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Abstract: In response to the escalating demand for mineral resources and the imperative for sustain-
able management of natural assets, the development of effective methods for monitoring mining
excavations is essential. This study presents an innovative decision-making model that employs
a suite of spectral indices for the sustainable monitoring of mining activities. The integration of
the Combinational Build-up Index (CBI) with additional spectral indices such as BRBA and BAEI,
alongside multitemporal analysis, enhances the detection and differentiation of mining areas, en-
suring greater stability and reliability of results, particularly when applied to single datasets from
the Sentinel-2 satellite. The research indicates that the average accuracy of excavation detection
(overall accuracy, OA) for all test fields and data is approximately 72–74%, varying with the method
employed. Utilizing a single CBI index often results in a significant overestimation of producer’s
accuracy (PA) over user’s accuracy (UA), by about 10–14%. Conversely, the introduction of a set of
three complementary indices achieves a balance between PA and UA, with discrepancies of approxi-
mately 1–3%, and narrows the range of result variations across different datasets. Furthermore, the
study underscores the limitations of employing average threshold values for excavation monitoring
and suggests the adoption of dedicated monthly thresholds to diminish accuracy variability. These
findings could have considerable implications for the advancement of autonomous and largely
automated systems for the surveillance of illegal mining excavations, providing a predictable and
reliable methodology for remote sensing applications in environmental monitoring.

Keywords: Sentinel-2; spectral indexes; mining excavation detection; sustainable monitoring;
multitemporal analysis

1. Introduction

Every type of mining activity should be conducted in accordance with the mining and
geological law applicable in a given country. Unfortunately, numerous abuses still occur.
Such actions are harmful to mineral deposits and the natural environment, but they are
also dangerous for workers involved in illegal mining and pose a threat to public safety. In
Poland, between 2015 and 2022, 2627 reports of illegal exploitation were made, for which
penalties totaling nearly 43 million US dollars were imposed [1].

The aim of this research is to develop a method for detecting illegal mining sites and
open-pit mines located on the Earth’s surface. The use of publicly available multispectral
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satellite images allows for advanced remote analysis, which will enable a quick assessment
of the scale of rock raw material extraction in the indicated areas. This approach is much
cheaper, faster, and more convenient compared to traditional ground measurements.

The burgeoning interest in monitoring illegal mining activities through remote sensing
is a response to the escalating environmental and socio-economic impacts these activities
have globally. Illegal mining poses significant threats to ecological balance, often leading to
deforestation, soil degradation, and water contamination. Recent global studies, such as
those by [2,3], have highlighted these adverse effects and underscored the need for effective
monitoring mechanisms, Camalan et al. [4] provide a comprehensive overview of the
environmental repercussions of unregulated mining in various ecosystems, emphasizing
the role of advanced remote sensing techniques in mitigating these impacts. Lobo et al. [5],
on the other hand, delve into the socio-economic aspects, illustrating how illegal mining
fuels conflicts and undermines local economies.

In the conducted research, the concept of using spectral indices for reliably distin-
guishing excavation areas was adopted. Remote sensing differentiation of excavations
is a challenging issue, as they are characterized by a similar or almost identical spectral
response compared to exposed soils, which in turn show many spectral features common to
buildings. Therefore, the first step was to review the literature on existing spectral indices
dedicated to exposed soils, buildings, and minerals, assuming that they will be potentially
the best indicators for the research objective.

In the context of the escalating global crises of climate change and environmental
degradation, the sustainable management of natural resources has become a paramount
concern. The mining sector, as a significant contributor to these challenges, is in urgent need
of innovative approaches to ensure that its activities are conducted responsibly. This study
contributes to this need by presenting a novel method for the detection of illegal mining
activities, which are often overlooked yet have substantial impacts on the environment. By
leveraging the capabilities of multispectral satellite imagery, this research aligns with the
principles of sustainable production, offering a tool for the energy sector to monitor and
regulate mining operations more effectively.

Indices have been formulated since the 1980s, using only the four available bands
of the Landsat satellite (B, G, R, NIR), initially mainly related to biomass. Already then,
the first proposals for indices taking into account the influence of the soil background
appeared [2,3,6,7] as well as for detecting minerals [8]. With the increase in the number
of bands (especially covering the mid-infrared), indices related to detecting soils and/or
buildings were defined. In this first group, dedicated to the detection of exposed soils, there
were indices such as BSI [9,10], BCI [11], RNDSI [12], MNDBI [13], and MBI [14] (details
regarding equations as well as expanded acronyms to full names are explained further
in the text). In this group, primarily the differences in spectral reflectance noted between
the medium infrared SWIR2 and the visible channels are utilized. This is due to the high
reflectivity of exposed soils in the SWIR2 channel, with a decrease in spectral reflection
in this band for other classes. In the spectral indices (BSI, BSI_1, MBI), combinations of
SWIR2 with other infrared channels (SWIR1 and NIR) and/or results of the Tasseled Cap
transformation (BCI, RNDSI) are additionally taken into account. Intermediate features
were also used to detect exposed soils, for example, by defining indicators in terms of
shadow (ShDI [14]) or biomass (TCWVI [14], NDVI-GREEN [15]) or dry lands DBSI [16]).
Similarly, numerous equations were defined for detecting buildings: UI [17], NDTI [18],
BU [19], NDBI [9,19], 3BUI [20], BAEI [21], CBI [22], BRBA [23], NBAI_B [23], RUI and
NRUI [24], BLEIF [25], and NBAI_G [26]. This group of indices is more diverse, depending
on the analysis terrain, and it uses only differences in reflection noted between infrared
channels (UI, NDTI, NDBI), and combinations of—three or four—infrared and visible
channels (NBAI_B, NBAI_G, BLEIF), including in the unnormalized scale (3BUI, BAEI).
Many of the equations combine the action of other, basic indices (RUI, NRUI, CBI, BU), to
even more strongly utilize differences accentuated by the basic indices between the classes
of buildings, vegetation, and exposed soils. The large number of proposed spectral indices,
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having names like “urbanized zones” and “built-up”, in practice also serve as indices for
detecting soils, because—as mentioned earlier—the main problem in optical detection,
especially in dry zones, is the correct separation of soils from buildings. Therefore, some
of the indices related to detecting and differentiating soils and buildings are based on
detecting impermeable surfaces, such as NDSI [27] or PISI [26] or determining the shares of
built-up and vegetation pixels (VIBI [28]) or built-up and unbuilt lands (BBI [29]). Some
building and soil indices, developed for Landsat 8, are built using thermal channels, for
example, NDBaI [30], NDSI [31], EBBI [32], BAEM [33], NBLI [34], and DBI [16], assuming
the use of heating up of artificial zones is faster than that of natural ones.

The use of indices varies: from relatively simple solutions based on thresholding
and quantization of indices, including often new, original equations (e.g., [14,16,25,32,35]),
through to combinations of such operations [19,31,36] or the use of logical conditions
between index values [31], multi-indicator models [37–39], or the building of new indica-
tors based on existing indicators or results of linear image transformations [13,24,26,28],
ending with automatic procedures on spectral channels, but supplemented with spectral
indices [23,31,40–42].

From the literature review, it appears that spectral indices are most often used to
distinguish city boundaries from agricultural areas. Often these are dry, even semi-desert
areas, where the difficulty in distinguishing built-up areas from exposed soils and sparsely
vegetated areas, which are relatively common due to difficult climatic conditions, increases.
Only a few works concern the monitoring or detection of building materials occurring on
the surface, such as gravels, sands, or rock material in quarries. An example of a study
using the current capabilities of remote sensing imaging for detailed differentiation of
minerals, detectable thanks to rock outcrops, is the work of Sekandari et al. [42]. Tests were
conducted for northern Iran, based on Landsat, Sentinel-2, and World-View data. Spectral
indices and PCA transformation were used in the research. Band combinations, calculated
using the weighting of the red and blue bands and SWIR1/SWIR2, allowed iron oxides
and hydroxides to be distinguished from clay and carbonate minerals.

Another example of mapping construction materials—sandbanks and river gravel—is
the publication by Stančič et al. [43]. Using data from Landsat 8 and Sentinel-2, the authors
monitored the Soča river area in Slovenia. For mapping, they applied the classification
methods SAM (Spectral Angle Mapper) [44] and fuzzy SSMA (Spectral Signal Mixture
Analysis) (Unmixing) [43], additionally introducing indices MNDWI, NDWI, NDVI, NDII,
and NDVI-GREEN to the classification algorithm. A study closely related in theme to the
conducted research is the article by Usmanov et al. [45], concerning the detection of illegal
extraction sites of non-metallic minerals, such as sand pits, clay, carbonate rocks, and gravel.
The authors, focusing on the Tatarstan region and using Sentinel-2 data, employed several
spectral indices, mainly dedicated to soils but also vegetation (NDVI, R82, NDSI, DBSI, SMI,
IRI_SWIR1, CI, SRCI, BI, NDBI, SAVI, BSI). Using supervised classification, 10 available
channels, and 12 spectral indices, they selected the most effective combination of input data.
Their experiments showed that for detecting and distinguishing quarries, the simultaneous
use of two or more indices yields slightly better results than using spectral channels alone.
For sands, these were the CI and NDSI indices and the RED channel; for gravel, the CI
index and the BLUE and RED channels; for clay, the NDVI and NDSI indices and the RED
and SWIR1 channels; and for carbonate rocks, the SMI index and three visible channels.

Summarizing the literature review, it is worth noting the following:

(1) A large number of diverse spectral indices have been formulated, of which those
dedicated to buildings and soils are most useful for the research purpose set here,
while in many cases, plant indices also play a significant role; the experiences reported
in publications mainly concern the separation of major types of land cover, i.e., soil
versus buildings, and secondly, they characterize rock outcrops or soil subtypes;

(2) Despite the large number of developed indices and their documented usefulness, new
equations are still being built, even in the latest literature (e.g., [13,14,16,24,25,35]).
This is because, when analyzing specific areas for a specific purpose using specific
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satellite data, it is possible to achieve higher recognition efficiency thanks to new
indices tailored/created for specific needs;

(3) The methodology of using spectral indices is very diverse, and it is impossible to
indicate solutions that are clearly better or universal—in selected cases, simple thresh-
olding on indices gave higher accuracies than classification methods with introduced
index images (e.g., [13,31]), while in other cases, it is the opposite [25], so there is no
possibility to compare their mutual efficiency (e.g., [14,16,36,40,41]);

(4) In many studies, the adopted method of selecting threshold values could have influ-
enced the results obtained—there were methods of their manual setting, statistical
(like Otsu or using unsupervised classifiers), ending with logical or graphical condi-
tions used for multi-index methods; only a few publications tested the impact of the
way thresholds are set on the final result [16,26];

(5) Despite many years of experience, no uniform procedures have been developed,
even related to preliminary image processing; although, in most literature examples,
data are subjected to radiometric corrections (such as removing the influence of the
atmosphere, operating albedo values instead of DN, using higher levels of satellite
image processing, available mainly for new data sources such as Sentinel-2 or Landsat
8), this is not the rule;

(6) No uniform criteria for evaluating the performance of the methods and indices used
have been formulated; most often, accuracies are given for specific, sought-after types
of land cover classes—various accuracy measures are used here, such as PA (pro-
ducer’s accuracy), UA (user’s accuracy, reliability), and kappa—without specifying
the confidence level of the results, without specifying the selection strategy, and
sometimes even without the number of verification points [13,31,32,41,43], and there
are also many evaluations based only on photo-interpretation analysis (e.g., [23,41]);
there have been few attempts to show the differences in the operation of indices,
for example, by comparing the consistency of their operation [35], as a graphical
diagram [28], by using spectral separation measures [24] or studying the consistency
of PA and UA [10].

Based on the above, generalized conclusions, at this stage of the research, it was
decided to subject all the above-mentioned spectral indices of soil/building to uniform
tests, which can be directly applied or adapted for Sentinel-2 bands. This approach allowed
for an objective assessment of the efficiency of the indices, especially for the basic, atyp-
ical purpose, which is the additional distinction of excavations from exposed soils. The
adopted scope of research focused on specific conditions occurring in southern Poland.
In the assumed scope of research, the indices were used individually or complementarily
through specific decision and logical schemes—in both cases based on uniformly adopted
optimization of threshold values.

In summary, our research aims to develop an innovative method for the detection
of illegal mining sites and open-pit mines using multispectral satellite images, primarily
focusing on spectral indices. Our approach involves a meticulous examination of various
spectral indices, particularly those related to soils, buildings, and minerals, to distinguish
excavation areas from exposed soils and buildings, a challenging task due to their similar
spectral responses. We integrate the use of Sentinel-2 datasets, leveraging their rich spectral
information for precise and sustainable monitoring. Through this method, we intend
to contribute significantly to the field of remote sensing in environmental monitoring,
especially in the sustainable management of mining activities. Our study’s unique aspect
lies in its application of a diverse set of spectral indices, optimized thresholding techniques,
and a methodological framework structured in distinct phases to ensure the comprehensive
analysis and reliable detection of mining activities.

Furthermore, the proposed method supports the goals of environmentally responsible
consumption by providing a means to enforce compliance with mining regulations, thereby
ensuring that the minerals entering the supply chain are sourced sustainably. This is
particularly relevant in light of the increasing demand for minerals that are critical for
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green technologies, such as those used in renewable energy systems. The ability to monitor
mining activities remotely not only aids in the protection of the environment but also
promotes transparency and accountability within the supply chain.

2. Study Area and Source Data
2.1. Study Area

In the current research phase, three test areas (I, II, III) were identified in the south of
Poland, where diverse mineral deposits are available for exploitation (Figure 1). Each of the
areas exhibits distinct physiogeographic conditions, primarily influenced by the terrain and
geology, as well as by land use patterns. Within the physiogeographic regionalization of
Poland, two of the areas fall within the Polish Uplands belt: test field I in the Silesia-Kraków
Upland and test field II in the Małopolska Upland. In contrast, test field III is situated in
the Sandomierz Basin [46,47].
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Figure 1. Location and extent of the study areas: Areas I, II, and III, with the mineral
deposits highlighted in green. Background image © EU-Sentinel. False-color composite in-
frared (FCC CIR) image using Sentinel-2 satellite bands B08 (near-infrared), B04 (red), and B03
(green). L2A_T34UCA_A011788_20190609T094208 (I). L2A_T34UDB_A011831_20190612T095109 (II).
L2A_T34UDA_A012503_20190729T094242 (III).
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The first test field (I) covers the largest area, spanning over 2400 km2. This region
boasts a highly diverse topography: from the Vistula River valley in the south to the
limestone and dolomite outcrops in the east and north. The topographical range reaches
nearly 280 m. This area contains backfilling and foundry sands, natural aggregates, building
ceramic raw materials, limestones, dimension and crushed stones, as well as zinc and lead
ores. The next test field (II) occupies just over 1000 km2. It is also a region with significant
elevation differences: from the Nida River valley in the south to the sandstone, limestone,
and dolomite ridges in the central and northern parts of the area. The local relief is almost
200 m. This area is rich in limestones and marls for the lime and cement industry, natural
aggregates, and dimension and crushed stones. The last area (III) is the smallest, covering
705 km2, and is the least morphologically diverse—it is dominated by the broad, flattened
valley of the Dunajec River, with the highest loess-covered elevations located in the south.
This region is abundant in natural aggregates, building ceramic raw materials, and rock salt.

Drawing from the 2018 Corine Land Cover database [48], we categorized the land
into four primary classes: artificial surfaces (111–142), agricultural areas (211–243), forest
and semi-natural areas (311–333), and wetlands and water bodies (411–512). Despite
the pronounced spatial diversity in land cover across the selected research areas, the
proportional distribution among these classes remains notably consistent. The agricultural
areas class is predominant, ranging from 39% in test field I to 61% in test field II. This
is closely followed by the forest and semi-natural areas class, which varies from 21% in
test field III to 37% in test field I. Artificial surfaces account for a slightly smaller portion,
with its presence fluctuating between 15% in test field II and 20% in test field I. In each
area—regardless of its geographical location and topography—the wetlands and water
bodies occupy the smallest area (ranging from 0% to 2.5%), while mineral extraction sites
cover an average of 1.5% of the area.

2.2. Source Data

Multi-temporal Sentinel-2 datasets from 2019 were obtained for each designated test
area. The selection of the year for scene acquisition was guided by the availability of
corresponding reference data, predominantly the Corine Land Cover database from 2018.
The criteria for image selection included: a timeframe from April to September, a cloud
cover of less than 5%, a data processing level of L2A, and the requirement that test areas be
encompassed within a single scene (thus avoiding the need for mosaicking). The initial
plan was to acquire imagery at approximately monthly intervals, targeting six images
per test field. In practice, due to cloud cover, this criterion was not always met, and data
gaps were permitted, particularly on the peripheral segments of test field I (notably the
northwest corner of the scene). The image datasets that satisfied the selection criteria and
were subsequently utilized in the analysis are detailed in Table 1.

At various stages of the test work, the ability to efficiently use multispectral imagery
as a base for visual interpretation is crucial. Based on experience and the analysis of
color composition informational potential indicators (maximum orthogonal complement
information, MOCI; optimum index factor, OIF), a complementary set of color compositions
was adopted, consisting of four composites (Sentinel-2 channels in RGB display order):
B02-B03-B04 (denoted as CC TC), B03-B04-B08 (FCC CIR), B03-B11-B08 (FCC 3-11-8), B03-
B08-B12 (FCC 3-8-12). All Sentinel-2 A, B satellite scenes were downloaded from the
European Space Agency [49] service using the Semi-Automatic Classification Plugin in the
QGIS software platform [50].

Data on mineral resources found in Poland were obtained from the MIDAS database
of the Polish Geological Institute [51].
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Table 1. Characteristics of satellite data used in the analyses.

Study Site (Test Fields) Date
Repository, Data Acquisition;

Orthophoto, Level L2A.
WGS84/UTM EPSG: 32638

I

18 April 2019 L2A_T34UCA_A019953_20190418T095032
19 June 2019 L2A_T34UCA_A011788_20190609T094208

26 August 2019 L2A_T34UCA_A021812_20190826T095031
22 September 2019 L2A_T34UCA_A022198_20190922T094031

II

15 April 2019 L2A_T34UDB_A019910_20190415T094033
12 June 2019.06.12 L2A_T34UDB_A011831_20190612T095109
29 July 2019.07.29 L2A_T34UDB_A012503_20190729T094242
28 August 2019 L2A_T34UDB_A012932_20190828T094520

22 September 2019 L2A_T34UDB_A022198_20190922T094031

III

5 April 2019 L2A_T34UDA_A019767_20190405T094119
29 July 2019 L2A_T34UDA_A012503_20190729T094242

28 August 2019 L2A_T34UDA_A012932_20190828T094520
22 September 2019 L2A_T34UDA_A022198_20190922T094031

Satellite characteristics: Sentinel-2A, Sentinel-2B, band/central wavelength

Multispectral Bands (MS); spatial resolution 10 m;
Blue B02: 0.492/0.492;

Green B03: 0.560/0.559;
Red B04: 0.665/0.665;
NIR B08: 0.833/0.833

Multispectral Bands (MS); spatial resolution: 20 m;
RedEdge B05: 0.704/0.704
RedEdge B06: 0.740/0.740
RedEdge B07: 0.783/0.780

Narrow NIR1 B8A: 0.865/0.864
SWIR1 B11: 1.614/1.610
SWIR2 B12: 2.202/2.186

Multispectral Bands (MS); spatial resolution: 60 m
Coastal aerosol B01: 0.443/0.442

Water vapor B09: 0.945/0.943
SWIR Cirrus B10: 1.373/1.378

Color composites to enhance the photointerpretation properties (for each area, at each registration date)

Color Composites: True Color (CC TC); Bands B-G-R; B02-B03-B04
Color Composites: False Color (FCC CIR); Bands G-B-NIR; B03-B04-B08

Color Composites: False Color (FCC 1); Bands G-NIR-SWIR2; B03-B08-B12
Color Composites: False Color (FCC 2); Bands R-SWIR1-NIR; B04-B11-B08

3. Methods

The methodology employed in this study is structured into six distinct phases, each
building upon the previous to ensure a comprehensive analysis. These phases are delin-
eated and visually summarized in Figure 2.
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In Table 2, spectral indices for 34 indices prepared for application with Sentinel-2
bands are compiled. Indices that utilize thermal data and panchromatic imagery were
omitted. Indices that are repeated under different names were used once (such as NDSI,
NDBI, NDII). In ambiguous cases, when a medium infrared (MIR/SWIR) channel appears
in the spectral index, the assignment of the MIR/SWIR channel to SWIR1 (Sentinel-2, B11)
or SWIR2 (Sentinel-2, B12) was determined based on the source publications, by reading
the band characteristics used in the studies of individual authors (this was performed, for
example, for indices like NDII, NBI).

Table 2. Schematic representation of the workflow detailing the six main stages of the research
methodology.

No. Index Name Adopted Equations for Sentinel-2 SDI
exc-soi *

SDI
exc-bui *

1
3BUI (BI)

Three-band Urban Index (Barren
Index)

B04 + B11 − B08 0.74 1.38

2 BAEI
Built-up Area Extraction Index

B04 + 0.3
B03 + B11 0.64 1.08

3 BBI
Built-up and Bare Land Index

( B02 − B03
B02 + B03

)
+

(
B04 − B03
B04 + B03

)
0.62 0.65

4 BCI
Biophysical Composition Index

( TC1 + TC3
2 − TC2)

( TC1 + TC3
2 + TC2)

(TC1, TC2, TC3—transf. Tasseled Cap)
0.21 0.28

5 BI_Br
Brightness Index

√
B042 + B082 0.97 0.98

6
BLFEI

Built-up Land Features Extraction
Index

( B03 + B04 + B12
3 − B11)

( B03 + B04 + B12
3 + B11)

1.26 0.15

7 BRBA
Band Ratio for Built-up Area

B03
B08 1.53 0.27

8 BSI
Bare Soil Index

(B12 + B04) − (B08 − B02)
(B12 + B04) + (B08 + B02)

0.76 0.48

9 BSI_1
Bare Soil Index 1

(B12 + B04) − (B08 + B02)
(B12 + B04) + (B08 + B02)

1.00 0.28

10 BU
Built-up Index NDBI—NDVI 0.01 0.35

11 CBI
Combinational Build-up Index

( PC1 + NDWI
2 − SAVI)

( PC1 + NDWI
2 + SAVI)

NDWI = B03 − B08
B03 + B08

SAVI = (B08 − B04)
(B08 + B04 + 0.5) × 1.5

PC1, NDWI, SAVI—norm. to 0–1

1.32 1.06

12 CI
Crust Index 1 − B04 − B02

B04 + B02 1.21 0.32

13 DBSI
Dry Bareness Index

B11 − B03
B11 + B03 − NDVI 1.05 0.07

14 IBI
Index-based Built-up Index

2B11
B11 + B08 − [ B08

B08 + B04 + B03
B03 + B11 ]

2B11
B11 + B08 + [ B08

B08 + B04 + B03
B03 + B11 ]

0.83 0.12

15
IRI_SWIR1

InfraRed Index-Short Wave
InfraRed 1

√
B082 + B122

B11
0.90 1.07
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Table 2. Cont.

No. Index Name Adopted Equations for Sentinel-2 SDI
exc-soi *

SDI
exc-bui *

16 MBI
Modified Bare Soil Index

B11 − B12 − B08
B11 + B12 + B08 + 0.5 0.82 0.08

17
MNDBI

Modified Normalized Difference
Bare-land Index

B12 − B02
B12 + B02 1.27 0.25

18
NBAI_B

Normalized Built-Up Area Index
(Blue)

B12 − B08
B02

B12 + B08
B02

1.20 1.02

19
NBAI_G

Normalized Built-Up Area Index
(Green)

B12 − B11
B03

B12 + B11
B03

1.40 0.99

20 NBI
New Built-up Index

B04 × B11
B08 0.90 1.34

21

NDSI_1a/NDBI
Normalized Difference Soil

Index/Normalized Difference
Built-up Index

B11 − B08
B11 + B08 0.65 0.13

22
NDTI

Normalized Difference Tillage
Index

B11 − B12
B11 + B12 0.51 0.60

23
NDVI-GREEN

Normalized Difference Vegetation
Index—Green

B03 × B08 − B04
B08 + B04 = B03 × NDVI 0.00 0.63

24 NRUI
Normalized Ratio Urban Index

RUI − NDSI1a
RUI + NDSI1a

0.40 0.13

25
PISI

Perpendicular Impervious Surface
Index

0.8192 × B02 − 0.5735 × B08 + 0.075 0.71 0.35

26 R82
Ratio B08/B02

B08
B02 1.42 0.04

27
RNDSI

Ratio Normalized Difference Soil
Index

Normalized_NDSI2
Normalized_TC1

NDSI2 = B12 − B03
B12 + B03

TC1-soils (high albedo) from transf. Tasseled
Cap

NDSI2 i TC1—normalized to 0–1

1.12 0.72

28 RUI
Ratio Urban Index RUI = BCI

NDSI1a
0.29 0.16

29 ShDI
Shadow Index

2 × B08 − B12
2 × B08 + B12 − B08 − B02

B08 + B02 + 4 × B04 1.35 0.70

30 SMI
Salt Minerals Index

√
B022 + B032 + B042

B12
1.39 0.43

31 SRCI
Simple Ratio Clay Index

B11
B12 0.50 0.59

32
TCWVI

A Tasseled Cap Water and
Vegetation Index

TC1 − TC2
TC1 + TC2

from Tasseled Cap transformation:
TC1-gleby (low albedo for water);

TC2-vegetation;

1.06 0.28

33 UI
Urban Index

[
B12 − B08
B12 + B08 + 1

]
× 100 0.40 0.33

34 VIBI
Vegetation Index Built-up Index

NDVI
NDVI + NDBI 0.03 0.08

* Meaning of subscripts: exc-soi (excavation—soil), exc-bui (excavation—built-up).

The third test field served as the primary testing ground for the preliminary assess-
ment of the usefulness of spectral indices. Each of the spectral indices listed in Table 2 was
calculated using April data from Sentinel-2. At this stage, the usefulness of an index was



Remote Sens. 2024, 16, 388 10 of 30

determined by its ability to spectrally differentiate the main types of land categories. A
division into six broadly understood classes was adopted, the first three of which were par-
ticularly important for the research objective, namely (1) excavations (open-pit exploitation
of gravels, sands, quarries), (2) bare soils (in the area of agricultural lands/cultivations),
(3) built-up areas (all artificial lands—areas of compact and scattered development; commu-
nication lines, engineering structures, commercial and industrial areas), (4) low vegetation
(crops, meadows, pastures, fallow lands), (5) high vegetation (wooded areas, forest lands,
urban parks), and (6) surface waters (rivers, lakes, ponds, sedimentation tanks).

For each type of land cover, 340 training points were prepared (Figure 3). Their
identification was performed photointerpretatively. Based on experience and the analysis
of the informational potential of color compositions (MOIK, OIF), four color compositions
were considered complementary for such interpretative work (Sentinel-2 channels in the
BGR display order): B02-B03-B04 (designation CC TC), B03-B04-B08 (FCC CIR), B03-B11-
B08 (FCC 3-11-8), B03-B08-B12 (FCC 3-8-12).
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In the next step, utilizing the prepared training points, basic statistical parameters
such as mean pixel brightness and standard deviations were calculated for each of the six
main land cover categories. The potential for class separation was evaluated using the
Spectral Discrimination Index (SDI) as described by Radeloff [52] (1).

SDIa−b =
|µa − µb|
δa + δb

(1)

SDI is calculated for specified pairs of land cover categories. This measure examines
the difference between the mean brightness of class samples, expressed in units of their
standard deviations. Therefore, it takes into account both the differences in class brightness,
expressed in absolute values, and the variance of the classes under study. This allows for
an assessment of the extent to which the spectral characteristics of classes “overlap” on a
given image (for example, a spectral channel or spectral index).

Key SDI values for each of the indices are provided in Table 3. The compilation
includes only the following combinations of pairs as the classes most spectrally similar:
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excavation—bare soil; excavation—built-up area. Vegetation and water masking were
performed separately, using dedicated indices for this purpose (see the scheme in Figure 4,
and Equations (3) and (4)), and hence, reporting SDI for combinations including these
classes was unnecessary.

Table 3. Compilation of sample parameters for classes and adopted threshold values—an example of
three spectral indices with the highest SDI values for SDIexc-soi and SDIexc-bui in test field III, on 5
April 2019. The threshold values for the CBI index correspond to the curve intersections illustrated in
Figure 5.

Index Category Mean SD −2 SD +2 SD Min of the Range Max of the Range

CBI
excavations 0.138 0.028 0.081 0.195 0.101 0.195

soils 0.036 0.049 −0.062 0.134 0.018 0.101
built-up −0.027 0.127 −0.281 0.227 −0.281 0.018

NBAI_B
excavations −0.661 0.059 −0.779 −0.543 −0.740 −0.543

soils −0.782 0.031 −0.845 −0.719 −0.790 −0.740
built-up −0.810 0.083 −0.976 −0.644 −0.976 −0.790

NBAI_G
excavations −0.651 0.053 −0.756 −0.546 −0.725 −0.546

soils −0.778 0.038 −0.853 −0.702 −0.784 −0.725
built-up −0.803 0.100 −1.003 −0.602 −1.000 −0.784

The higher the SDI value, the less overlap there is between two classes. It is assumed
that an SDI < 1 indicates poor class separation, 1 ≤ SDI < 3 indicates good separation,
and SDI ≥ 3 indicates very good separation. This method has been successfully applied
to the assessment of spectral indices by researchers such as Piyoosh and Ghosh [24],
Bouhennache et al. [25] and Su et al. [53].
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It is easy to see that only a few of the tested spectral indices exceed an SDI value of
1. These are generally low values, which result from the significant spectral similarity of
the three classes compared at the beginning, as previously mentioned. The obtained SDI
results became one of the premises for the selection and choice of key indices for further
stages of work.

As thresholds for class recognition across the entire surface of the index images, equal
distances between pairs of classes were adopted, arranged according to increasing average,
and expressed in multiples of standard deviations of their samples (standardized distance).
This approach allows a balance to be maintained between overestimation errors (1-UA)
and underestimation errors (1-PA) of classes separated by the threshold (2).

thresholda−b = µa + δa × SDIa−b if µa < µb
thresholda−b = µa + δb × SDIa−b if µa < µb

(2)

where a, b are classes separated by the threshold value SDIa−b, according to (1).
The methodology for establishing classification thresholds is graphically elucidated in

Figure 5, which illustrates the intersections of the exponential functions representing the
normal distribution curves of the spectral values for each pair of land cover categories.

Extreme thresholds (minimum and maximum) were established at twice the standard
deviation from the mean for the classes with the lowest and highest averages, respectively
(indicated by red points in Figure 5). Through the process of quantization, commonly
referred to as ‘density slicing’ in remote sensing, four distinct categories were delineated
from each spectral index: excavation, bare soils, built-up areas, and ‘other’—a category
encompassing areas not classified within the three primary classes, with index values
falling outside the extreme threshold limits. Table 4 presents the characteristics of the class
samples and the threshold values set for the three indices that demonstrated the highest
effectiveness in SDI for excavation detection.



Remote Sens. 2024, 16, 388 13 of 30

Table 4. Compilation of the most efficient spectral indices for the detection of excavations, bare soils,
and built-up areas (in alphabetical order). Test field III. The most significant values determining the
choice of the index are highlighted.

Index
Excavation

PA UA PA + UA
2

SDIexc−soi ∗ + SDIexc−bui ∗
2

CBI 92.65 76.46 84.56 1.190
NBAI_B 88.53 76.59 82.56 1.113
NBAI_G 90.29 78.52 84.41 1.195

NBI 77.65 75.21 76.43 1.116
RNDSI 81.76 78.98 80.37 0.921
ShDI 85.53 77.60 80.57 1.022
3BUI 75.00 72.65 73.83 1.060

Index
Bare soils

PA UA PA + UA
2 SDIexc-soi

BLFEI 67.11 79.39 73.31 1.259
BRBA 67.35 84.81 76.08 1.535

BSI 80.00 71.39 75.70 0.760
BSI_1 83.53 73.58 78.56 0.998
DBSI 88.24 75.95 82.10 1.054
PISI 67.89 75.21 71.59 0.708
3BUI 75.59 81.07 78.33 0.743

Index
Built-up

PA UA PA + UA
2 SDI(exc-soi)-bui

BAEI 72.94 78.98 75.96 0.982
NBI 73.53 73.96 73.75 0.964

IRI_SWIR1 68.22 65.88 67.10 0.754

* Meaning of subscripts: exc-soi (excavation—soil), exc-bui (excavation—built-up).

As previously mentioned, the tested indices were designed by their creators for the
detection of soils and/or built-up areas. This task is understood and implemented in
various ways—some indices facilitate the detection of these classes relative to others, while
some primarily enable the differentiation between soils and built-up areas. The latter group
of indices often incorrectly separates these classes from others, even those as spectrally
distinct as surface waters and vegetation (e.g., with very low SDI values). Therefore, to
assess the actual utility of both groups of indices for the detection of excavations, a mask
was applied to the quantization result, which excluded forested areas, low vegetation,
and waters from the analysis. For this purpose, indices such as the NDVI (Normalized
Difference Vegetation Index) and the NDWI (Normalized Difference Water Index) were
utilized. Only then did the corrected class maps constitute the final result.

NDVI =
NIR − Red
NIR + Red

=
B08 − B04
B08 + B04

(3)

NDWI =
Green − NIR
Green + NIR

=
B03 − B08
B03 + B08

(4)

The practical assessment of the utility of indices is most commonly based on the
accuracies of the classes, kappa coefficients, and the overall accuracy of classification
(see [10,13,25,26,28,31,40]). This approach was also adopted here for the analysis of the
performance of the tested indices. The subsequent stages of the actions performed are
presented in Figure 4.

In the first stage, as outlined in Figure 4, accuracy metrics were calculated in reference
to the training points, which were treated as ‘ground truth’ for the computed error matrix.
The average Spectral Discrimination Index (SDI) results for the extraction sites (5) were
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compared with the average producer’s accuracy (PA) and user’s accuracy (UA) (6), obtained
for this class (Figure 6).

SDIavg_exc =
SDIexc−soi + SDIexc−bui

2
(5)

PAUA_avg_exc =
PAexc + UAexc

2
(6)Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 31 
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34 indices.

As illustrated in Figure 6, the correlation between the Spectral Discrimination Index
(SDI) for the entire set of 34 indices and the accuracy metrics is represented by a coefficient
of determination (R2) of 64.7%, with a correlation coefficient (r) of 0.804. This relationship
strengthens for indices with higher SDI values. By excluding results for SDI_avgexc less than
0.35, the coefficient of determination (R2) increases to 75.7%, with a correlation coefficient
(r) of 0.870.

Three indices with the highest SDI values (CBI, NBAI_B, NBAI_G) also achieved the
highest PA and UA values, averaging around 84%, which is approximately 4% higher
than the subsequent indices (Table 4). Among this trio, the choice of CBI is supported by
the highest SDI coefficient for the soil–urban area pair (0.36), compared to lower values
for NBAI_B (0.24) and NBAI_G (0.18). The CBI also records the highest potential for
excavation detection (PA = 92.65%), albeit at the expense of a slightly lower reliability
(UA = 76.46%). In subsequent steps, solutions aimed at improving the UA values for the
CBI index were sought.

The high efficiency of the first three indices can be explained by analyzing the spectral
response of the main types of land cover present in the study area. Figure 7 shows the
spectral curves, developed based on the average spectral responses from the training
points. Mining areas are characterized by the highest reflectance (except in the NIR, where
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vegetation dominates), followed by exposed soils and built-up areas. The patterns of the
curves for these three types of land cover are quite similar in shape.
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Figure 7. Spectral curves of the 6 main land cover categories, based on training points. Y-axis—spectral
reflectance value (albedo).

It seems that distinguishing mining areas from other land cover categories should be
relatively easy. However, an analysis of the variability of individual class samples indicates
their high degree of overlap (Figure 8). Therefore, the simple use of channels alone is not
sufficient to correctly separate these classes. Based on the following comparisons, it can
be observed that in visible channels there is a greater (though still small) differentiation
between mining areas and exposed soils than in infrared channels, especially SWIR. In
these channels, there is a significant mixing of spectral responses between mining areas and
built-up areas. The situation reverses in the infrared channels, particularly in SWIR. In these
channels, the mixing of built-up areas with mining sites is reduced, but unfortunately, there
is an increased spectral similarity between mining areas and soils. There is also spectral
overlap between vegetation and mining areas, especially in the NIR channel and, to a lesser
extent, SWIR1. The natural consequence of these observations is the complementary use of
visible channels along with mid-infrared channels, with a particular emphasis on SWIR2.
This task is accomplished by indices such as CBI, NBAI_B, and NBAI_G, although the
mechanism of CBI differs from that of the NBAI indices.

The NBAI_B index compares SWIR2 values with the proportion of the NIR channel
relative to the blue channel, while the NBAI_G index compares SWIR2 values with the
proportion of SWIR1 to Green. Since the curves for exposed soils and built-up areas lie
below the curve for mining areas, these ratios will have a higher value for these classes
than for mining areas. This ratio will be higher even in situations where there is a steeper
slope of the curve for mining areas, as is the case compared to the curve for built-up areas.
Therefore, the design of indices in this group allows for an additional emphasis on the
difference in reflectance increase between mid-infrared SWIR radiation and the visible area
for the mining class.
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Figure 8. Average spectral responses of the six main land cover categories for six Sentinel-2 bands.
Vertical lines indicate the range of ±2 × SD (Standard Deviation).

The CBI index is a complex indicator, based on principal component transformation
and two indices, NDWI and SAVI. The first principal component, PC1, dynamically con-
structs, based on the correlation matrix, a new range of image brightness, primarily aver-
aging information from highly correlated visible channels. Combined with the surface
water detection index, it provides a stable average, resistant to changes in land cover
that may occur in different research areas. This average is built on opposite objects in
terms of brightness: exposed soil and excavations (in PC1) and surface water (in NDWI).
Comparing such an image to the value of a biomass index that considers the influence of
soil background effectively differentiates areas with the highest reflectance from others, as
in practice, only these record positive index values. Simultaneously, there is a reduction
in the differentiation between water and vegetation areas. Only for the darkest surface
waters, similarly to objects with high reflectivity, can a positive index value occur, which
can confuse the result for these classes. This explains why the CBI index requires the
application of an additional mask to eliminate water classes, which can be traced by
comparing Figure 9A with B and Table 5A with B.
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Figure 9. Fragment of Test Field III—gravel pit area; classification result according to the decision algo-
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Table 5. Summary of class accuracies demonstrating the effectiveness of each segment of the decision-
making scheme presented in Figure 10. Applied to test field III, variant A.

BLOCK II (CBI Only, without BAEI, BRBA)

A
Ground Truth File

excav. Bare Soils Built-Up Rest Total UA [%]

classification
result

according to
the decision
algorithm

excavations 325 74 60 55 514 63.23
bare soils 15 177 70 92 354 50.00
built-up 0 89 201 237 527 38.14

other 0 0 9 636 645 98.60
total 340 340 340 1020 2040

PA [%] 95.59 52.06 59.12 62.35 OA = 65.64

BLOCK II (CBI only, without BAEI, BRBA), BLOCK III

B
ground truth file

excav. Bare soils built-up rest total UA [%]

classification
result

according to
the decision
algorithm

excavations 325 74 60 0 459 70.81
bare soils 15 177 70 0 262 67.56
built-up 0 89 201 5 295 68.14

other 0 0 9 1015 1024 99.12
total 340 340 340 1020 2040

PA [%] 95.59 52.06 59.12 99.51 OA = 84.22



Remote Sens. 2024, 16, 388 18 of 30

Table 5. Cont.

BLOCK II (CBI, BAEI, BRBA), BLOCK III

C
ground truth file

excav. Bare soils built-up rest total UA [%]

classification
result

according to
the decision
algorithm

excavations 308 74 26 0 408 75.49
bare soils 9 187 24 1 221 84.62
built-up 23 79 285 4 391 72.89

other 0 0 5 1015 1020 99.51
total 340 340 340 1020 2040

PA [%] 90.59 55.00 83.82 99.51 OA = 87.99

BLOCK II (CBI, BAEI, BRBA), BLOCK III, BLOCK I

D
ground truth file

excav. bare soils built-up rest total UA [%]

classification
result

according to
the decision
algorithm

excavations 307 5 26 0 338 90.83
bare soils 10 256 24 1 291 87.97
built-up 23 79 285 4 391 72.89

other 0 0 5 1015 1020 99.51
total 340 340 340 1020 2040

PA [%] 90.29 75.29 83.82 99.51 OA = 91.32

The average overestimation error for excavations using the CBI index for test field III
is 23.5%. A detailed error matrix analysis reveals that uncovered soils account for 13.5% of
the overestimation, while built-up areas represent 10.0%. No overestimation errors were
recorded for other areas (water, vegetation), confirming the effectiveness of the NDWI and
NDVI indices in masking classes secondary to excavations. To improve the user’s accuracy
(UA), it is necessary to eliminate as many false detections of excavations as possible while
maintaining a high producer’s accuracy (PA). Therefore, additional indices with very high
reliability in identifying soils and built-up areas were sought to be used complementarily
with the CBI index.

As previously performed for the excavation class (see Figure 4), accuracies for the
uncovered soil and built-up classes were calculated for individual indices. Table 5 lists the
results with the highest UA values, maintaining a PA greater than 65%. The most reliable
identification of uncovered soils was achieved with the BRBA index (UA = 84.81%), and for
built-up areas with the BAEI index (UA = 78.98%). The high UA values and relatively high
SDI in relation to the excavation class indicate that additional indices will ‘correct’ some
areas misclassified by the CBI as excavations to the correct classes, i.e., uncovered soils or
built-up areas.

Furthermore, changes within a single vegetation season were utilized. Having multi-
temporal images allowed for the verification of whether vegetation, even if only periodically,
appeared in areas identified as excavations. If so, this would indicate a misclassification of
the area as an excavation and necessitate correction to uncovered soils.

By integrating these individual actions, a final decision-making scheme was devel-
oped (Figure 10), based on a total of 5 spectral indices. ‘Block I’ includes multitemporal
analysis using NDVI. ‘Block II’ presents the results of the CBI index with improved UA
for excavations, achieved through the BAEI and BRBA indices. ‘Block III’ is a mask that
eliminates areas of water and vegetation for the given data acquisition period. Threshold
values were calculated separately for each of the three study areas. Variant A applies
average multi-month threshold values, while variant B uses monthly optimized averages
for each registration period (different vegetation periods).
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Figure 10. Flowchart for the detection of excavations, illustrating two thresholding approaches:
variant A applies average thresholds derived from multiple months for a given area (I, II, III); variant
B employs thresholds dedicated to a specific area and month of data acquisition.

Table 5 and Figure 9 demonstrates the impact of each analytical block element on the
final excavation detection results. It presents the accuracies for four classes (1—excavations;
2—exposed soils; 3—built-up areas; 4—other) derived from the April 2019 data for the
training area (test field III). The figure also includes a segment of the resulting image from
test field III (Figure 10), depicting an excavation site (gravel pit) adjacent to agricultural
and forested lands.

Table 5 and Figure 9 trace the influence of each block element on the excavation
recognition process. Initially, using only the CBI index (part A, Table 6, Figure 9) leads to
high producer’s accuracy but low user’s accuracy due to overclassification of the excavation
class. Introducing a water and vegetation mask (part B) corrects misclassifications over
water bodies, enhancing user’s accuracy (see Figure 9). Further refinement using BRBA and
BAEI indices (part C) improves the overall accuracy for all four classes. The multitemporal
analysis block (part D) fine-tunes the excavation class recognition, balancing both user’s
and producer’s accuracies.

4. Results and Discussion

The results of identifying areas of surface resource extraction are presented in Figure 11.
The detected areas for the scene from August, in Area II, are showcased.
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Figure 11. Test site II (August 2019) with distinguished excavations (in yellow) requiring field control.
Background image © EU-Sentinel. Sentinel-2. 15 April 2019, L2A_T34UDB_A019910_20190415T094033.

As can be observed, the developed methodology enables the automatic recognition of
various areas, including quarries, mines, and storage sites of extracted building materials
(refer to Figure 12). The cyclic utilization of up-to-date scenes, recorded by the Sentinel-2
satellite, allows for the ongoing monitoring of the size and changes in the designated
extraction areas, as well as the detection of emerging new areas. Comparing these data with
databases of registered mining concession sites enables the identification of areas requiring
field inspection. Key in this context is understanding the reliability of such indications and
being aware of the potential for overlooking certain situations.

The developed methodology and the expected benefits of applying an expanded
scheme of indicators required validation on independent sets of control points, appropri-
ately stratified. The main problem in their preparation was the significant surface area
disparity of the “excavation” class compared to other classes. Excavations account for about
0.43% of the total mineral area in test field I and up to 23.10% in test field II (see Table 6
and Figure 13). Random allocation of points across the entire area (weighted method)
would result in a small number of control points in the key excavation recognition area.
On the other hand, adopting an equal number of points for each class (as was used in
the learning phase) would inflate the consumer’s accuracy for the “excavation” class. An
intermediate solution was adopted here, following Olofsson et al. [54], where the number
of points allocated to the “excavation” and “non-excavation” classes are averages of both
approaches, with the overriding assumption that there should be about 50 control points
per 1 km2 of land. Details of the calculations are included in Table 6. Differences between
the theoretically calculated number of points and the number actually used result from
inaccuracies in the algorithms randomly generating points for the indicated polygons.
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Figure 12. Fragments of test areas with identified diverse open-pit mining objects (on the
left): Background image © EU-Sentinel. Sentinel-2. FCC CIR: (A) Area I—19 June 2019
(L2A_T34UCA_A011788_20190609T094208), porphyry mine (quarries); (B) Area II—15 April 2019
(L2A_T34UDB_A019910_20190415T094033), ‘Wola Morawicka’ Limestone Quarry (open-pit with
mineral stockpile); (C) Area III—29 July 2019 (L2A_T34UDA_A012503_20190729T094242), aggre-
gate mine (gravel pit) ZEK in Dwudniaki. The recognition results are marked in yellow on the
OpenStreetMap background.

The accuracy assessments conducted on control points across the three test sites (I, II,
III) for the various acquisition dates (April to September) and their corresponding averaged
values are presented in Table 7. The table delineates the accuracy metrics achieved for the
excavation class employing: (1) solely the CBI index complemented by a mask for water and
vegetation (as delineated in ‘Block III’); (2) a combination of CBI, BRBA, and BAEI indices
alongside the water and vegetation mask (as outlined in ‘Block III’); and (3) a comprehensive
framework incorporating the multitemporal analysis block (integrating CBI, BRBA, BAEI,
‘Block I’, and ‘Block III’). Each methodological approach, namely (1), (2), and (3), was
executed under two scenarios: Variant A, which utilizes mean threshold values derived
from the months of April to September, and Variant B, which applies thresholds specifically
tailored for each month. For the synthetic datasets (mean and standard deviations) listed
in the lower section of the table, the most favorable (indicated in green) and least favorable
(indicated in red) outcomes for the evaluated scenarios are indicated.
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Initial assessments, conducted on a training subset and based on the analysis of SDI
values along with accuracy metrics, underscored the necessity for devising a comprehensive
suite of indicators. This stemmed from the observation that no single indicator fulfilled the
anticipated objective of high-reliability excavation detection. Each of the five indicators,
ultimately incorporated into the decision-making framework, was intended to fulfill a
specific function: water detection (NDWI), vegetation (NDVI), excavation sites (CBI),
exposed soil (BRBA), and built-up areas (BAEI). The results documented (refer to error
matrices in Table 5, Figure 10) suggested the feasibility of enhancing the overall accuracy of
excavation identification.
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Figure 13. Example distribution of control points against a background of minerals (test field III);
1—excavations; 2—other land cover classes within the mineral areas. Background image ©
EU-Sentinel. Sentinel-2. 5 April 2019, FCC CIR (L2A_T34UDA_A019767_20190405T094119).
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Table 6. Summary of calculations associated with the preparation of stratified control samples for
three areas of analysis.

Test Areas Parameter Excavations in Mineral Areas Minerals/Minerals
without Excavations

Test field I
2430.64 km2

‘Exc’/‘Min’ Ratio 1/230.67

Exc = 0.43%
of mineral area

km2 4.87 1128.21/1123.34
Weighted Sample (at 100 pts/km) 487 112,334

Equal Sample (at 100 pts/km
for “Exc”) 487 487

Average from equal and
weighted method (487 + 487)/2 = 487 (487 + 112,334)/2 = 56,411

Final adopted sample 491 54,776

Test field II
1057.36 km2

‘Exc’/‘Min’ Ratio 1/4.33

Exc = 23.10%
of mineral area

km2 6.44 34.32/27.86
Weighted Sample (at 100 pts/km) 644 2786

Equal Sample (at 100 pts/km
for “Exc”) 644 644

Average from equal and
weighted method (644 + 644)/2 = 644 (644 + 2786)/2 = 1715

Final adopted sample 644 1689

Test field III
700.53 km2

‘Exc’/‘Min’ Ratio 1/34.88

Exc = 2.87%
of mineral area

km2 1.86 66.74/64.88
Weighted Sample (at 100 pts/km) 186 6488

Equal Sample (at 100 pts/km
for “Exc”) 186 186

Average from equal and
weighted method (186 + 186)/2 = 186 (186 + 6488)/2 = 3337

Final adopted sample 186 3242

Table 7. Detection accuracies for excavation areas utilizing the decision-making scheme depicted in
Figure 9 across Test Fields I, II, and III. The results are based on a stratified control sample, with color
coding to indicate performance: red denotes the least favorable outcome that discriminates against
the variant in question, while green signifies the most favorable or optimal result.

Test Field Months Index
CBI + BLOCK III CBI, BAEI,

BRBA + BLOCK III

CBI, BAEI, BRBA+ BLOCK
III + BLOCK I

(Multitemporal)

Variant A Variant B Variant A Variant B Variant A Variant B

I

IV

PA 84.3 76.2 55.2 51.5 55.2 51.5

UA 27.1 33.0 26.4 29.8 36.5 38.5
PA + UA

2 55.7 54.6 40.8 40.7 45.8 45.0

VI

PA 92.3 76.0 74.1 69.9 74.1 69.9

UA 20.4 35.1 34.9 42.3 36.8 43.5
PA + UA

2 56.3 55.5 54.5 56.1 55.5 56.7

VII no image data

VIII

PA 11.4 75.6 10.6 60.3 10.6 60.3

UA 44.4 34.0 45.6 47.5 46.4 48.8
PA + UA

2 27.9 54.8 28.1 53.9 28.5 54.5

IX

PA 65.6 73.1 49.3 61.1 49.3 61.1

UA 41.9 39.0 46.4 44.2 47.2 45.4
PA + UA

2 53.7 56.1 47.8 52.6 48.2 53.2

mean

PA 63.4 75.2 47.3 60.7 47.3 60.7

UA 33.5 35.3 38.3 41.0 41.7 44.1
PA + UA

2 48.4 55.3 42.8 50.8 44.5 52.4
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Table 7. Cont.

Test Field Months Index
CBI + BLOCK III CBI, BAEI,

BRBA + BLOCK III

CBI, BAEI, BRBA+ BLOCK
III + BLOCK I

(Multitemporal)

Variant A Variant B Variant A Variant B Variant A Variant B

II

IV

PA 79.0 81.1 74.7 75.9 74.7 75.9

UA 89.8 88.8 89.9 89.1 90.8 89.9
PA + UA

2 84.4 84.9 82.3 82.5 82.7 82.9

VI

PA 93.9 93.2 89.3 89.6 89.3 89.6

UA 87.2 88.6 89.3 89.6 89.3 89.7
PA + UA

2 90.6 90.9 89.3 89.6 89.3 89.7

VII

PA 84.5 89.9 82.9 82.1 82.9 82.0

UA 90.5 89.5 90.5 89.8 90.7 90.3
PA + UA

2 87.5 89.7 86.7 86.0 86.8 86.1

VIII

PA 90.1 88.0 86.8 82.9 86.7 82.6

UA 87.9 89.3 88.5 89.9 89.6 91.3
PA + UA

2 89.0 88.7 87.6 86.4 88.1 86.9

IX

PA 87.0 85.4 79.5 82.1 79.2 81.7

UA 91.1 91.7 92.3 92.5 93.9 94.3
PA + UA

2 89.0 88.5 85.9 87.3 86.6 88.0

mean

PA 86.9 87.5 82.6 82.5 82.5 82.4

UA 89.3 89.6 90.1 90.2 90.9 91.1
PA + UA

2 88.1 88.5 86,4 86.4 86.7 86.7

III

IV

PA 74.2 69.9 71.5 65.1 71.5 65.0

UA 68.0 76.0 71.1 79.1 78.7 82.3
PA + UA

2 71.1 73.0 71.3 72.1 75.1 73.7

VI no image data

VII

PA 88.7 90.9 83.9 85.5 83.9 85.0

UA 77.8 70.4 82.1 72.3 85.3 83.6
PA + UA

2 83.3 80.6 83.0 78.9 84.6 84.3

VIII

PA 85.0 86.0 80.1 76.3 79.6 74.7

UA 81.4 80.0 81.4 80.2 84.1 86.3

83.2 83.0 80.8 78.3 81.8 80.5

IX

PA 79.0 79.0 65.6 74.2 64.5 72.6

UA 81.7 79.0 84.1 81.2 89.6 86.5
PA + UA

2 80.4 79.0 74.9 77.7 77.0 79.6

mean

PA 81.7 81.5 75.3 75.3 74.9 74.3

UA 77.2 76.4 79.7 78.2 84.4 84.7
PA + UA

2 79.5 78.9 77.5 76.7 79.7 79.5
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Table 7. Cont.

Test Field Months Index
CBI + BLOCK III CBI, BAEI,

BRBA + BLOCK III

CBI, BAEI, BRBA+ BLOCK
III + BLOCK I

(Multitemporal)

Variant A Variant B Variant A Variant B Variant A Variant B

total,
meansofI
+ II + III

IV
PA 79.2 75.7 67.1 64.2 67.1 64.1

UA 61.6 65.9 62.5 66.0 68.7 70.2
PA + UA

2 70.4 70.8 64.8 65.1 67.9 67.2

VI

PA 93.1 84.6 81.7 79.8 81.7 79.8

UA 53.8 61.9 62.1 66.0 63.1 66.6
PA + UA

2 73.5 73.2 71.9 72.9 72.4 73.2

VII

PA 86.6 90.4 83.4 83.8 83.4 83.5

UA 84.2 80.0 86.3 81.1 88.0 87.0
PA + UA

2 85.4 85.2 84.9 82.5 85.7 85.2

VIII

PA 62.2 83.2 59.2 73.2 59.0 72.5

UA 71.2 67.8 71.8 72.5 73.4 75.5
PA + UA

2 66.7 75.5 65.5 72.9 66.1 74.0

IX

PA 77.2 79.2 64.8 72.5 64.3 71.8

UA 71.6 69.9 74.3 72.6 76.9 75.4
PA + UA

2 74.4 74.5 69.5 72.5 70.6 73.6

mean

PA 77.3 81.4 68.4 72.8 68.2 72.5

UA 66.7 67.1 69.4 69.8 72.3 73.3
PA + UA

2 72.0 74.2 68.9 71.3 70.3 72.9

total,
statistics

ofI +
II + III

SD

PA 21.5 7.5 21.3 11.4 21.3 11.2

UA 25.7 24.1 23.8 22.2 22.7 21.6

19.2 14.8 20.4 16.1 20.0 15.7

PA-UA 27.8 20.1 19.1 14.3 18.3 14.0

|PA − UA| 22.5 17.2 13.9 7.4 12.8 6.7

min

PA 11.4 69.9 10.6 51.5 10.6 51.5

UA 20.4 33.0 26.4 29.8 36.5 38.5
PA + UA

2 27.9 54.6 28.1 40.7 28.5 45.0

range

|PA − UA| 71.9 43.2 39.2 27.6 37.3 26.4

PA 82.5 23.3 78.7 38.1 78.7 38.1

UA 70.7 58.7 65.9 62.7 57.4 55.8

However, detailed analyses on control points revealed that the initial detection accura-
cies for CBI, when combined with the NDVI/NDWI mask (computed as the mean of PA
and UA), did not exhibit improvement. The principal advantage of integrating additional
indicators (BRBA and BAEI) and multitemporal analysis into the CBI was the average
elevation of consumer accuracy by 6.6%. Concurrently, there was a moderate decline in
producer accuracy, leading to a balanced PA and UA (with average-based discrepancies of
less than 1%, in contrast to 9–14%, when solely employing the CBI index). Attaining a high
overall class accuracy (OA), while equalizing producer (PA) and consumer (UA) accuracies
across classes, is acknowledged as beneficial. This is among the criteria for evaluating
various land cover and land use mapping methodologies (see [54–57]). Enhancements
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in outcomes from the CBI to the comprehensive scheme are observable in the table’s last
column, where numerous synthetic parameters attained optimal values (green), whereas
the initial variants predicated solely on CBI recorded the least favorable consumer accuracy
UA (66.7% and 67.1%).

Employing month-specific threshold values (‘B’ variants) yields, on average, results
approximately 2.5% superior to those using mean threshold values from multiple months
(‘A’ variants), with the exception of outcomes derived solely from the CBI index. The
primary gain from applying distinct thresholds for each month is the stabilization of
accuracy metrics. Utilizing mean thresholds led to pronounced fluctuations in PA/UA,
which were offset by unexpectedly high values in alternate months. This is particularly
evident in the test field I outcomes, where PA fluctuated from 10% (August) to 90% (June).
With variable thresholds tailored for each month, these disparities ranged between 50% and
70%. A similar, albeit less pronounced, reduction in UA variability is noted in ‘B’ variants
(ranging from 20–45% for mean thresholds to 33–47% for variable thresholds). These
advantages of ‘B’ variants are discernible in the table’s lower section, where unfavorable
outcomes marked in red predominate in the ‘B’ variant columns, effectively disqualifying
them as beneficial.

Across individual months, the results for May, August, and September are comparable,
within an OA range of 70–75%. The lowest accuracies were observed in April. The highest
average PA/UA values for July, as seen in Table 7, should be attributed to the absence
of data from this period for test field I, which generally recorded lower accuracies for all
months compared to the other two test areas.

The diminished accuracies for test field I result from a significant disparity between the
mineral surface area and the excavation surface area (a mineral area 230 times larger than
that of excavations). This discrepancy poses challenges in balancing the control sample,
consequently diminishing accuracies, particularly UA (averaging 44% for test field I, versus
85% for test field II and 91% for test field III).

The potential for integrating machine learning (ML) and deep learning (DL) methods
with spectral indicators in remote sensing for environmental monitoring, particularly in
the detection of mining activities, is a growing area of research. Advanced ML algorithms
such as random forest and support vector machines, as indicated in Carranza-García
et al. (2019), have been successfully applied to classify land cover changes with improved
accuracy [58,59]. These approaches can outperform traditional thresholding methods by
effectively managing multidimensional datasets and extracting complex patterns.

Deep learning techniques, particularly convolutional neural networks (CNNs), have
shown promising results in remote sensing feature extraction and classification tasks. A
study by Carranza-García et al. [60], Robinson et al. [61], and Tahir et al. [62] demonstrated
the effectiveness of DL in analyzing multispectral satellite imagery for environmental
changes. DL models, combined with spectral indices, can greatly improve the detection of
subtle landscape changes indicative of illegal mining activities.

Future research will focus on further leveraging ML and DL methodologies, adapting
them to the unique challenges of remote sensing in environmental applications. This
includes exploring new algorithmic approaches and integrating these techniques to more
accurately detect and monitor illegal mining activities.

5. Summary and Conclusions

In summary, the integration of remote sensing technology in mining surveillance
represents a step towards the adoption of low-carbon and non-polluting practices. By
reducing the need for on-site inspections and enabling rapid assessments, the ecological
footprint of monitoring operations can be significantly diminished. This aligns with the
broader objectives of the circular economy, where resource efficiency and waste reduction
are key.

Despite not achieving higher overall accuracies (averages of PA and UA values) in the
recognition of excavations, the multi-indicator method (CBI + BRBA + BAEI + multitemporal)
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is a better solution compared to the CBI method alone. When comparing synthetic measures
included in Table 7, it emerges as the method with the highest number of occurrences of
beneficial values relative to other variants. It is also one of only two methods where
critically poor values, marked in red in Table 7, do not occur (the other being the multi-
indicator method without multitemporal analysis). It stabilizes the results obtained both
across different months and test areas. Moreover, it reduces the differences between PA
and UA accuracies. This means that monitoring, continuously conducted according to the
proposed methodology, can provide predictable and reliable results even on a single set of
Sentinel-2 data.

It is noteworthy that the accuracy calculations conducted on control points encom-
passed a substantial sample size. In some cases, such as test field I, despite using a
mixed method for point stratification [54], several hundred points in the excavation area
corresponded to tens of thousands of points in other classes (see Table 6). This automat-
ically influenced the low UA values. However, it is clear that even with low UA values
(33% to 44%), the area of potential illegal excavations will be greatly narrowed (e.g., for test
field I from 1123 km2 to about 15 km2).

A drawback of the adopted solution is the necessity to establish threshold values
for new areas when monitoring excavations each time (variant B). It is possible to forgo
dedicated threshold values for each month (variant A), but this mainly results in a drop
in producer accuracy of about 4%, while maintaining UA values. However, the negative
effect of such simplification is a very high variability in results obtained on individual
datasets. In practice, this would mean that this method would be less reliable, especially
when working on a single set of image data—reliability would only increase with the
analysis of multitemporal data. Therefore, the authors see a solution primarily in the
introduction of additional radiometric correction of images, which would allow for the
preparation of universal threshold values for indices, to be used in any area of Poland,
and possibly even on data from different months. The correction method would have to
be partially automated, for example, using unsupervised classifiers. Another possibility
worth testing is the use of indices considered here as efficient (such as CBI, BAEI, BRBA,
and even NBAI_G, NBAI_B), as additional data for image classification, which could raise
the overall accuracy of excavation class recognition. The authors will continue research in
both these directions. The ultimate goal is to develop an autonomous, largely automated
system for monitoring illegal mining excavations.
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