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Abstract: Water scarcity is a significant challenge in China, and the South-to-North Water Diversion 

Project (SNWDP) aims to address the water deficit in the northern region. This study analyses Land-

sat 5/7/8 remote sensing imagery from 2001 to 2020 on the Google Earth Engine (GEE) cloud plat-

form to assess the impact of the SNWDP on surface water bodies in water-receiving areas. Moreover, 

by integrating MODIS evapotranspiration data and ERA5 meteorological reanalysis data, this study 

comprehensively assesses the SNWDP’s contribution to varied surface water body changes. Using 

an improved multi-temporal water frequency method, this study extracts max, seasonal, and year-

long water surface areas. The results reveal that Beijing and Henan provinces have experienced sig-

nificant increases in water surface areas post-SNWDP, with their max water surface area growing 

at a rate of 10.42 km2/yr and 33.49 km2/year, respectively. However, water surface areas in several 

provinces, especially those along the east route, were not observed to increase. The spatially detailed 

Mann–Kendall test indicates that the expansion of year-long water bodies is mostly concentrated 

near the central route project, revealing spatial heterogeneity in the water replenishment effect. 

Cropland and impervious surfaces are the main contributors to transfers in and out of water bodies. 

Meteorological and water use factors for spatial variations in water changes are also identified. 

These findings provide insights into the varied hydrological consequences of the SNWDP and con-

tribute to the evaluation and management of similar large-scale water diversion projects around the 

world. 

Keywords: water diversion; south-to-north water diversion project; long-term remote sensing;  

water body types; spatiotemporal change; Google Earth Engine 

 

1. Introduction 

Water security has persistently been a global challenge [1], and this issue is particu-

larly pronounced in China, which is densely populated and rapidly urbanizing [2]. As the 

world’s most populous nation with a highly uneven distribution of resources, China has 

long grappled with water scarcity and imbalanced water distribution [3,4]. According to 

relevant data, China’s per capita water resources amount to a mere 2200 m³/year, render-

ing extreme water scarcity a stark reality for the country [5]. In recent years, rapid urban-

ization and economic growth have intensified water demand, exacerbating water scarcity 

[6,7] and significantly aggravating China’s water crisis. Conversely, China’s water re-

sources exhibit a spatial distribution pattern characterized by less water in the north and 

more in the south, with northern regions confronting water scarcity [8,9]. As the second 

largest plain in China, the North China Plain supports 25% of the nation’s population but 
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possesses only 3% of its freshwater resources, resulting in a severe water crisis in the re-

gion [10–13]. To address the water shortage in North China, the Chinese government has 

introduced a series of policies and implemented various projects, with the South-to-North 

Water Diversion Project (SNWDP) being the most significant component. 

The concept of the SNWDP originated in the 1950s, but it was not systematically 

planned until the 1990s, with construction commencing at the turn of the century. The 

project is regarded as a landmark in modern water conservancy engineering in China, 

aiming to resolve the water shortage in the northern region through water diversion and 

reallocation [14]. The SNWDP is a significant endeavour consisting of three water transfer 

routes—East, Central, and West—that cover a large portion of China. The East and Central 

routes began supplying water to the North in 2014. Since its implementation, the SNWDP 

has been instrumental in mobilizing water resources [15], delivering over 50 billion cubic 

metres of water to northern China. It has contributed to economic development in the 

recipient region [16,17], improved the ecological environment [18–21], and alleviated 

pressure on water resources [22,23]. Previous studies have highlighted the role of the 

SNWDP in stabilizing and replenishing groundwater resources [24–26]. However, most 

of these studies have primarily relied on gravity satellites and statistical data to assess the 

project’s impact on land water storage, particularly groundwater, while overlooking 

changes in surface water. Surface water, as a crucial component of the terrestrial water 

cycle and water resources [27], holds significant importance for various aspects, such as 

human production, landscape ecology, and climate regulation [28–30]. Consequently, in-

vestigating the surface water variations in the SNWDP area is of significant importance 

for water resource protection and management. 

Surface water body changes are influenced by a multitude of factors, including both 

natural and social factors [31,32]. Therefore, to accurately analyse the contribution of the 

SNWDP to surface water body changes, it is crucial to identify various factors simultane-

ously. For instance, meteorological factors like temperature and rainfall directly impact 

the formation and disappearance of surface water bodies, while human activities like ur-

banization and agricultural irrigation also have significant effects [33]. When assessing the 

SNWDP’s impact, it is essential to comprehensively consider these factors and employ 

appropriate statistical methods to accurately evaluate the project’s influence on surface 

water body changes. Additionally, it is important to acknowledge that surface water body 

changes can vary across different regions and time periods. 

The SNWDP spans across Central and Northern China, where the industrial struc-

ture, economic conditions, intensity of human activities, and meteorological conditions 

exhibit significant spatial variations over different regions [34–38]. Furthermore, influ-

enced by the resource management policies of various regions, the water usage patterns 

and resource management models vary with regional differences [39–41]. Additionally, 

due to the variations in water resource depletion and carrying capacity in each region 

[42,43], the SNWDP has differing effects on water resource restoration in various areas 

[44,45]. Therefore, a detailed assessment for each region is necessary to accurately address 

the impact of the SNWDP on surface water changes in different areas.  

To identify the impact of the South-to-North Water Diversion Project on surface wa-

ter changes in different regions, it is first necessary to accurately extract the spatiotem-

poral distribution of surface water bodies. The advancement of remote sensing earth ob-

servation technology and the availability of extensive data sources have led to increasingly 

widespread applications of surface water extraction [46,47]. Remote sensing, with its ex-

tensive monitoring range, archived data, and high timeliness, offers effective technical 

support for water ecological environmental protection and water resource development, 

and it has been applied in certain areas of the SNWDP [48,49]. Currently, the prevalent 

methods for water body extraction are primarily divided into two categories: threshold 

methods and classification methods [50,51]. Among the threshold methods, the water 

body index method is widely employed and has demonstrated effectiveness in extracting 

water bodies. Zou et al. [52] integrated the findings of previous studies and multiple 



Remote Sens. 2024, 16, 378 3 of 29 
 

 

indices to accurately extract long-term series water bodies in the United States, and this 

approach has been successfully applied in China [2,53]. Therefore, this study was carried 

out using this widely adopted method and its optimized form to extract the spatiotem-

poral distribution of surface water bodies in the SNWDP areas. 

In light of these considerations, this study aimed to improve the method for extract-

ing the distribution of surface water bodies in the receiving areas of the SNWDP and an-

alyse the divergent changes in water bodies before and after the recharge. Long-term 

multi-source remote sensing images and reanalysis data were utilized based on the 

Google Earth Engine (GEE) cloud computing platform. This study investigates the spatial 

and temporal changes of water bodies in the areas influenced by the SNWDP and identi-

fies the driving factors behind these changes. It will provide a scientific basis for assessing, 

optimizing, and managing the effects of the SNWDP, and it can also support varied water 

transfer strategies according to local conditions. The findings of this study will contribute 

to the understanding of localized water resource management and provide a basis for the 

sustainable development of water-related projects. 

2. Data and Methods 

2.1. Study Area 

The primary research area of this study includes the eastern and central routes of the 

SNWDP, which covers an expansive region of 1.05 million km2 and encompasses 12 prov-

inces and 94 cities (Figure 1). The eastern route originates from the Jiangdu Water Con-

servancy Hub in Yangzhou City, Jiangsu Province, while the central route begins at the 

Danjiangkou Reservoir, located in the middle and upper reaches of the Han River, a major 

tributary of Yangtze River. The SNWDP is an extensive undertaking, boasting over 3000 

km of water conveyance infrastructure. It serves a population of nearly 400 million and 

spans multiple regions, including the North China Plain and the Huaihai Plain. 

 

Figure 1. SNWDP routes and the influenced regions. 
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2.2. Research Data 

This study primarily utilized seven categories of research data: meteorological data, 

evapotranspiration data, topographic and geomorphological data, remote sensing im-

agery, statistical data, land cover data, and fundamental geographic element data. The 

data were predominantly processed and extracted using the Google Earth Engine (GEE) 

platform, with some data being organized through ArcGIS.  

(1) Meteorological data mainly include annual precipitation (AP) and 2 m height air tem-

perature (Temp) derived from ERA5-Land reanalysis data [54]. These data have a 

spatial resolution of 0.1° × 0.1° and were analysed and extracted using the GEE plat-

form. ERA5 data have been proven to accurately represent the interannual and sea-

sonal characteristics of precipitation in China, making these data suitable for practical 

studies [55,56].  

(2) Evapotranspiration data primarily consist of MODIS evapotranspiration (ET) data, 

which have a spatial resolution of 500 m × 500 m [57]. 

(3) Topographic and geomorphological data are mainly derived from ALOS Earth ob-

servation DEM data [58], and these data have a spatial resolution of 30 m × 30 m. 

(4) Remote sensing images were obtained from the Landsat series of Earth observation 

satellites. All series of Landsat satellite images (5/7/8) of the South-to-North Water 

Diversion region from 2001 to 2020 were acquired using the GEE platform. The Land-

sat-5/7/8 images are courtesy of the U.S. Geological Survey. To ensure higher-quality 

images, this study employed the de-clouding algorithm CFMask to remove clouds, 

cloud shadows, and snow, resulting in a collection of high-quality images. A total of 

10,321 Landsat satellite images were used to extract water bodies within the research 

area (Figure 2). 

(5) The compendium of statistical data primarily encompasses information pertaining to 

the volumetric transference of water facilitated by the SNWDP across various prov-

inces and municipalities. Additionally, it incorporates data on the consumption of 

water in each respective province and city, and these data are further sorted into the 

following categories: agricultural water consumption (Agcwu), industrial water con-

sumption (Idswu), and the consumption of non-service public water use (Cnspwu). 

The aforementioned data were meticulously extracted from the bulletins of provin-

cial and municipal water resources. 

(6) Land cover data. The China land cover data (CLCD) used in this study were devel-

oped by Huang and Yang [59]. This dataset, with its 30 m resolution, boasts an overall 

accuracy of 80%, thereby outperforming other notable datasets such as MCD12Q1, 

ESACCI_LC, FROM_GLC, and GlobeLand30. For the purpose of this study, land 

cover data from the years 2013 and 2020 were harnessed to scrutinize the significant 

metamorphoses of aquatic body types within the geographical confines of the 

SNWDP. 

(7) Fundamental geographic element data, including Chinese provincial and municipal 

administrative boundaries, were sourced from the 1:1 million Chinese Basic Geo-

graphic Information Database of the National Basic Geographic Information Center. 

Using the GEE cloud computing platform, a comprehensive dataset for assessing sur-

face water frequency, temperature, precipitation, and evapotranspiration in the research 

area from 2001 to 2020 was obtained through calculations. 
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Figure 2. The distribution of Landsat 5, 7, 8 images for the SNWDP regions: (a) the total number of 

Landsat observations; (b) the total number of images from different Landsat sensors;(c) the propor-

tion of different Landsat sensors in each year. 

2.3. Research Method 

2.3.1. Water Body Extraction Method and Improvements 

In this study, the waterbody extraction algorithm devised by Zou et al. [60] was uti-

lized and enhanced to identify the distribution of waterbodies within the South-to-North 

Water Diversion Project’s zone of influence. The algorithm relies on the relationship be-

tween water body indices and vegetation indices for feature discrimination. Specifically, 

three indices were employed: the Modified Normalized Difference Water Body In-

dex (�����), the Normalized Difference Vegetation Index (����), and the Enhanced 

Vegetation Index (���). The calculations for these three indices are as follows: 

����� =
������ − ������

������ + ������

 (1)

���� =
���� − ����

���� + ����

  (2)

��� = 2.5 ×
���� − ����

1.0 + ���� + 6.0���� + 7.5�����

 (3)

where ������ represents the green band reflectance, ����  denotes the red band reflectance, 

�����   signifies the blue band reflectance, ������  corresponds to the short-wave infrared 

band reflectance, and ����  refers to the near-infrared band reflectance. Ultimately, the wa-

ter body discrimination algorithm, which incorporates the aforementioned indices, is as 

follows: 

����� = (��� < 0.1) ��� (����� > ��� �� ����� > ����) (4)

If the ��� value is below 0.1 and ����� exceeds either ��� or ����, the feature is 

identified as a water body. Building upon this, after classifying multiple images of the 
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same area within a year, the annual frequency of water body occurrences is calculated 

cumulatively. The frequency of water bodies is determined using the following formula: 

�(�) =
�

��
∑ ��,�

��

���
  (5)

where �(�) is the water frequency, a measure of the occurrence of water that ranges from 

a minimum value of 0 to a max value of 1; y is the year; �� is the total number of observa-

tions in a year for a certain image element; ��,� represents whether the image element is 

discriminated as a water body at the �th observation in the �th year (1 if it is a water body; 

0 otherwise). The figure below shows a flow chart of the algorithm’s entire process. 

In mountainous areas, there is a situation where water bodies are mistakenly identi-

fied as shadows of the mountains. Therefore, Zou et al. [52] used DEM data to calculate 

mountain shadows and improved the accuracy of water body identification. In this study, 

we used ALOS AW3D30 data to identify mountain shadows and remove their impacts on 

water body extraction. In practical situations, the shadows cast by buildings in urban areas 

can also be classified as water, thus affecting the accuracy of water body extraction, which 

has lacked consideration in previous algorithms. Particularly in the SNDWP’s region of 

influence, there are a large number of dense buildings, which can introduce errors in the 

extracted surface water bodies. To address this challenge, we integrated the global imper-

vious surface data published by Gong et al. [61] to mask out building shadows, resulting 

in more accurate water body frequency data (Figure 3). 

 

Figure 3. Flow chart for the extraction of different types of water bodies. 

In this study, the integration of DEM data and impervious surface data effectively 

reduced significant noise from the water frequency data. However, some image misclas-

sifications and omissions still remained. To address data-related issues and algorithm 

recognition errors, we implemented reasonable thresholds based on prior studies 

[52,60,62]. Specifically, we set the water body frequency threshold at 0.25 to minimize 

these impacts. Additionally, we categorized the water frequency threshold into three main 

classifications: seasonal water bodies (water frequency between 0.25 and 0.75), year-long 

water bodies (water frequency between 0.75 and 1), and max water bodies (water fre-

quency between 0.25 and 1, the union of seasonal water body and max water body). This 
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classification method enabled us to determine the annual distribution of seasonal, year-

long, and max water bodies within the regions influenced by the SNWDP. 

2.3.2. Spatial and Temporal Change Analysis 

The South–North Water Diversion Project’s central line and the east line were com-

pleted and first connected in 2014, marking a significant milestone. In order to analyse the 

impact of the SNWDP, we designated 2014 as the SNWDP reference point and conducted 

linear regression analyses on the water body areas before and after this year. This ap-

proach allowed us to observe the change trends for before and after the implementation 

of the SNWDP, and we also used the following equation to do this: 

�� = ��� + �� (6)

where ��  is the area of the water body in the ith region, �� is the slope of the � th region, 

and � is the year. In this study, we set 2014 as the breakpoint year and conducted seg-

mented linear regression before and after the breakpoint year to observe the change trends 

regarding the surface water body areas in each region before and after the SNWDP. 

In order to further investigate the spatial variation in the water body areas and the 

spatial and temporal changes in rainfall and evapotranspiration from a spatial perspec-

tive, the Mann–Kendall test [63] and Theil–Sen Median method [64] were employed to 

examine spatial variations on different raster scales. The Theil–Sen Median is commonly 

used to estimate the average rate of change and trend in time series, and in this study, it 

was utilized to calculate the slope � of the time series data. For time series data �� = (��, 

��, …, ��), it can be expressed by the formula: 

� = ������ �
�� − ��

� − �
� , ∀� > � (7)

where ������ is the median function. If � > 0, it indicates an upward trend in the time 

series data, while if � < 0, it suggests a downward trend. 

The Mann–Kendall test is a widely used technique for trend analysis in environmen-

tal data series. It is particularly effective in detecting monotonic trend changes and iden-

tifying potential turning points in time series data. The calculation process involves deter-

mining the relationship between the magnitudes of �� and �� for all pairs of values (repre-

sented as �) for a set of time series data ��= (��, ��, …, ��). The test is based on two as-

sumptions: (1) ��: the data in the series are randomly arranged, indicating no significant 

trend; (2) ��: there exists an upward or downward monotonic trend in the series. The test 

statistic S is calculated as follows: 

� = ∑ ∑ ������ − ����
�����

���
���   (8)

������ − ��� = �

+1, �� − �� > 0

0, �� − �� = 0

−1, �� − �� < 0
 (9)

where the selection of the significance test statistic depends on the length of the time se-

ries, denoted as n. When n < 10, the statistic S is directly used for the two-sided trend test. 

At a given significance level � , if |�| ≥ ��/� , then ��  is rejected, indicating a significant 

trend in the original series. Conversely, if |�| < ��/�, �� is accepted and the series is con-

sidered to have an insignificant trend. If � > 0, the series is considered to have an upward 

trend. If � = 0, there is no trend, and if � < 0, a downward trend is considered to exist. 

When � ≥ 10, the statistic � approximately follows a standard normal distribution, and 

the trend test is performed using the test statistic �. The formula for calculating the value 

of � is as follows: 
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� =

⎩
⎪
⎨

⎪
⎧

� − 1

����(�)
, � > 0

0, � = 0
� + 1

����(�)
, � < 0

 (10)

where ���(�) = (�(� − 1)(2� + 5) − ∑ ��(�� − 1)(2�� + 5)�
��� )/18; � is the number of data 

points in the time series; m represents the number of knots (recurring datasets) in the se-

ries; �� is the width of the knot (the number of repeated data in the ith set of repeated 

datasets). For the trend test, a two-sided approach is adopted. The critical value ����/� is 

checked in the normal distribution table at a given significance level α. When |�| ≤ ����/�, 

the original hypothesis was accepted and the trend was not significant; if|�| > ����/�, the 

original hypothesis was rejected and the trend was considered significant. 

To examine the spatial and temporal variation characteristics of each parameter on a 

larger scale, this study utilized the aggregation tool to consolidate data on water bodies, 

ET, AP, and Temp into percentage data at a 0.5° × 0.5° spatial unit. Moreover, to capture 

more detailed trends in surface water bodies, the water body data were further aggregated 

into percentage data with a 1 km × 1 km scale to examine the spatial and temporal dynam-

ics of the surface water changes across the different regions. 

2.3.3. Quantify the Impacts of the SNWDP on the Water-Receiving Areas 

In order to characterize the recharge intensity of the water-receiving areas of the 

South-to-North Water Diversion Project, two indices are proposed in this study: recharge 

water intensity (RWI) and recharge surface water intensity (RSWI). 

��� =
Received water volume

Total Area
 (11)

���� =
Received water volume

Max water area
 (12)

where Received water volume denotes the amount of water transferred by the SNWDP in 

the year for the region, Total Area denotes the total area of the region (including non-

water areas), and Max water area denotes the maximum water body area of the region in 

the previous year, which does not include non-water areas. By using the above two equa-

tions, we calculated the RWI and RSWI of each water-receiving area of the SNWDP to 

represent the recharge intensity through the project. 

To examine the effect of the SNWDP on water bodies in the receiving areas, linear 

regression analyses were conducted to explore the role of different factors on the area of 

different water bodies. These factors mainly include Agcwu, Idswu, Cnspwu, ET, AP, 

Temp, and SNWDP water transfer volume. In addition, a land transfer matrix based on 

CLCD data was used in this study to explore the major changing traces of water bodies. 

Finally, to assess the impact of the SNWDP on changes in surface water area, correlation 

analysis was employed.  

3. Results 

3.1. Assessment of the Accuracy of Water Body Extraction 

We selected four classic cities in the North China Plain, all are situated near the cen-

tral route of the South-to-North Water Diversion Project, are characterized by high build-

ing density, and have been significantly impacted by the project (Figure 4). The figure 

reveals that the pre-improvement original algorithm in these areas mistakenly identified 

numerous building shadows as water bodies. In contrast, our improved algorithm effec-

tively mitigates errors due to building shadows and efficiently extracts the spatial 
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distribution of surface water bodies, thus proving the algorithm’s enhanced applicability 

in areas with densely populated human settlements. 

 

Figure 4. Comparison of water body extraction methods in high-density built-up areas (Zou et al., 

2017 [52]). 

In this study, the extraction of max, year-long, and seasonal water bodies was con-

ducted by utilizing consistent imagery and methodologies to ensure comparability in 

terms of classification accuracy. Year-long water bodies were used as the reference for our 

accuracy assessment. Visual interpretation techniques were employed to distinguish gen-

uine water body image elements from non-water body image elements in the remote sens-

ing imagery. The accuracy of the extracted water bodies was then evaluated using a con-

fusion matrix. 

Table 1 shows the accuracy results for year-long water bodies, with a user accuracy 

of 94.04%, a producer accuracy of 97.54%, and an overall accuracy of 96.16%. The Kappa 

coefficient, which measures agreement beyond chance, is 0.95, indicating that the algo-

rithm used to ensure the classification accuracy of the water bodies in this study yields 

superior outcomes and precisely delineates the distribution of water bodies within the 

area influenced by the SNWDP. 
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Table 1. Confusion matrix of water body classification results based on Landsat 5/7/8 images. 

Classification (2020) Water Non-Water Total User Accuracy (%) 

Water 915 58 973 94.04 

Non-water 23 1116 1139 97.98 

Total 938 1174  OA = 96.16 

Producer accuracy (%) 97.54 95.06  Kappa = 0.95 

3.2. Changes in a Specific Water Body in a Typical Area 

Due to the significant impact of the SNWDP, the Miyun Reservoir—the northernmost 

receiving area—was chosen as a representative region in this study to examine changes in 

its water body area. Constructed in the 1960s, the Miyun Reservoir has been a crucial wa-

ter source for Beijing. However, factors such as climate change and rapid urbanization 

have resulted in a decline in the reservoir’s water storage capacity, leading to severe water 

shortages in Beijing. 

As shown in Figure 5, the max water body area of the Miyun Reservoir showed a 

decreasing trend before 2014. However, after 2014, the max water body area of the Miyun 

Reservoir showed a significant increasing trend (p < 0.01). Specifically, from 2001 to 2004, 

the max water body area of the Miyun Reservoir continued to decrease, became stable 

from 2005 to 2014, and then rapidly increased after 2014. 

Furthermore, it is crucial to recognize that changes in surface water bodies are influ-

enced not only by the SNWDP but also by meteorological factors and human activities. 

While remote sensing images reveal a trend in water body changes consistent with the 

impact of the project, it is necessary to delve into later sections to discuss the specific and 

detailed effects of the project on surface water bodies. 
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Figure 5. Changes in max water body area in the Miyun Reservoir. 

3.3. Temporal Trends 

3.3.1. Trends in Max Water Body 

Figure 6 shows the change trend regarding the max water bodies in the regions in-

fluenced by the SNWDP. As the SNWDP’s east and central routes commenced operations 

in 2014, this year was selected as the starting point at which we began evaluating the 
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SNWDP’s impacts. Trends before and after 2014 were analysed separately. Our findings 

reveal that, except for Hebei Province, the max water body area in the other regions ex-

hibited a decreasing trend prior to 2014. Specifically, Jiangsu Province (62.59 km2/year, R2 

= 0.46, p = 0.01), Henan Province (10.20 km2/year, R2 = 0.43, p = 0.02), Shandong Province 

(27.11 km2/year, R2= 0.60, p = 0.01), Shanghai City (4.61 km2/year, R2 = 0.65, p = 0.01), and 

Tianjin City (33.14 km2/year, R2 = 0.41, p = 0.01) all experienced a significant decreasing 

trend. Interestingly, after the first water connection, most of these regions experienced a 

reversal in their declining trends. Notably, Henan Province (33.49 km2/year, R2 = 0.56, p = 

0.05) and Beijing City (10.42 km2/year, R2 = 0.68, p = 0.02) displayed the most significant 

increases in water body area. Although Jiangsu Province, Hubei Province, Shandong 

Province, and Tianjin City did not exhibit significant increases, they did deviate from their 

original continuous declining trends. Hebei Province initially showed a significant in-

creasing trend until 2014 (19.03 km2/year, R2 = 0.60, p = 0.01), but after 2014, it changed its 

original trend. In contrast, the max water body area in Zhejiang Province displayed a rel-

atively smooth change, without a clear trend. Overall, the most significant increases in the 

max water body area were observed in Henan Province and Beijing after 2014. 

 

Figure 6. The trend regarding the max water bodies for different regions. 
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3.3.2. Trends in Year-Long Water Body 

Based on Figure 7, the year-long water body changes in different regions exhibited 

various trends. Prior to 2014, some regions had a decreasing trend in their water body 

area, such as the total region, Jiangsu Province, Shanghai City, and Tianjin City. Specifi-

cally, the total region initially showed a short-lived increasing trend between 2001 and 

2004 but later displayed a significant decreasing trend (77.47 km2/year, R2 = 0.47, p = 0.01). 

Similarly, Shanghai City (1.63 km2/year, R2 = 0.27, p = 0.06) and Tianjin City (21.63 km2/year, 

R2 = 0.44, p = 0.01) also showed a decreasing trend. However, after 2014, the trends of these 

regions changed and they started exhibiting an increasing trend, except for Shanghai City, 

which continued to show a decreasing trend. The increasing trend became more signifi-

cant and obvious in Henan Province and Beijing City. The year-long water body areas in 

Zhejiang Province and Hubei Province were more variable, making it difficult to observe 

clear changes after the implementation of the SNWDP. Overall, based on evaluating the 

change trends and their significance, the most significant changes were observed in Henan 

Province and Beijing, both of which showed significant increases after 2014. 

 

Figure 7. The change trend regarding the year-long water bodies in different regions. 
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3.3.3. Trends in Seasonal Water Body 

Based on Figure 8, the change trend regarding seasonal water bodies is more similar 

to that of the max water bodies. Until 2014, most regions (except Hebei Province and 

Zhejiang Province) showed a decreasing trend in their seasonal water body areas. Specif-

ically, the total region showed a significant decreasing trend (122.07 km2/year, R2 = 0.43, p 

= 0.01), along with Hubei Province (18.43 km2/year, R2 = 0.23, p = 0.08), Shandong (68.71 

km2/year, R2 = 0.57, p = 0.01), Shanghai city (2.97 km2/year, R2 = 0.56, p = 0.01), and Tianjin 

city (11.51 km2/year, R2 = 0.21, p = 0.10). However, after 2014, the total region, Jiangsu Prov-

ince, Hubei Province, and Shandong Province exhibited an increasing trend in their sea-

sonal water body areas. Notably, Shandong Province showed a significant increasing 

trend (22.17 km2/year, R2 = 0.56, p = 0.05). The change trend for Hebei Province was differ-

ent from that of the other regions. It showed a significant increasing trend until 2014 (10.65 

km2/year, R2 = 0.56, p = 0.05) but no longer exhibited an increasing trend after 2014. In sum-

mary, based on the evaluating change trends and their significance, the most pronounced 

change in seasonal water bodies was observed in Shandong Province, which showed a 

significant increase after 2014. 
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Figure 8. The change trend regarding the seasonal water bodies in different regions. 

3.4. Detailed Spatial and Temporal Trends 

The spatial and temporal trends regarding evapotranspiration (ET), temperature 

(Temp), and annual precipitation (AP) in the SNWDP-affected regions were analysed us-

ing the MK test, and our results are shown in Figure 9. The results revealed interesting 

findings. Regarding annual precipitation (AP), most areas within the zone of influence 

did not exhibit a significant trend, indicating a high level of AP volatility. However, cer-

tain areas in Shandong Province showed significant decreases in AP. Conversely, a few 

areas at the source of the eastern route displayed significant increases in AP.  
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When analysing different water body types, significant increases in max water bodies 

in the southern source area of the central route and near the central route were observed. 

In the eastern route, the significant increases were mainly concentrated near Dongying 

City, Shandong Province. However, in Tianjin and most of the eastern part of Shandong 

Province, the max water body showed a significant decreasing trend. Year-long water 

body showed a significant increasing trend in most regions, except for Tianjin City. The 

regions around the central route all showed a significant increasing trend, revealing the 

effect of extra water supply in this area. The eastern Shandong Province and Shanghai 

City, which are distant from the route, continued to display a significantly decreasing 

trend in year-long water body. 

In addition to the aforementioned trends, it is worth noting that the significant in-

creases in seasonal water body were mainly concentrated in the Hebei Province section of 

the SNWDP’s central route. This could potentially be attributed to China’s ecological re-

plenishment program, which has been in place since 2018. However, in the receiving areas 

located farther from the central route, there was predominantly a significant decrease in 

seasonal water body. The trend of seasonal water body in the eastern part of Shandong 

Province was the same as that of the max and year-long water bodies, which also showed 

a decreasing trend. However, it is important to note that Dongying city at the Yellow River 

estuary stood out as an exception, as it still showed a significant increasing trend in sea-

sonal water body. 

 

Figure 9. MK test results for 2001–2020 at a scale of 0.5° × 0.5°. 

Based on this study, the trends of various components, including the max water 

body, year-long water body, seasonal water body, evapotranspiration (ET), annual pre-

cipitation (AP), and temperature (Temp), were analysed using the MK test. The analysis 

focused on the trends before and after the implementation of the SNWDP, using 2014 as 

the inflection point. The outcomes are presented in Figure 10. Upon dividing the data us-

ing 2014 as the breakpoint, it becomes evident that each component exhibits distinct 

trends before and after the implementation of the SNWDP. Our analysis allowed for a 
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clear comparison between the pre-SNWDP and post-SNWDP periods, shedding light on 

the effects of this significant event on the studied components. 

 

Figure 10. Trends before and after the implementation of the SNWDP at a scale of 0.5° × 0.5°. 
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The impact of the SNWDP event resulted in distinct changes in the year-long water 

body, max water body, and seasonal water body. Prior to the implementation of the 

SNWDP, there was a significant increase in year-long water body that was primarily con-

centrated near Shandong Province along the east route. Conversely, after the implemen-

tation of the SNWDP, this prominent increase shifted towards the middle route. Further-

more, certain areas in the headwaters of the eastern route showed a notable decreasing 

trend prior to the implementation of the SNWDP, but this trend was no longer observed 

afterwards. It is worth mentioning that Tianjin continued to experience a decline even 

after the implementation of the SNWDP. 

Following the implementation of the SNWDP, the regions where the max water body 

primarily increased were concentrated in the middle route area, the western part of Hebei 

Province, and Shandong Province. However, before the SNWDP, the increases were 

mainly concentrated in Shandong Province and the northern part of Hebei Province. With 

respect to seasonal water body, it is evident that before the SNWDP, only a few areas 

showed an upward trend, while many areas demonstrated a downward trend. However, 

after the SNWDP, the areas with significant decreases noticeably diminished, while the 

areas with significant increases expanded mainly along the central route, the northwest-

ern part of Shandong Province, and the northern part of Jiangsu Province along the east-

ern route. 

Prior to the SNWDP, Henan Province was the main region experiencing a significant 

decrease in annual precipitation (AP). However, after the implementation of the SNWDP, 

a significant increasing trend in AP was observed in northwestern Shandong Province. 

Although there was a noticeable upward trend in temperature between 2000 and 2020, 

this pattern did not continue after the division caused by the SNWDP. ET also exhibited 

varying patterns before and after the SNWDP, but generally maintained an increasing 

trend. 

The surface water body in the study region primarily consists of rivers, lakes, and 

reservoirs, making it challenging to identify trends at a coarse scale of 0.5° × 0.5°. There-

fore, in this study, we reanalysed the trends regarding seasonal and year-long water body 

before and after the implementation of the SNWDP using a finer 1 km × 1 km raster and 

the MK test. Figure 11 illustrates the changes in year-long and seasonal water body at the 

1 km scale in various regions. It can be observed that the trend of river water body near 

the SNWDP area in Hebei Province can be clearly discerned. 

The implementation of the SNWDP has had a positive impact on both seasonal and 

year-long water body. It reversed the declining trend witnessed by some rivers prior to 

2014, leading to a clear upward trend in the downstream area near the central route. Spe-

cifically, the Miyun Reservoir, which is in the north end of the receiving area of the central 

route, experienced a significant increase in year-long water body after the implementation 

of the SNWDP. This increase has effectively alleviated the pressure on Beijing’s water sup-

ply and contributed to the growth of the reservoir’s water volume. Similarly, the Dan-

jiangkou Reservoir, the source of the central route, has also seen a comparable and signif-

icant increase in surface water area after the implementation of the SNWDP.  
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Figure 11. Trends before and after the implementation of the SNWDP at a scale of 1 km × 1 km in 

typical regions: (a) the part of the middle line project’s zone of influence; (b) part of the central 

(a)

(b)

(c)
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project’s zone of influence and Danjiangkou reservoir; (c) Miyun reservoir and the part of the east 

line project’s zone of influence. 

3.5. Drivers of Change in Water Bodies 

In this study, linear regression was employed as a tool to elucidate the factors influ-

encing the alterations in the spatial extent of various water bodies within the recipient 

regions, as delineated in Table 2. Table 2 reveals that agricultural water consumption 

(Agcwu), AP, Temp, and SNWDP water transfer volume were the primary catalysts aug-

menting the area’s year-long water, max water, and seasonal water bodies (p < 0.01 or p < 

0.05). Conversely, industrial water consumption (Idswu) emerged as the principal factor 

contributing to the contraction of all the water bodies (p < 0.01). 

Table 2. Factors influencing surface water areas, with SNWDP water transfer volume as the predic-

tive variable. 

 Year-Long p Value Max p Value Seasonal p Value 

Agcwu 1.07 *** 0.01 1.11 *** 0.01 1.21 *** 0.01 

Idswu −1.19 *** 0.01 −1.14 *** 0.01 −1.07 *** 0.01 

Cnspwu −0.02 0.94 −0.17 0.46 −0.52 ** 0.02 

ET −1.92 *** 0.01 −1.97 *** 0.01 −2.03 *** 0.01 

AP 1.14 *** 0.01 1.32 *** 0.01 1.63 *** 0.01 

Temp 2.21 *** 0.01 2.04 *** 0.01 1.67 ** 0.02 

SNWDP 0.22 *** 0.01 0.21 *** 0.01 0.20 *** 0.01 

Cons 3.57 0.43 3.79 0.40 2.42 0.40 

R2 0.65 0.67 0.71 

*** represents p < 0.01; ** represents p < 0.05; Cons is a constant term. 

In contrast, the study identified Cnspwu as a significant factor contributing to the 

decline in seasonal water. However, its impact on year-long water and max water was 

found to be statistically insignificant (p > 0.1). Furthermore, the influence of temperature 

on seasonal water was less pronounced (p < 0.05) compared to year-long water (p < 0.01) 

and max water (p < 0.01). These findings suggest that seasonal water is less susceptible to 

temperature fluctuations compared to its year-long and max counterparts. 

The regression results, presented in Tables 3 and 4, demonstrate that after replacing 

the water transfer volume variables with RWI or RSWI, the coefficients of RWI or RSWI 

all exhibited significant positive values. This reaffirms the positive impact of the SNWDP 

on the water bodies in the receiving area. It is important to note that the other variables 

did not undergo any significant changes. The results presented in Tables 3 and 4 can also 

be used as a robustness test, further validating the conclusions drawn in the previous re-

gression analyses. 

Table 3. Factors influencing surface water areas, with RWI as the predictive variable. 

Factors Year-Long p Value Max p Value Seasonal p Value 

Agcwu 1.05 *** 0.01 1.09 *** 0.01 1.19 *** 0.01 

Idswu −1.14 *** 0.01 −1.10 *** 0.01 −1.03 *** 0.01 

Cnspwu −0.86 0.94 −0.23 0.28 −0.58 *** 0.01 

ET −2.05 *** 0.01 −2.11 *** 0.01 −2.18 *** 0.01 

AP 1.29 *** 0.01 1.47 *** 0.01 1.77 *** 0.01 

Temp 1.84 *** 0.01 1.68 ** 0.02 1.31 * 0.06 

RWI 0.22 *** 0.01 0.08 *** 0.01 0.07 *** 0.01 

Cons 4.43 0.28 4.65 0.25 3.31 0.40 

R2 0.69 0.71 0.75 

*** represents p < 0.01; ** represents p < 0.05; * represents p < 0.1; Cons is a constant term. 
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In conclusion, the expansion of surface water body areas within the recipient regions 

was indeed positively influenced by the SNWDP, as well as the synergistic effects of re-

gional water use structure and climatic conditions. 

Table 4. Factors influencing surface water areas, with RSWI as the predictive variable. 

Factors Year-Long p Value Max p Value Seasonal p Value 

Agcwu 1.12 *** 0.01 1.15 *** 0.01 1.25 *** 0..01 

Idswu −1.31 *** 0.01 −1.26 *** 0.01 −1.18 *** 0.01 

Cnspwu −0.13 0.94 −0.28 0.24 −0.62 0.94 

ET −1.13 ** 0.05 −1.19 ** 0.03 −1.31 ** 0.02 

AP 1.16 *** 0.01 1.34 *** 0.01 1.67 *** 0.01 

Temp 2.59 *** 0.01 2.41 *** 0.01 2.00 *** 0.01 

RSWI 0.04 *** 0.01 0.04 *** 0.01 0.04 *** 0.01 

Cons −1.65 0.53 −1.34 0.74 −2.73 0.53 

R2 0.65 0.68 0.72 

*** represents p < 0.01; ** represents p < 0.05; Cons is a constant term. 

To further investigate the dynamics of water body transformations, we utilized the 

China Land Cover Dataset (CLCD) to explore the from–to transitions of water bodies in 

the replenishment regions. The results of the transition matrix are presented in Table 5. 

The primary transitions were from water to cropland and impervious surfaces, accounting 

for areas of 720.53 km2 and 400.87 km2, respectively. The land types primarily transition-

ing into water were cropland, impervious surfaces, and barren land, with respective areas 

of 891.41 km2, 311.27 km2, and 303.16 km2.  

In aggregate, water area transitioned out with 1169.12 km2, and other land use types 

transitioned into water with an area of 1519.46 km2, resulting in a net increase of 350.34 

km2. Notably, cropland and impervious surfaces were the primary contributors to both 

water area outflow and inflow, while barren land emerged as a significant contributor to 

the inflow of water area. This suggests that the implementation of the SNWDP has facili-

tated ecological restoration by transforming barren land into water bodies. 

Overall, our analysis of water body transitions using the CLCD provides valuable 

insights into the changes in land use patterns and the positive ecological outcomes result-

ing from the implementation of the SNWDP. These findings contribute to our understand-

ing of the complex dynamics between water resources, land use, and ecological restora-

tion in the replenishment regions. 

Table 5. Land use transfer matrix for 2013–2020 (km2). 

2020

2013 
Cropland Forest Shrub Grassland Water Barren Impervious 

Cropland 211,081.60 1417.05 0.68 704.77 891.41 3.21 6527.16 

Forest 1169.80 35,843.50 128.58 15.19 0.43 0 35.32 

Shrub 1.38 68.81 332.84 93.38 0 0.014 0.014 

Grassland 1339.15 843.26 65.77 8363.36 13.19 6.43 94.60 

Water 720.53 3.53 0 1.70 5180.25 42.49 400.87 

Barren 43.16 0.01 0 2.42 303.16 246.06 338.57 

Impervious 13.16 0.01 0 0.16 311.27 2.21 62070.60 

4. Discussions  

4.1. Reasons for Spatially Varied Changes 

The limited availability of data at the sub-provincial level poses challenges to ascer-

taining the primary factors influencing the various changing types of surface water bodies 

across different provinces or cities through linear regression analysis. To address this lim-

itation, correlation analysis was employed to investigate the influential factors impacting 

the changes in water bodies within each province or city, as depicted in Figure 12. 
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Figure 12 reveals the distinct factors influencing the water body changes in the dif-

ferent regions. In the central route areas, Beijing City, Hebei Province, and Henan Prov-

ince show a high degree of similarity between their max water body and year-long water 

body. The South-to-North Water Diversion Project (SNWDP) has had a significant positive 

impact on the year-long water bodies in these three regions. As key replenishment areas 

for the central route, these regions benefit from regular water transfers and ecological re-

plenishments during the flood season each year. These measures not only aid in the re-

covery of groundwater levels [65,66] but also positively influence surface water and eco-

logical restoration [67]. The figure also illustrates the transformation among different wa-

ter body types within these regions. Notably, Beijing City and Henan Province exhibit a 

significant negative correlation between their year-long water bodies and seasonal water 

bodies, indicating a clear trend of seasonal water bodies transitioning into year-long water 

bodies. The AP and Temp in the three regions show no significant correlation with water 

body area. These three changes in water body area in these regions are minimally affected 

by surface temperature and rainfall. ET and the perennial water bodies in the three regions 

exhibit a significant positive correlation, indicating that an increase in the surface water 

body area will further increase evaporation. This phenomenon may exacerbate water re-

source losses [68,69]. 

Similarly, from Figure 12, we can see that Agcwu and Idswu are significantly nega-

tively correlated with the year-long water body in three regions. Henan Province and He-

bei Province, as important agricultural provinces in the North China Plain [70], consume 

a large amount of water resources annually for agricultural irrigation and agro-product 

processing, leading to the further depletion of water resources [71,72]. Moreover, Idswu 

and year-long water body in Beijing City and Hebei Province show a significant positive 

correlation, while in Henan Province, there is no correlation. As a major agricultural rather 

than industrial province [73], Henan’s industrial water consumption might have less im-

pact on surface water compared to agricultural water use. However, as an important in-

dustrial base in North China, Hebei Province’s industries require a large amount of water 

annually [74], which could lead to the depletion of groundwater and even a reduction in 

surface water area [75]. Therefore, it is crucial to reasonably adjust the water use structure 

in these three regions for the protection of surface water and water resources. 

For Shandong Province, as seen in Figure 12, the three types of water bodies did not 

benefit from the SNWDP. Unlike the middle route project, the east route project does not 

involve extensive targeted ecological replenishment. Additionally, due to climate change 

and human activities, the region has been suffering from severe water shortages [76,77]. 

As an important base for aquaculture and land reclamation from the sea, the increase in 

surface water area in Shandong Province is likely due to the development of the aquacul-

ture industry and the restoration of coastal lands [48,78,79] rather than being significantly 

related to the SNWDP. Similarly, the three types of water bodies in Tianjin City also did 

not benefit from the SNWDP, as the area also experienced substantial water losses. In 

terms of groundwater, the SNWDP has alleviated the losses in the region [80] but has not 

reversed the trend of continuous losses. Combining this with the trend graphs in Section 

3.3 of our study, we believe that the SNWDP also mitigated the original surface water 

losses but did not significantly reverse this phenomenon. Furthermore, in Tianjin City, the 

year-long water body and seasonal water body show a significant positive correlation, 

indicating that under severe water loss, the surface water bodies in the region do not un-

dergo mutual conversion but exhibit similar changing trends. 

Moreover, it is important to note that the divergent changes in water bodies across 

different regions are not solely influenced by water transfers. Local water deficit levels, 

which vary from region to region, play a significant role. Areas with higher water deficits 

may experience more pronounced changes in water bodies as efforts are made to address 

water scarcity. Furthermore, the natural terrain features, such as terrain slope and the 

presence of rivers, lakes, and mountains, can also influence the distribution of water bod-

ies and changes in water bodies within a region. To fully understand and manage the 
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changes in water bodies, it is crucial to consider these local factors along with the effects 

of water transfers. By taking into account the unique characteristics of each region, water 

resource management strategies can be tailored to optimize water allocation, mitigate wa-

ter deficits, and promote sustainable water use practices. 

In conclusion, the findings demonstrate that changes in surface water bodies within 

the receiving areas are influenced not only by the South–North Water Diversion Project 

(SNWDP) but also by the climate environment, as well as the water usage structure. There-

fore, rational water resource allocation and appropriate water usage structures play a cru-

cial role in the preservation and management of water bodies within the receiving areas. 

It is important to consider these factors in order to ensure sustainable water management 

and the long-term health of the aquatic ecosystems in the region. 

 

Figure 12. Graph showing correlation coefficients between water body areas and related factors. 

Max refers to max water body; Y-L refers to year-long water body; Sea refers to seasonal water body; 

Agc refers to agricultural water consumption (Agcwu); Ids refers to industrial water consumption 
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(Idswu); Cns refers to the consumption of non-service public water use (Cnspwu); TP refers to 2 m 

height air temperature (Temp); WP refers to the water transfer volume of the SNWDP; ET refers to 

evapotranspiration; AP refers to annual precipitation. *** represents p < 0.01; ** represents p < 0.05; 

* represents p < 0.1. 

4.2. Impact of Recharge Intensity on Surface Water Bodies 

We utilized two metrics, namely RWI (recharge intensity) and RWSI (recharge inten-

sity of surface water), to represent the recharge intensity of the receiving areas of the 

South–North Water Diversion Project (SNWDP). The specific results are presented in Ta-

ble 6. This table provides a visual representation of the impact of the SNWDP on different 

water body types across the studied regions. Comparing the correlation analysis results 

of Section 4.1 with the results in Table 6, the findings are largely consistent with those 

presented in Figure 12, further supporting the conclusions drawn earlier. When compar-

ing RWI and RSWI, it is evident that the significance of the correlation coefficients using 

RSWI is markedly superior to that of RWI. This may be due to the fact that RSWI is con-

structed from the max water body, enabling a more sensitive representation of the replen-

ishment intensity of the SNWDP areas. 

Table 6. Correlation coefficients between water body area and water diversion strength for different 

regions. 

Region 
RWI RSWI 

Year-Long Seasonal Max Year-Long Seasonal Max 

Total Region 0.157 0.045 0.122 0.125 0.096 0.032 

Beijing 0.795 *** −0.575 *** 0.570 ** 0.463 ** −0.603 *** 0.458 ** 

Hebei 0.305 0.087 0.210 0.577 *** 0.160 0.392 * 

Henan 0.740 *** −0.325 0.539 ** 0.715 *** −0.363 0.667 *** 

Shandong 0.043 −0.217 −0.224 0.060 −0.265 −0.259 

Tianjin −0.402 ** −0.459 ** −0.402 * −0.449 ** −0.430 *** −0.488 ** 

*** represents p < 0.01; ** represents p < 0.05; * represents p < 0.1. 

4.3. Limitations and Perspectives 

This study focuses on investigating the impact of the South-to-North Water Diversion 

Project (SNWDP) on surface water within the receiving area by analysing changes in the 

surface water area. Through rigorous temporal trend analysis and correlation analysis, 

this study provides valuable insights into the eco-hydrological effects of the SNWDP. 

However, it is important to acknowledge certain limitations that should be considered:  

(1) Water body identification. Despite efforts to improve the water body extraction algo-

rithm and minimize errors during water identification through remote sensing, there 

may still be inaccuracies that could lead to misclassified or omitted water bodies. 

These limitations could have potentially affected the accuracy of water body identi-

fication in this study.  

(2) Complexity of surface water transformation. The transformation of surface water 

bodies is a complex phenomenon influenced by multiple factors. This study focused 

primarily on the connection between the SNWDP, meteorological factors, and water 

use factors that affect surface water area changes. However, to gain a more compre-

hensive understanding, future studies should explore the influence of other factors 

such as urbanization, water extraction, and the presence of artificial constructions 

that may also impact the mechanisms governing water body changes.  

(3) Local topography and morphology. The sensitivity of surface water area alterations 

is also influenced by local topography and the morphology of rivers, lakes, and res-

ervoirs. These factors were not fully accounted for in this study. To better elucidate 

the overall impact of the SNWDP on surface water bodies, future studies should con-

sider these local variations. Incorporating topographic and morphological data will 
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provide a more accurate assessment of the project’s influence on surface water dy-

namics. 

(4) The regions affected by the South-to-North Water Diversion Project (SNWDP) in-

clude a large number of rivers, lakes, and reservoirs. The relationship between the 

surface water area and the total water volume of these water bodies may not be a 

simple correlation. Therefore, when assessing changes in surface water area, this 

study could not accurately assess the changes in total water volume and water re-

sources in these areas. This factor should be considered in future research. 

5. Conclusions 

This study investigated the impacts of the South-to-North Water Diversion Project 

(SNWDP) on surface water bodies from 2001 to 2020 based on long-term satellite obser-

vations. Our analysis focused on changes in water body areas before and after the 

SNWDP’s implementation, as well as correlations with other relevant factors. The key 

findings are as follows: 

(1) The impact of the SNWDP on the change in surface water area is heterogeneous, pro-

ducing varying effects on different water bodies in different regions. Overall, the 

SNWDP has facilitated an increase in the year-long water body and max water body 

in the middle route area, while it has had almost no significant effect in the eastern 

route area. From a fine-scale perspective, the areas with a significant increase in sur-

face water area are mainly concentrated near the middle route water transfer project 

and in Dongying City, Shandong Province. Both the Miyun Reservoir and the Dan-

jiangkou Reservoir also show a significant increasing trend. 

(2) The SNWDP played a significant role in the expansion of year-long water bodies, 

max water bodies, and seasonal water bodies within the total receiving areas. How-

ever, the impact of the SNWDP on surface water area varies in different regions, high-

lighting the importance of adjusting water usage structures accordingly to protect 

surface water. Barren is an important source transferring to water areas, and a pattern 

of seasonal water bodies transitioning into year-long water bodies has been observed 

in Beijing City and Henan Province, indicating that the implementation of the 

SNWDP has also contributed to the hydro ecological restoration of the receiving ar-

eas. 

These findings highlight the diverse and specific effects of the SNWDP on different 

regions and water body types. These findings provide valuable insights for evaluating the 

environmental and global changes resulting from significant human interventions. Addi-

tionally, they are particularly beneficial for policymakers and decision makers engaged in 

managing water resources. The diverse impacts of the SNWDP on different regions and 

water body types emphasize the need for tailored strategies in water management and 

resource allocation. 
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