 2
is varied from 10 to 25. Simultaneously, the SNR of Target 3, which is accurately located on
the range−velocity grid points, is kept constant at 30, ensuring its consistent status as a
strong target. The results averaged over 200 independent Monte Carlo simulations for each
SNR level are given in Figure 12.

(a) (b)
Figure 12. Impact on performance due to SNR variations in Scenario 3: (a) Range RMSE. (b) Veloc-
ity RMSE.

As illustrated, the proposed RGDP−SBL algorithm achieves the best performance
compared with other algorithms in all SNR levels. Particularly in Scenario 3, the increased
correlation between columns of the observation matrix has severely affected the perfor-
mance of OMP−G and ADMM−G algorithms, resulting in larger RMSE values for range
and velocity in ADMM−G, as well as a larger RMSE for velocity in OMP−G. Simultane-
ously, the performance of the GI−MSBL algorithm is not stable, as it demonstrates relatively
large RMSE values under certain SNR conditions. In contrast, the proposed algorithms
and SBL-G are successful in consistently maintaining lower RMSE values for both velocity
and range, but the RMSE of SBL−G is still larger than that of the proposed algorithms.
This can be attributed to the fact that the proposed algorithm effectively mitigates the
impact of various factors on parameter estimation by utilizing the high sparsity of the
GDP distribution and implementing two rounds of hyperparameter updates during the
fine search process. For this reason, the proposed algorithm demonstrates superior noise
resilience compared to other algorithms.

3.4.3. Impact of Performance Due to Different Target Numbers

In addition to noise, it is also essential to investigate the impact of different numbers
of targets on performance. Therefore, the simulation is carried out under scenarios from
Scenario 3 to Scenario 7, where the range of target numbers varies from 3 to 7. For each
number of targets, results are obtained by averaging over 200 independent Monte Carlo
simulations. The simulation results are shown in the Figure 13.

As shown in Figure 13, the performance of all four algorithms demonstrates a declining
trend as the number of targets increases. This is mainly because an increasing number of
targets leads to reduced sparsity in the radar echoes, consequently affecting the recovery
performance. Importantly, the proposed algorithm demonstrates a relatively low sensitivity
to off−grid issues and the number of targets, therefore maintaining a reduced RMSE
compared to the other three algorithms. However, when the number of targets increases
to 7, the performance of the proposed algorithm experiences a substantial deterioration.
The specific simulation results of the proposed RGDP−SBL algorithm in Scenario 7 with
7 targets are illustrated in Figure 14.
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(a) (b)
Figure 13. Impact on performance due to target number variations in Scenario 3: (a) Range RMSE.
(b) Velocity RMSE.

As depicted in Figure 14, in Scenario 7, the proposed algorithm exhibited limitations
in accurately extracting the range−velocity information for Target 6 and Target 7, leading
to considerable errors. Consequently, there exists a significant scope for enhancing the
performance of the proposed algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Simulation results of the RGDP−SBL algorithm in Scenario 7: (a) Result of the coarse
search. (b) Result of the local fine search for Target 1. (c) Result of the local fine search for Target 2.



Remote Sens. 2024, 16, 403 25 of 28

(d) Result of the local fine search for Target 3. (e) Result of the local fine search for Target 4. (f) Result
of the local fine search for Target 5. (g) Result of the local fine search for Target 6. (h) Result of the
local fine search for Target 7. (i) The overall effect on the range−velocity plane.

4. Discussion
4.1. Discussion of Computational Complexity

The proposed RGDP−SBL algorithm assumes that the original signal follows a com-
plex GDP prior distribution, significantly increasing computational complexity. Therefore,
methods to reduce computational complexity are considered in both the coarse and fine
search parts. In Section 2.3, during the derivation of the coarse search part of the proposed
algorithm, it can be observed that only the diagonal elements of the posterior variance Σ

are utilized, therefore eliminating the need to compute the entire matrix, as compared to the
SBL algorithm in [22]. For the SBL algorithm in [22], the computational complexity mainly
originates from the calculation of ΦHΣy

−1Φ, thus the total computational complexity is
given by O(JN2 + J2N). The computational complexity required for the Σjj computation
primarily comes from the value of (ΦHΣ−1

y )jΦj in the proposed algorithm, and the total
computational complexity is given by O(JN2 + JN). The computational complexity of the
RGDP−SBL algorithm for RFPA radar is evaluated specifically for the coarse search part
since the off−grid scenarios are not considered in [22]. In the on−grid simulation case,
200 Monte Carlo simulations are conducted for each algorithm to obtain average run times,
facilitating comparative analysis. The average running time is shown in Table 6.

Table 6. The average running time of different algorithms.

Algorithms Target Scenarios Running Time (s) Computational
Complexity

SBL * in [22]
Scenario 1 0.43058

O(JN2 + J2N)Scenario 2 0.62564
Scenario 3 1.25592

RGDP−SBL−C **
Scenario 1 0.0887

O(JN2 + JN)Scenario 2 0.11848
Scenario 3 0.1267

* “SBL” refers to the algorithm in [22]. ** “RGDP−SBL−C” refers to the RGDP−SBL with only coarse search part.

Furthermore, during the fine search, the grid energy amplitude curve can be approxi-
mated as a convex curve with a turning point, which corresponds precisely to the grid point
required by the algorithm during the fine search process. This grid point can be converted
to range−velocity coordinates, enabling the parameters of the target to be obtained without
calculating the values of the grid energy, therefore reducing computational complexity.
Consequently, the use of methods to reduce computational complexity during both the
coarse and fine search processes can offset the increase in computational complexity caused
by the GDP distribution, as mentioned in Section 2.2.

4.2. Discussion of Performance

In previous studies, sparse reconstruction algorithms based on CS for RFPA radar
typically assume that targets are accurately positioned on range−velocity grid points.
However, this assumption can introduce substantial errors in scenarios where targets are
off−grid. Simultaneously, CS algorithms that employ the SBL method with simple model
priors also experience a decrease in the performance of target range and velocity parameter
estimation due to inadequate sparsity.

Therefore, to mitigate the impact of the off−grid problem, the proposed algorithm
is principally divided into two parts: coarse and fine searches. Moreover, the algorithm
employs the GDP distribution, which has stronger sparsity, to enhance the performance of
range and velocity parameter estimation. Under the on−grid assumption, the proposed
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algorithm outperforms the SBL, ADMM, OMP, and GI−MSBL algorithms due to its uti-
lization of the more sparsely intense GDP distribution. Additionally, under the off−grid
assumption, the performance of the proposed algorithm surpasses the other four algo-
rithms. In the fine search process, due to the secondary update of hyperparameters based
on the GDP distribution, the proposed algorithm achieves greater performance of sidelobe
suppression and higher precision compared to the GI−MSBL algorithm. Furthermore,
under varying SNR and different numbers of targets, the performance of the proposed
algorithm also outperforms the other four algorithms. Current research employs off−grid
CS algorithms based on SBL for the estimation of range−angle−velocity parameters. Con-
sequently, with the implementation of appropriate algorithmic modifications, the proposed
algorithm should be applicable within this field.

5. Conclusions

To enhance signal recovery performance and mitigate the impact of off−grid issues on
target parameter estimation for RFPA radar, this paper proposes an off−grid CS algorithm
named RGDP−SBL, which synergistically combines the SBL−based algorithm with grid
refinement. Specifically, the algorithm posits a GDP prior distribution for the original
signal and incorporates a two-stage coarse-fine search within the SBL framework. Through
comprehensive simulations, the performance of the proposed RGDP-SBL algorithm is
compared with other CS algorithms in terms of on−grid cases and off−grid cases. In
this study, the frequency agility range of the RFPA radar is observed to be relatively
limited, and the performance of the proposed algorithm significantly deteriorates when
dealing with many targets. Therefore, future research will emphasize improvements in
both aspects. Furthermore, we plan to adapt and innovate this algorithm for low-angle
tracking in future research, therefore facilitating the accurate estimation of distance-angle-
velocity parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

PRI Pulse Repetition Interval
RFPA Random Frequency and Pulse Repetition Interval Agile
CS Compressed Sensing
SBL Sparse Bayesian Learning
BP Basis Pursuit
ADMM Alternating Direction Method of Multipliers
NP Nondeterministic Polynomial
OMP Orthogonal Matching Pursuit
DOA Direction of Arrive
MIMO Multiple−Input Multiple−Output
CS−IGO CS−Iterative Grid Optimization
AMP−CTLS Adaptive Matching Pursuit with Constrained Total Least Squares
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PSO Particle Swarm Optimization
OGSBI Off−Grid Sparse Bayesian Inference
GI−MSBL Grid Interpolation-Multiple snapshot SBL
GDP Generalized Double Pareto
RGDP−SBL grid Refinement and GDP distribution based on SBL
CPI Coherent Processing Interval
PDF Probability Density Function
EM Expectation-Maximization
E−step Expectation step
M−step Maximization step
RMSE Root Mean Square Error
SNR signal−to−noise ratio
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