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Abstract: The surveying of forestry resources has recently shifted toward precision and real-time
monitoring. This study utilized the BlendMask algorithm for accurately outlining tree crowns and
introduced a Bayesian neural network to create a model linking individual tree crown size with
diameter at breast height (DBH). BlendMask accurately outlines tree crown shapes and contours,
outperforming traditional watershed algorithms in segmentation accuracy while preserving edge
details across different scales. Subsequently, the Bayesian neural network constructs a model pre-
dicting DBH from the measured crown area, providing essential data for managing forest resources
and conducting biodiversity research. Evaluation metrics like precision rate, recall rate, F1-score, and
mAP index comprehensively assess the method’s performance regarding tree density. BlendMask
demonstrated higher accuracy at 0.893 compared to the traditional watershed algorithm’s 0.721 accu-
racy based on experimental results. Importantly, BlendMask effectively handles over-segmentation
problems while preserving edge details across different scales. Moreover, adjusting parameters
during execution allows for flexibility in achieving diverse image segmentation effects. This study
addresses image segmentation challenges and builds a model linking crown area to DBH using the
BlendMask algorithm and a Bayesian neural network. The average discrepancies between calculated
and measured DBH for Ginkgo biloba, Pinus tabuliformis, and Populus nigra varitalica were 0.15 cm,
0.29 cm, and 0.49cm, respectively, all within the acceptable forestry error margin of 1 cm. BlendMask,
besides its effectiveness in crown segmentation, proves useful for various vegetation classification
tasks like broad-leaved forests, coniferous forests, and grasslands. With abundant training data
and ongoing parameter adjustments, BlendMask attains improved classification accuracy. This new
approach shows great potential for real-world use, offering crucial data for managing forest resources,
biodiversity research, and related fields, aiding decision-making processes.

Keywords: BlendMask algorithm; individual-tree crown area–DBH model; Bayesian neural network;
image segmentation

1. Introduction
1.1. Research Significance and Background

Forests, being the cornerstone of terrestrial ecosystems, sustain life for humans and
diverse organisms [1], encompassing economic, environmental, social, and cultural values.
Yet, human activities continue to diminish forest coverage and resources, resulting in issues
like land use changes, ecosystem fragmentation, and biodiversity loss [2]. Comprehensive
forest resource surveys serve as critical foundations for effective management strategies and
conservation policies, imperative for fostering sustainable forest development. Therefore, at
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present, these surveys hold paramount importance for scientific management, sustainable
utilization, and protection of forest resources.

Diameter at Breast Height (DBH) is a crucial factor in studying tree structures, and
a pivotal variable for forest growth models and management strategies [3]. DBH aids in
assessing tree niches, growth status, estimating forest biomass and productivity, monitoring
forest health, determining forest structure and species composition, providing fundamen-
tal data, and decision-making references for scientific forest resource management and
conservation [4].

Forest ecosystems, among Earth’s most complex, play a pivotal role in maintaining
global biodiversity and ecological balance. DBH data serve as indicators of tree growth
and health status. Analyzing DBH data allows for the assessment of forest ecosystem
stability, health, and vegetation dynamics. Moreover, DBH is a crucial parameter for
estimating tree volume. Evaluating DBH distribution in forests enables calculations of
total wood quantity and specific wood levels within a forest area, significantly impacting
wood resource assessment, wood industry planning, and economic evaluation [5]. Before
advanced remote sensing and digital techniques, forestry resource surveys primarily relied
on field investigations and sampling. However, these methods were expensive and lacked
precision and comprehensive data. In contrast, remote sensing provides significant benefits
by enabling a more precise and efficient collection of extensive forest resource information.
Using advanced remote sensing and artificial intelligence algorithms [6], UAV technology
allows for high-resolution, multi-temporal, and dynamic monitoring of forest resources.
This contributes to an improved evaluation and management of these resources.

With continual advancements in remote sensing technology and the widespread
utilization of large-scale remote sensing images [7], remote sensing images now facilitate
DBH detection. Remote sensing technology provides a comprehensive, large-scale, and non-
destructive means of data acquisition, capturing DBH spatial distribution patterns. Using
remote sensing technology for DBH detection enhances work efficiency while reducing
human resource demands.

In recent years, groundbreaking advancements in machine learning have found exten-
sive applications across various domains, such as industry, medicine [8], and finance. To
address the need for the precise and real-time detection of forestry resources [9], the explo-
ration of machine learning techniques in tree parameter extraction has started. However,
this field is in its early stages due to the complexity and variety of algorithms, providing
many research possibilities.

In conclusion, using machine learning for extracting tree parameters shows significant
potential for forestry resource surveys. This study uses UAV remote sensing images from
mixed-tree forests and the BlendMask segmentation model to identify individual trees and
measure crown widths. The method includes extracting the contour to calculate the crown
area. Finally, a Bayesian neural network creates a model to predict DBH based on measured
crown areas in UAV remote sensing images.

1.2. Research Landscape
1.2.1. Research Status of Crown Width Extraction

Around 2004, means of digital aerial photogrammetry began to be used for extracting
tree crowns [10]. High-resolution remote sensing images were used as the data source,
utilizing image processing and computer vision techniques to derive crown shape and
contour information. Common approaches included threshold-based segmentation [11],
edge-based detection [12], and pixel-based classification [13], albeit limited in precision.

By the early 2010s, the introduction of UAV technology facilitated the acquisition of
high-resolution image data for crown extraction [14]. Researchers increasingly employed
unmanned aerial vehicles (UAVs) due to their flexibility and maneuverability, enabling a
more precise capturing of intricate tree details.
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In 2016, Guo Yushan [15] and colleagues used high-spacial-resolution imagery to find
tree crowns in both sparse and dense forest areas. They applied the marker-controlled wa-
tershed segmentation method, using image gradients to improve the accuracy of extracting
crown outlines. Their tests showed an extraction accuracy of 87.8% for sparse forests and
65.5% for dense forests.

Internationally, researchers have conducted studies on crown width extraction, focus-
ing on several key areas:

1. Lidar-based Crown Width Extraction [16]: Lidar technology allows for the highly
precise collection of three-dimensional information about ground and canopy surfaces.
It is widely used in crown width extraction. Various algorithms, including altitude-
threshold-based [17], topological-relation-based [18], and morphological-operation-
based [19] approaches, analyze laser point cloud data to extract tree crown information.

2. Image-processing-based Crown Width Extraction [20]: This method uses remote sens-
ing images to extract crown width. By analyzing color, texture, and shape attributes
within remote sensing images, the automatic extraction of crown width is achieved.

3. Machine-learning-based Crown Width Extraction [21]: Recent advancements in ma-
chine learning algorithms have led to increased exploration of these methods for
crown width extraction. Researchers create training sample sets and utilize super-
vised learning algorithms such as vector machines [22] and random forests [23] to
enable the automatic detection and segmentation of crowns.

These studies are beyond extracting crown width and instead focus on exploring
the interconnections between crown width and various forest structure parameters. This
involves examining how crown width correlates with factors like tree height, diameter
at breast height (DBH), tree density, and their impact on forest ecosystem functionality
and biodiversity. These insights are useful for managing forest resources and evaluating
ecological environments. Both domestic and international research efforts have not only
enriched crown width extraction methodologies but also broadened the applications of
these data in forest resource research.

To enhance crown width extraction accuracy, researchers continually optimize and
improve algorithms and models. They integrate multiple data sources, such as merging
lidar data with remote sensing imagery, to obtain comprehensive and accurate information
about tree crowns [24]. The increasing use of deep learning methods like convolutional
neural networks aids in precisely identifying and segmenting tree crowns. Crown extraction
technology is widely used in forest resource management, ecological conservation, climate
change research, and related fields. Accurate crown information acquisition facilitates
forest structure and biodiversity assessment and helps in monitoring forest health and
decision-making and resource management processes.

1.2.2. Research Status of Deep Learning in Forestry Segmentation

As deep learning evolves, several models are now used for image recognition, classifi-
cation, and localization, where convolutional neural networks (CNNs) excel in analyzing
two-dimensional images. In addition, CNNs can work with 3D data when the input is
converted into a regular form. In 2020, Brage et al. conducted extensive forest surveys using
high-resolution satellite imagery. Their use of the Mask R-CNN algorithm for tree crown
detection and segmentation achieved precision, recall, and F1-scores of 0.91, 0.81, and 0.86,
respectively. This method shows promise in aiding forest resource surveys, planning, and
execution. Another study in 2021 by Huang Xinxi focused on ginkgo trees, establishing a
dataset of individual ginkgo tree crowns through UAV remote sensing imagery. Utilizing
Mask R-CNN and orthophoto maps, they detected tree crowns in different urban settings,
achieving a precision rate of 93.90%, a recall rate of 89.53%, an F1-score of 91.66%, and
an average precision of 90.86%. Similarly, Huang Yanxiao et al. in 2021 used drones to
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capture orthographic images of two distinct Metasequoia forest plots. They improved the
Faster R-CNN method for crown identification and width extraction, resulting in a more
accurate model with 92.92% accuracy and a determination coefficient of 0.84, showing
enhancements over the original model.

BlendMask uses a Mask R-CNN-based framework that merges object detection and in-
stance segmentation. During object detection, BlendMask uses two simultaneous branches:
one for creating the object’s bounding box and another for generating a rough segmen-
tation mask. In the segmentation phase, BlendMask selectively extracts the target using
the bounding box network and aligns feature maps of various scales to a fixed size via
ROIAlign. Subsequently, the fusion mask generator refines feature maps into precise seg-
mentation masks using a sequence of convolution operations, with each layer integrating a
fusion module to enhance feature expression. Ultimately, BlendMask utilizes the predicted
bounding box and segmentation mask to produce detection and segmentation outcomes.
Presently, there is limited documentation or practical use of the BlendMask model in the
forestry segmentation domain, presenting substantial research opportunities in this field.

1.2.3. Research Status of DBH Prediction of Trees

In forestry resource estimation, individual-tree diameter at breast height (DBH) is
a critical evaluation metric. Yet, field surveys have long grappled with challenges like
high difficulty and slow-paced data collection. Traditional forestry surveys often rely on
empirically derived formulas relating crown area to DBH to estimate actual tree diameter.
However, in reality, different tree species exhibit significant variations in crown area and
DBH, posing difficulties in establishing correlations [25]. In recent years, the surge in
machine learning achievements across various domains has drawn widespread attention,
gradually expanding applications in forestry. Models based on neural networks offer new
insights into understanding the relationship between tree crown area and DBH.

Accurate DBH data play a crucial role in forestry resource surveys. For instance, Fu
Kaiting used an EBEE unmanned aerial vehicle equipped with a digital camera to capture
high-resolution images within the Tanli management area at the Nanning Arboretum in
Guangxi [26]. Following orthographic image processing, they established a DBH–crown
width regression model. This model efficiently correlated individual tree crown width
with measured DBH, enabling a swift estimation of stand volume by integrating indi-
vidual tree volume models [27]. Similarly, Shi Jieqing and collaborators developed an
all-encompassing forest resource survey system using UAV remote sensing images, inte-
grating various UAV photography techniques and post-processing technologies alongside
GIS. Impressively, reported errors in tree number density and volume were merely 2.68%
and 4.01%, respectively, promoting forest resource exploration [28].

Tree DBH prediction often relies on traditional regression models in international
studies. Methods such as linear regression, multiple linear regression [29], and generalized
linear models [30] are frequently used to model and predict the relationship between DBH
and other dependent variables, such as tree height, age, and growth environment. As
machine learning technologies evolve, an increasing number of researchers explore employ-
ing machine learning algorithms for tree DBH prediction. Remote sensing data [31] also
significantly influence DBH prediction. By using high-resolution remote sensing images
and lidar data from forest areas, relevant geographical, morphological, and structural
features can be extracted and used as input variables for constructing and optimizing tree
DBH prediction models.

To enhance the accuracy of DBH prediction, researchers also attempt to fuse different
types of data. Integrating multiple data sources, such as ground survey data, remote
sensing data, and environmental factors [32], can reveal the factors affecting DBH more
comprehensively and improve the accuracy and stability of prediction models. In recent
years, deep learning methods have seen increased application in tree DBH prediction.
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Convolutional neural networks (CNNs) [33] and recurrent neural networks (RNNs) [34]
can extract image features and time series features, culminating in precise DBH predictions.

1.3. Primary Research Focus

In crown segmentation techniques, the threshold-based segmentation algorithm is a
common method. It separates images based on preset thresholds applied to pixel grayscale
values. However, it can be inaccurate in complex backgrounds, varying lighting, and
occlusion situations. It struggles especially with irregular or overlapping crown shapes [35].

Another approach involves using features and a classifier for segmentation. This
method extracts texture, shape, and color features from images, and then uses a classifier to
label pixels belonging to the crown region. Yet, accurately segmenting crowns in complex
backgrounds remains challenging due to limitations in feature selection and classifier
design [36]. Additionally, manual parameter adjustments are often needed for different
tree species and environments.

The third method turns crown segmentation into an image segmentation problem
using region-based or edge-based algorithms. However, these methods can be compu-
tationally complex, with large datasets and complex scenes [37], and may result in false
segmentation with overlapping trees and unclear boundaries. The fourth method, multi-
sensor fusion-based segmentation, combines data sources like remote sensing images
and lidar data to provide more comprehensive information for crown segmentation. But,
challenges persist in data fusion and registration technologies, requiring sophisticated
multi-sensor data collection and processing [38].

To improve the computational efficiency and increase the recognition accuracy,
we adopted a more streamlined and efficient model: the BlendMask model [39] for
crown segmentation.

In the calculation of tree DBH, linear regression equations are widely used in the
industry, but they often result in poor fitting effects. In this study, we opted for a Bayesian
neural network to model the relationship curve between crown area and DBH. Combining
the application of convolutional neural networks in aerial remote sensing images, we de-
vised a precise individual-tree crown segmentation method based on high-resolution UAV
images and the BlendMask network. This methodology enabled the extraction of crown
information from trees within the forest farm. The specific research objectives include:

1. Utilizing the orthophoto map of Beijing Jingyue Ecological Forest Farm as experi-
mental data to use the BlendMask network for segmenting individual crowns and
detecting the count of Pinus tabulaeformis trees.

2. Assessing the prediction results of the model using relevant accuracy evaluation metrics.
3. Fitting an optimal relationship model between the DBH and crown width of trees

using a Bayesian neural network, leveraging DBH measurements of sample trees
collected in the field and the calculated crown mask area obtained from segmentation.

2. Research Area and Data Acquisition
2.1. Field Investigation and Data Acquisition
2.1.1. Research Area

The research area of this project is located near the forest farm of Jingyue Ecological
Forest Farm, Baishan Town, Changping District, Beijing. The geographic coordinates are
116°19’7.2192”E and 40°11’32.002”N (Figure 1). The area has a warm temperate semi-humid
continental monsoon climate, with an annual mean temperature of about 11.8 °C and an
annual mean precipitation of 550.3 mm. The soil is yellow loam, suitable for the growth of
warm temperate broad-leaved forest and coniferous forest.

There are eight tree species in the study area, including three coniferous and five
broad-leaved species. The different shapes of tree crowns in the forest farm pose higher
challenges for the applicability and performance of the crown segmentation system.
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(a) (b)

Figure 1. (a) Aerial photo of forest farm. (b) Top view of the initial image position (the green line
starts from the big blue dot and follows the image position in time)

2.1.2. Field Investigation and Data Collection

On 20 June 2023, we conducted a field survey to delineate the study area’s boundaries,
document various tree species, and determine suitable data collection methods. We for-
mulated a comprehensive survey plan, specifying the UAV flight route and height and
assessing potential flight and safety risks. From 8 to 10 July 2023, the members of the exper-
imental group visited the forest farm to collect relevant information about the designated
tree species. On the morning of 11 July 2023, when the weather in the study area was clear
and the wind speed was low, we captured a set of aerial images along the predetermined
route using a UAV after a pre-flight test. The UAV model used for the aerial photography
was the DJI MAVIC 2 PRO (The manufacturer of this product is DJ-Innovations, located
in Shenzhen, China), which had a 1-inch CMOS sensor, a 28 mm focal length lens with a
77° viewing angle, a maximum photo resolution of 5472 × 3648 pixels, and a maximum
flight time of about 31 min.

The UAV flew at a speed of 4 m/s and a height of 50 m while taking aerial photographs.
Photos were captured every 5 s, resulting in a total of 355 images that fully covered the
necessary area. The image resolution was 5472 × 3648 pixels, and each pixel represented
an actual area of 1.46 units.

After collecting the images, all the trees in the sample plot were numbered and DBH
values were measured. Considering that the relationship between the crown area of a single
tree and its diameter at breast height are different for different tree species, the study was
modeled using split-sample plots. Therefore, sample plots were set up from forest areas
of the same age and the same species in sections with a distance of 6 m or more from the
forest edge and with normal growth of trees in the stand. The sample plot boundaries were
determined with a measuring rope.

At a distance of 1.3 m from the base of each tree, a diameter measuring tape was
placed completely around the trunk and pressed against the surface of the trunk. The
corresponding value of the breast diameter was read, which is the tree’s DBH. To ensure the
reliability of the data, additional measurements and calculations were made to accurately
measure the diameter at breast height for trunks with significant leaning or shapes.

2.2. Datasets Creation
2.2.1. Synthesis of Orthophoto Map

In this study, the original UAV images underwent preprocessing using Pix4dmapper
v4.4.12 software to create an orthographic image of the chosen plot. The images were
imported into Pix4dmapper, and a three-dimensional digital surface model (DSM) of the en-
tire research area was generated through three key steps: sparse point cloud reconstruction,
densification of the point cloud, and texture mapping.
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The first step involved reconstructing a sparse point cloud by extracting key features
from the UAV images. This process involved identifying and matching common points
between overlapping images to estimate their 3D coordinates. Next, the sparse point
cloud was refined to add more detail to the terrain and objects in the study area. This step
interpolated additional points within the sparse point cloud to increase its density and
capture finer landscape details. Finally, the high-resolution orthographic image obtained
from the dense point cloud was mapped onto the surface to provide accurate texture
information. This process aligned the orthographic image with the reconstructed 3D model
and projected it onto corresponding surfaces.

By following these steps in Pix4dMapper software, a realistic three-dimensional repre-
sentation of the research area was generated (Figure 2), which facilitated further analysis
and interpretation of the crown segmentation and tree count detection tasks.

(a) (b)

Figure 2. (a) Depicts a top-view illustration presenting the image positions computed through
connections among matched images. Dark links represent the count of matched 2D keypoints
between the digital images, while brighter links signify weaker matches that may necessitate manual
point connections or additional images. (b) The discrepancies between the initial positions (blue dots)
and the calculated positions (green dots) of the images are showcased, along with the differences
between the initial positions (blue crosses) and the calculated positions (green crosses) of the ground
control points (GCPs) in the top (XY plane), front (XZ plane), and side (YZ plane) views).

We used the forward mapping function of Pix4dMapper to produce an orthophoto
(DOM) of the area from the three-dimensional model (Figure 3) to prevent data loss due to
insufficient processor memory and the structure and functional parameters are shown in
Table 1.

Table 1. Relevant parameter values set by Pix4dMapper during 3D modeling of real scene.

Step Type Specific Settings

Densification of point cloud
Image scale 1/2

Point cloud density best
Minimum matching number 3

Matching window size 7 × 7 pixels

Three-dimensional grid
Configuration Medium resolution

Sampling density distribution 1

Texture mapping
Texture color source Visible color

Texture compression quality 75% JPEG image quality
Maximum texture size 8192

Texture sharpening Enabled
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(a) (b)

Figure 3. (a,b) show the orthogonal surface model before densification and corresponding sparse
digital surface model (DSM).

2.2.2. Generating Label Samples

The large orthophoto image of the study area (Figure 4) was carefully sliced into
820 images, each sized at 1024 × 1024 pixels using Photoshop v7.0 software. Augmentation
techniques, including rotation, flipping, brightness adjustments, and noise enhancement,
were applied to diversify the dataset.

For the creation of a specific dataset targeting the segmentation of individual tree
crowns, the Labelme v3.16.2 annotation software was used. Pinus tabulaeformis were the
primary subject for algorithmic training. The crowns of these trees within the experimental
area were manually outlined using the polygon labeling feature in Labelme. To minimize
potential errors, both field survey data and visual interpretation were combined during the
annotation process.

Subsequently, the dataset was divided into three subsets: a training set, a valida-
tion set, and a test set. The training set comprised 752 images, the validation set con-
tained 210 images, and the test set encompassed 238 images. These subsets were uti-
lized for training, evaluating, and testing the performance of the crown segmentation
algorithm, respectively.

Figure 4. General information of the study area. (Left) Geographical location of the study area.
(Right) The remote sensing image of the study plots.
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2.3. Evaluation Metrics
2.3.1. Accuracy Assessment of Individual Tree Detection

In evaluating the precision of individual tree counting, we will employ metrics such
as precision, recall, and F1-score [40].

RPrecision measures the accuracy of this model in instance segmentation:

RPrecision =
nTP

nTP + nFP
× 100% (1)

where true positives (nTP) indicate the number of correctly predicted positive samples
while false positives (nFP) indicate the number of samples incorrectly predicted as positive
by the model.

Rrecall assesses the accuracy of the model’s recognition:

Rrecall =
nTP

nTP + nFN
× 100% (2)

where false negatives (nFN) represent the number of samples wrongly predicted as negative
cases by the model.

F1-score, a harmonic average, provides a comprehensive evaluation combining preci-
sion and recall:

F1 − score = 2 × RPrecision × Rrecall
RPrecision + Rrecall

× 100% (3)

2.3.2. Crown Segmentation Accuracy Metrics

For crown segmentation accuracy, we will utilize standard evaluation metrics [41]—
average precision (AP) and mean average precision (mAP)—for prediction frames and
instance segmentation masks.

Average precision (AP) gauges model accuracy under varying confidence thresholds:

AP = ∑(Rrecall [i]− Rrecall [i − 1])× RPrecision [i] (4)

In the formula, Rrecall [i] indicates the recall rate under the i-th confidence threshold
and RPrecision[i] indicates the accuracy under the i-th confidence threshold.

Mean average precision (mAP) is a metric obtained by averaging multiple average
precisions:

mAP =
∑n

i=1 AP[i]
n

(5)

where ∑n
i=1 AP[i] represents the average precision of the i-th category and n represents the

number of categories.

2.3.3. Individual Tree Crown Area and DBH Accuracy Metrics

For the crown area and DBH, we will adopt the measurement accuracy evaluation
metrics commonly used for continuous values, including relative error (Re), mean absolute
error (MAE), and root mean square error (RMSE) [42].

Relative error (RE) measures the difference between the predicted value and the
actual value:

RE =
ŷl − yi

yi
(6)

Mean absolute error (MAE) measures the average error between the predicted value
and the actual value:

MAE =
1
n

n

∑
i=1

|ŷl − yi| (7)
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Root mean square error (RMSE) measures the average error between the predicted
value and the actual value:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

In the above categories, ŷi means the predicted value and yi means the actual value.

3. Research Methods
3.1. Crown Segmentation Method
3.1.1. Watershed Algorithm

The watershed algorithm is a commonly used traditional technique for segmenting
tree crowns. It uses geographical morphology to mimic structures like mountains, val-
leys, basins, and trees for categorization. Geodesic distance is a crucial concept in this
method [43].

By using the watershed algorithm with geodesic distance, the algorithm can effectively
identify and segment individual tree crowns from the surrounding background. This
method enhances accuracy in distinguishing tree crowns, providing valuable information
for further analysis and measurements.

In Figure 5, the algorithm approximates the tree crown as an ellipse. The Euclidean
distance between two black points is represented by the length of the dashed line segment
(d45), while the geodesic distance denotes the shortest actual path distance, ideally the
minimum sum of distances along the real path [44]; that is, d12 + d23 + d34 + d45 .

Figure 5. Watershed algorithm shows the column.

This algorithm partitions adjacent pixels with close grayscale values into regions. The
process of estimating the diameter at breast height (DBH) using the watershed algorithm is
outlined as follows:

1. Convert tree crown images in the dataset to grayscale and classify pixels based on
grayscale values, establishing a geodesic distance threshold.

2. Identify the pixel with the minimum grayscale value (defaulted as the lowest) and
incrementally increase the threshold from the minimum value, designating these as
starting points.

3. As the plane expands horizontally, it interacts with neighboring pixels, measuring
their geodesic distance from the starting point (lowest grayscale). Pixels with distances
below the threshold are submerged, while others have dams set, thus categorizing
neighboring pixels.
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4. Use the complementary canopy height model (CHM) distance transform image for
segmentation. Utilize the h-minima transform to suppress values smaller than ’H’,
generating a marker image for tree tops, followed by reconstruction through erosion.

Each tree is then marked using the region minimum method, where the ’H’ threshold
directly influences tree top identification. Finally, the watershed algorithm segments the
image based on the extracted tree top markers.

3.1.2. BlendMask Algorithm

BlendMask is a model used for instance segmentation that extends the Mask R-CNN
framework. It combines modifications and enhancements to Mask R-CNN to improve the
accuracy and efficiency of instance segmentation.

BlendMask leverages the advantages of Mask R-CNN and introduces an attention
network and a feature blending module to facilitate the segmentation process. The feature
blending module is responsible for fusing features from different scales to extract richer
semantic information. It consists of a three-level feature pyramid network (FPN), where
each level has an adaptive pooling layer to capture features at various scales. Compared to
the blurry boundaries of Mask R-CNN, BlendMask is highly sensitive to boundaries and
can achieve fine-grained object segmentation. It has shown outstanding performance in
tasks such as edge detection and image segmentation.

Remarkably, no researcher has applied the BlendMask model to the precise segmen-
tation of individual tree crowns in complex environments. Moreover, the BlendMask
model adopts some optimization techniques, such as the auto-augmentation [45] and joint
segmentation scheme, to further improve its performance.

Based on these considerations, this study selects the BlendMask algorithm to segment
tree crowns and compares it with the conventional watershed algorithm. By evaluating the
performance of both algorithms, we can gain insights into the effectiveness and suitability
of BlendMask for accurately segmenting tree crowns in complex environments.

3.2. Calculation of Crown Area

In this study, the dataset images undergo processing with OpenCV for filtering and
conversion to grayscale. The findContours method is a function in the OpenCV library
that is commonly used to find and analyze the contours of objects in binary images. It is
utilized to identify the contours within the images. Then, the drawContours method is
applied to display the canopy and rectangular outlines on the original images, helping to
verify contour accuracy.

To calculate the actual area of the marked rectangle in the image and determine the
true crown area, the ratio of pixels occupied by the rectangle to those within the crown
region is computed using the formula:

Si = Sr ×
Pi
Pr

(9)

where Si represents the real area of the crown, Sr represents the real area of the rectangle,
Pi represents the pixel value of the crown area, and Pr represents the pixel value of the
rectangle. When calculated, the actual area per pixel is 1.46 cm2.

3.3. Crown Area–DBH Model

In forest resource estimation, the crown area and DBH of individual trees are critical
metrics. However, field surveys often encounter difficulties such as complexity and sluggish
data collection speed. Moreover, substantial variations in crown area and DBH among
different tree species pose challenges in establishing correlations [46].

Recent advancements in machine learning have garnered widespread attention across
various domains, including forestry. Its increasing application in forestry research offers
novel avenues for exploring the relationship between crown area and DBH.
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Traditional backpropagation (BP) neural networks use multiple fully connected layers
for data fitting, often resulting in overfitting and poor generalization. Consequently, these
models may lack confidence in their predicted outcomes [47].

In contrast, the Bayesian neural network (BNN) integrates Bayesian algorithms for
optimized convolution. Its structural design (shown in Figure 6) combines probabilistic
modeling with neural network techniques. It treats weight parameters as probabilities
rather than fixed values. Prior distributions describe critical parameters, serving as inputs,
and the network’s output characterizes the probability distribution likelihood. The posterior
distribution is computed using sampling or variational inference. Despite slower training,
Bayesian neural networks offer strong generalization and provide confidence estimates for
predictions, making them suitable for predictive modeling.

Thus, this study chooses the Bayesian neural network to model the relationship
between crown area and DBH. It compares its performance with the traditional BP neural
network to understand the effectiveness and suitability of using Bayesian neural networks
for predicting the crown area–DBH relationship.

Figure 6. BNN structure.

4. Research Results
4.1. Model Training

The adjustment in model network training parameters significantly impacts the overall
model’s training and predictive efficacy. BlendMask uses the stochastic gradient descent
algorithm (SGD) for training. In this experiment, the BatchSize is set to 4 and the initial
learning rate is adjusted to 0.0035, with the training process spanning 100 epochs and
200 iterations per epoch. The hardware attributes of the workstation are shown in Table 2
which is configured with Intel e5-2640 central processing unit (The manufacturer is INTEL,
located in Santa Clara, USA), NVIDIA RTX 6000 graphics processor unit (The manufac-
turer is NVIDIA, located in Santa Clara, USA), 1T solid-state drive (The manufacturer is
SAMSUNG, located in Gyeonggi-do, Republic of Korea).
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Table 2. Workstation hardware attribute.

Hardware Attribute

CPU E5-12640
GPU RTX 6000 24GB
SSD 1T SSD

Memory 32GB

4.2. Data Processing and Preprocessing
4.2.1. Crown Segmentation of Individual Tree

For the individual-tree crown segmentation adopted in this study (shown as Figure 7),
preprocessed samples and annotated images are fed into the BlendMask network for
training. Model loss is determined post-training, with model parameter updates facilitated
through gradient backtracking until achieving optimal parameterization. Finally, the
optimized model is deployed for the precise detection of individual tree crown edges,
accurate segmentation, and total count within the entire aerial orthophoto image.

Figure 7. Process of individual tree crown segmentation and DBH prediction.

4.2.2. Testing the Individual Tree Crown Area–DBH Model

The computed crown area and measured DBH data are presented in Table 3. This
research selects 70% of the effective samples as training data to establish the correlation
function curve between crown area and DBH. Additionally, 15% of the samples are al-
located for model accuracy verification while the remaining 15% are reserved for model
testing purposes.

Table 3. Data of crown area and DBH of samples.

Total Sample
Number

Mean DBH
(cm)

Maximum
Breast

Diameter (cm)

Minimum
DBH (cm)

Average Crown
Area (m2)

Maximum
Crown Area

(m2)

Minimum
Crown Area

(m2)

164 15.5892 22.5781 9.5670 6.8217 12.1171 2.5853
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4.3. Evaluation of BlendMask’s Performance in Individual Tree Crown Segmentation
4.3.1. Crown Segmentation Effect

The combination of top-down and bottom-up approaches in BlendMask effectively
integrates features from both the bottom layer and the top layer. This fusion enables
the model to capture detailed information and boundary characteristics of tree crowns,
resulting in more precise crown segmentation results. Moreover, it ensures that there is no
overlap between the segmented crown boundaries.

Figure 8a–c are the original images.
Figure 8d,g,j illustrate the performance of BlendMask in segmenting Pinus tabulaeformis

crowns. The model demonstrates the ability to accurately capture the intricate details of
the crown edges without missing any parts or generating false detections. The overall
segmentation and edge detection effect for Pinus tabulaeformis crowns is excellent.

Figure 8e,f,h,i,k,l showcase the application of BlendMask in the identification of
Ginkgo biloba and Populus nigra varitalica trees. It is notable that this algorithm also achieves
remarkable results for these tree species. It effectively captures the distinctive features
of their crown widths, demonstrating accurate segmentation and excellent edge detec-
tion capabilities.

Through its combination of top-down and bottom-up methods, BlendMask exhibits
enhanced performance in capturing detailed crown information, ensuring precise segmen-
tation results, and effectively identifying various tree species.

(b)

(a)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Figure 8. Output result of BlendMask and watershed single-tree crown segmentation.

Figure 8m–o are the output images when using the watershed algorithm for crown seg-
mentation. From Figure 8m–o, it is clear that while the watershed algorithm can accurately
identify and extract most crowns, there are still instances of merging, misclassification, and
omission in the results, indicating limitations in achieving precise crown segmentation.

However, the BlendMask algorithm in the same figure shows superior segmentation
performance compared to the watershed algorithm. It effectively deals with merging,
misclassification, and omission issues encountered in the watershed algorithm. This
results in more accurate and reliable segmentation, improving tree crown identification
and extraction.
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The comparison between the BlendMask and watershed algorithms clearly indicates
the advantages of the BlendMask algorithm in achieving superior crown segmentation
outcomes. Its ability to capture detailed information, handle complex boundaries, and
overcome the limitations of traditional methods makes it a more effective approach for
crown segmentation tasks.

4.3.2. Evaluation of Crown Segmentation Performance

The average precision and mean average precision represent the ratio of overlap
between the crown width obtained through BlendMask segmentation and the actual crown
width. Higher values indicate better model performance.

Subsequently, the crowns are segmented using the watershed method. The actual
crown distribution is initially divided into five groups, with four groups as training datasets
and one as a verification dataset. This process repeats five times, using each of the five
groups once. Parameters like morphological structural element (B) and H in the h-minima
transform vary between 0.5, 1.0, 1.5, 2.0 and 3, 5, 7, 9, respectively. The accuracy rate ACI of
crown classification is presented in Table 4:

Comparing Table 5, representing the overlap ratio between the crown widths obtained
by BlendMask segmentation and the actual crown widths, the minimum average precision
in Table 5 is 0.724, while the maximum is 0.893 at IOU = 0.5. The maximum value for
the correct rate ACI in Table 4 from the watershed segmentation is 0.721, obtained when
H = 1.5 and B = 3.

Table 4. Correct rate of crown segmentation ACI.

/ h = 0.5 h = 1.0 h = 1.5 h = 2.0

b=3 0.696 0.715 0.721 0.707
b=5 0.675 0.689 0.695 0.686
b=7 0.661 0.647 0.653 0.656
b=9 0.624 0.612 0.625 0.611

Table 5. Evaluation index of crown segmentation performance.

Model Weight Average Precision Mean Average Precision IOU
= 0.5

Mean Average Precision IOU
= 0.75

BlendMask 0.724 0.893 0.745
Watershed algorithm 0.685 0.763 0.674

In summary, the BlendMask algorithm in this study outperforms the watershed
algorithm in crown segmentation performance.

4.4. Performance Evaluation of Crown Area–DBH Model

The BlendMask algorithm computes the crown area, utilizing measured DBH values
of trees as training samples for both traditional BP neural networks and Bayesian neural
networks. The training involves refining these models iteratively until reaching the desired
performance, followed by testing using different data. Table 6 showcases the calculation
accuracy indices for the crown area and DBH of individual trees. On the other hand, Table 7
provides the network training parameters used in the training process.

To verify the fitting performance of the two BP neural networks for crown area and
DBH, evaluation indices are presented in Table 8. The fitting results and error distribution
can be observed in Figure 9, while the regression situation is illustrated in Figures 10 and 11.
These tables and figures provide a comprehensive assessment of the performance and
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accuracy of the trained models. They assess the effectiveness of BP neural networks in
predicting crown area and DBH based on BlendMask-calculated crown areas. They offer
insights into how well the models capture the relationship between crown area and DBH,
enabling accurate predictions and measurements of these tree attributes.

Figure 9 clearly demonstrates that the goodness of fit for the fitting models of both
neural networks is greater than 0.9. This indicates that the fitting models of both the
traditional BP neural network and the Bayesian neural network effectively capture and
reflect the relationship between crown area and DBH. However, comparing training and
test set performances reveals differences. The traditional BP neural network has a higher
training set performance but considerably lower test set performance, indicating overfitting.
In contrast, the Bayesian neural network demonstrates robust generalization capabilities,
providing superior predictive results beyond the training dataset.

In summary, the Bayesian neural network outperforms the traditional BP neural
network in modeling the relationship between crown area and DBH. It not only predicts
accurately within the dataset but also exhibits stronger generalization abilities, making it
more proficient at predicting crown area and DBH values beyond the dataset’s limits.

Table 6. Calculation accuracy index of crown area and DBH of individual tree.

/ Relative Error RE Average Absolute Error MAE Root Mean Square Error
RMSE

Crown area 0.05653 0.3290 0.4563
DBH 0.03308 92.18 106.4

Table 7. Network training parameters.

Target Training Times Learning Rate Minimum Error of
Training Target

Additional
Momentum Factor

Minimum
Performance Gradient

10000 0.001 0.000001 0.95 0.00001

Table 8. Evaluation indicators of different models.

Model Training Set/R2 Test Set/R2 All/R2 RMSE

Traditional BP neural network 0.96523 0.90999 0.9456 0.74516
Bayesian neural network 0.9488 0.95628 0.94775 0.72602

(a) (b)

Figure 9. (a) Fitting of Traditional BP Neural Networktwo neural networks. (b) Fitting of Bayesian
Neural Networks.
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Figure 10. Prediction target regression of traditional BP neural network.

Figure 11. Prediction target regression of Bayesian neural network.

4.5. Comparative Analysis

Comparing the data in Table 9. As previously discussed, the BlendMask algorithm
outperforms the watershed algorithm in crown segmentation, while the Bayesian neural
network excels over the traditional BP neural network in fitting crown area to DBH relation-
ships. However, their combined effects might differ in crown width extraction and breast
diameter prediction. Therefore, we conducted a comparison of four combined methods
and present the experimental outcomes below:

The results conclusively demonstrate that the combination of the BlendMask algorithm
for crown segmentation and the Bayesian neural network for DBH prediction produces the
most optimal outcomes. Specifically, the BlendMask algorithm effectively segments tree
crown widths, allowing for the precise extraction of crown contours. The subsequent use of
the Bayesian neural network establishes a strong correlation between crown area and DBH,
resulting in accurate DBH predictions. This integrated approach significantly enhances
the precision and consistency of tree identification and measurement by providing more
accurate crown segmentation and DBH measurement values.
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Table 9. Comparative evaluation of algorithm combination.

Model Training Set Test Set All

BlendMask
+ Bayesian neural network

0.7855 0.7926 0.7862

BlendMask
+ raditional BP neural network

0.69882 0.65883 0.6846

BlendMask
+ raditional BP neural network

0.69882 0.65883 0.6846

Watershed
+ traditional BP neural network

0.6499 0.6551 0.6492

4.6. Final Function Validation

In this study, field data collection and validation were conducted across a range
of tree species. Utilizing our model’s formula correlating crown area with DBH, we
estimated the crown areas of Pinus tabuliformis, Ginkgo biloba, and Populus nigra varitalica.
These estimations enabled DBH calculations for each species, which were then compared
against actual measurements. The findings, detailed in Table 10, revealed that the average
discrepancies between calculated and measured DBH for Ginkgo biloba, Pinus tabuliformis,
and Populus nigra varitalica were 0.15 cm, 0.29 cm, and 0.49cm, respectively, all within the
acceptable forestry error margin of 1 cm.

To verify the model’s efficacy, extensive repeated trials were performed on all speci-
mens of Pinus tabuliformis, Ginkgo biloba, and Populus nigra varitalica within the forest. These
trials consistently demonstrated that both the crown area and DBH of each tree closely
approximated actual measurements, indicating robust model performance. However, due
to constraints in manuscript length, only a subset of representative trees from the sampled
plots were selected for detailed statistical analysis. The results from these samples indicated
average DBH errors of 0.11 cm for Pinus tabuliformis, 0.28 cm for Ginkgo biloba, and 0.31 cm
for Populus nigra varitalica, further corroborating the model’s precision.

Table 10. Comparison between measured diameter and calculated diameter of tree at breast height.

Sample Area The Tree Number MDTBH/cm CDTBH/cm DTBH Error/cm

Pinus tabulaeformis

No.8 9.56 9.43 0.13
No.15 9.98 9.94 0.04
No.29 10.1 10.20 0.10
No.41 10.84 10.72 0.12
No.53 11.79 11.92 0.13

Ginkgo biloba

No.13 17.28 17.41 0.13
No.18 18.53 18.67 0.14
No.25 18.81 18.69 0.12
No.31 19.32 19.23 0.09
No.44 19.45 19.25 0.20

Populus nigra varitalica

No.4 23.32 23.42 0.10
No.11 23.81 23.78 0.03
No.19 24.54 24.85 0.31
No.23 24.98 24.72 0.26
No.29 25.10 25.01 0.09

5. Discussion
5.1. Comparative Experimentation under Varying Light Intensities

Environmental factors significantly affect crown segmentation in the study area. For
example, the leaf color of the same tree species may differ due to various environmental
conditions such as light intensity. Choosing the best time for image capture can notably
improve recognition accuracy [48]. To evaluate the BlendMask model’s applicability in
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UAV-based aerial photography for single-tree crown segmentation under diverse lighting
conditions, this study simulated different light intensities by adjusting UAV image bright-
ness within a range of 50% to 150%, starting from an initial illumination of 100%. Figure 12
depicts segmentation outcomes at brightness levels of 50%, 75%, 100%, 125%, and 150%.

The results reveal a gradual improvement in predictive performance with increasing
light intensity. At lower light intensities, such as 50%, the BlendMask model exhibits uneven
edge segmentation (seen in Figure 12b). For high prediction accuracy, an illumination range
of approximately 75% to 150% is recommended. Hence, capturing crown images during
periods of strong light intensity, like noon, enables the model to generate precise predictions.
This strategy also aids accurate calculations of crown area and DBH predictions.

Understanding the impact of light intensity on segmentation and selecting optimal
shooting conditions improves the BlendMask model’s reliability and performance in aerial
photography involving individual tree species captured by UAVs.

(a) (b) (c)

(d) (e) (f)

Figure 12. (a) Original image (b) Predictions at 40% brightness (c) Predictions at 70% brightness
(d) Predictions at 100% brightness (e) Predictions at 130% brightness (f) Predictions at 160% brightness.

5.2. Analysis of Incorrect Segmentation Cases

The BlendMask model makes mistakes in segmentation, especially in dense tree areas
or where trees have unusual crown shapes. For instance, Figure 13b shows an example
where closely spaced tree trunks led to overlapping masks created by the BlendMask
algorithm. Occasionally, multiple masks were generated for the same tree. This issue
might stem from challenges encountered during the three-dimensional reconstruction and
orthophoto synthesis stages. If the alignment of feature points used in model training
is inaccurate, it hampers precise mask delineation, causing difficulties in distinguishing
closely positioned tree trunks.

(a) (b)

Figure 13. (a) Original image; (b) crown segmentation results and error cases of BlendMask.
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5.3. Image Segmentation Analysis of Different Sizes

In practical scenarios, image sizes often differ. Hence, the model’s ability to handle
images of various sizes is crucial. In this study, larger-sized images were tested, as shown
in Figure 14: the BlendMask-created masks effectively outlined crown edges when dealing
with image sizes of 2000 × 2000 and 3000 × 3000, demonstrating the model’s proficiency in
handling images of different dimensions.

(a) (b)

(c) (d)

Figure 14. (a) Original image with image size of 2000 × 2000. (b) The crown segmentation result
of BlendMask in (a). (c) The original image with the image size of 3000 × 3000. (d) The crown
segmentation result of BlendMask in (c) .

6. Conclusions

This study used the BlendMask algorithm for individual tree crown segmentation and
integrated a Bayesian neural network to predict diameter at breast height (DBH) based
on crown area measurements. The method addressed over-segmentation issues in the
watershed algorithm while maintaining detailed crown edge information across various
scales. Flexible parameter adjustments during segmentation allowed for diverse image
segmentation effects.

Compared to traditional algorithms, this study brings forth several notable advantages:

1. BlendMask’s Multi-step Approach: BlendMask utilizes a two-step method for instance
segmentation in complex scenes. BlendMask initially extracts the region of interest
(ROI) using a pretrained target detector and then performs segmentation of the ROI.
Integrating deep learning models, BlendMask delivers more accurate and precise
outcomes in handling complex segmentation tasks.

2. Robustness to Obstructions and Overlaps: BlendMask effectively handles challenges
related to occlusions and overlaps using deep learning models, particularly when
distinct objects within a scene overlap or obscure each other. This robustness was
beneficial in training Pinus tabulaeformis stand crown information, especially in cases
of occluded and intertwined crowns.

3. Scalability: BlendMask’s adaptability to large-scale datasets enhances segmentation
performance by extracting richer features. It can be applied to various vegetation
datasets, aiding in identifying diverse tree crown shapes, sizes, and distributions. This
contributes to a comprehensive understanding of forest spatial structures, ecological
attributes, and growth patterns.
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Specifically, the BlendMask algorithm can process and analyze forest aerial or remote
sensing images, extracting the crown outline and positional data. When combined with
lidar or 3D scanners, it provides three-dimensional crown information (height, volume,
shape), offering precise descriptions of crown details [49].

Author Contributions: Conceptualization, L.Z.; methodology, J.X.; software, M.S.; validation, J.X.
and Y.S.; formal analysis, J.X.; investigation, J.X., M.S. and Y.S.; resources, L.Z.; data curation, H.C.;
writing—original draft preparation, J.X., W.P. and S.J.; writing—review and editing, L.Z.; visualization,
J.X.; supervision, L.Z. and P.W.; project administration, L.Z.; funding acquisition, L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Municipal Natural Science Foundation, grant number
No. 6232031.

Data Availability Statement: The datasets used and/or analysed during the current study are
available from the corresponding author on reasonable request.

Acknowledgments: We are very grateful to all the students assisted with data collection and the ex-
periments. We also thank anonymous reviewers for helpful comments and suggestions to this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shiyun, H.G.Z. Evaluation Method of Forest Management Models: A Case Study of Xiaolongshan Forest Area in Gansu Province.

Sci. Silvae Sin. 2011, 47, 114. [CrossRef]
2. Yang, M.; Mou, Y.; Liu, S.; Meng, Y.; Liu, Z.; Li, P.; Xiang, W.; Zhou, X.; Peng, C. Detecting and mapping tree crowns based on

convolutional neural network and Google Earth images. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102764. [CrossRef]
3. Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of

LiDAR Data. Remote Sens. 2016, 8, 333. [CrossRef]
4. Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and

prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114.
[CrossRef]

5. Lefsky, M.A.; Cohen, W.B., Selection of Remotely Sensed Data. In Remote Sensing of Forest Environments: Concepts and Case Studies;
Wulder, M.A., Franklin, S.E., Eds.; Springer US: Boston, MA, USA, 2003; pp. 13–46. [CrossRef]

6. Li, X.; Xu, F.; Yong, X.; Chen, D.; Xia, R.; Ye, B.; Gao, H.; Chen, Z.; Lyu, X. SSCNet: A Spectrum-Space Collaborative Network for
Semantic Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 5610. [CrossRef]

7. Li, X.; Xu, F.; Lyu, X.; Gao, H.; Tong, Y.; Cai, S.; Li, S.; Liu, D. Dual attention deep fusion semantic segmentation networks of
large-scale satellite remote-sensing images. Int. J. Remote Sens. 2021, 42, 3583–3610. [CrossRef]

8. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
[CrossRef]

9. Ferreira, M.P.; de Almeida, D.R.A.; de Almeida Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.;
Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of Amazonian palms using
UAV images and deep learning. For. Ecol. Manag. 2020, 475, 118397. [CrossRef]

10. Korpela, I. Individual tree measurements by means of digital aerial photogrammetry. Silva Fennica. Monographs 2004, 3. [CrossRef]
11. Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy

of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797.
[CrossRef]

12. Ma, Q.; Su, Y.; Guo, Q. Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [CrossRef]

13. Dong, T.; Zhang, X.; Ding, Z.; Fan, J. Multi-layered tree crown extraction from LiDAR data using graph-based segmentation.
Comput. Electron. Agric. 2020, 170, 105213. [CrossRef]

14. Riano, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping
vegetation types (2003). IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [CrossRef]

15. Guo, Y.S.; Liu, Q.S.; Liu, G.H.; Huang, C. Individual Tree Crown Extraction of High Resolution Image Based on Marker-controlled
Watershed Segmentation Method. J. Geo-Inf. Sci. 2016, 18, 1259–1266. [CrossRef]

16. Chen, Q.; Baldocchi, D.D.; Gong, P.; Kelly, M. Isolating individual trees in a savanna woodland using small footprint lidar data.
Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [CrossRef]

17. McRoberts, R.E.; Tomppo, E.; Finley, A.O.; Heikkinen, J. Estimating areal means and variances of forest attributes using the
k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 2007, 111, 466–480. [CrossRef]

http://doi.org/10.11707/j.1001-7488.20111118
http://dx.doi.org/10.1016/j.jag.2022.102764
http://dx.doi.org/10.3390/rs8040333
http://dx.doi.org/10.1016/j.rse.2014.07.028
http://dx.doi.org/10.1007/978-1-4615-0306-4_2
http://dx.doi.org/10.3390/rs15235610
http://dx.doi.org/10.1080/01431161.2021.1876272
http://dx.doi.org/10.1038/s41591-018-0300-7
http://dx.doi.org/10.1016/j.foreco.2020.118397
http://dx.doi.org/10.14214/sf.sfm3
http://dx.doi.org/10.1016/j.rse.2011.01.026
http://dx.doi.org/10.1109/JSTARS.2017.2711482
http://dx.doi.org/10.1016/j.compag.2020.105213
http://dx.doi.org/10.1109/TGRS.2003.811693
http://dx.doi.org/10.3724/SP.J.1047.2016.01259
http://dx.doi.org/10.14358/PERS.72.8.923
http://dx.doi.org/10.1016/j.rse.2007.04.002


Remote Sens. 2024, 16, 368 22 of 23

18. Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting Diameter at Breast Height with a Handheld Mobile LiDAR System
in an Outdoor Environment. Sensors 2019, 19, 3212. [CrossRef]

19. Li, Q.; Lu, W.; Yang, J. A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. J. Atmos. Ocean.
Technol. 2011, 28, 1286–1296. [CrossRef]

20. Chai, G.; Zheng, Y.; Lei, L.; Yao, Z.; Chen, M.; Zhang, X. A novel solution for extracting individual tree crown parameters in
high-density plantation considering inter-tree growth competition using terrestrial close-range scanning and photogrammetry
technology. Comput. Electron. Agric. 2023, 209, 107849. [CrossRef]

21. Sun, Z.; Wang, Y.F.; Ding, Z.; Liang, R.T.; Xie, Y.; Li, R.; Li, H.; Pan, L.; Sun, Y.J. Individual tree segmentation and biomass
estimation based on UAV Digital aerial photograph. J. Mt. Sci. 2023, 20, 724–737.

22. Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-
Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [CrossRef]

23. Jing, L.; Hu, B.; Noland, T.; Li, J. An individual tree crown delineation method based on multi-scale segmentation of imagery.
ISPRS J. Photogramm. Remote Sens. 2012, 70, 88–98. [CrossRef]

24. Sun, C.; Huang, C.; Zhang, H.; Chen, B.; An, F.; Wang, L.; Yun, T. Individual Tree Crown Segmentation and Crown Width
Extraction From a Heightmap Derived From Aerial Laser Scanning Data Using a Deep Learning Framework. Front. Plant Sci.
2022, 13, 914974. [CrossRef]

25. Huang, Y.X.; Fang, L.M.; Huang, S.Q.; Gao, H.L.; Yang, L.B.; Lou, X.L. Research on Crown Extraction Based on Improved Faster
R-CNN Model. For. Resour. Wanagement 2021, 1, 173.

26. Xu, X.; Zhou, Z.; Tang, Y.; Qu, Y. Individual tree crown detection from high spatial resolution imagery using a revised local
maximum filtering. Remote Sens. Environ. 2021, 258, 112397. [CrossRef]

27. G. Braga, J.R.; Peripato, V.; Dalagnol, R.; P. Ferreira, M.; Tarabalka, Y.; O. C. Aragão, L.E.; F. de Campos Velho, H.; Shiguemori, E.H.;
Wagner, F.H. Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sens. 2020, 12, 1288.
[CrossRef]

28. Wu, X.; Zhou, S.; Xu, A.J.; Chen, B. Passive measurement method of tree diameter at breast height using a smartphone. Comput.
Electron. Agric. 2019, 163, 104875. [CrossRef]

29. Hao, Y.; Widagdo, F.R.A.; Liu, X.; Quan, Y.; Dong, L.; Li, F. Individual Tree Diameter Estimation in Small-Scale Forest Inventory
Using UAV Laser Scanning. Remote Sens. 2021, 13, 24. [CrossRef]

30. de Almeida, C.T.; Galvao, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.;
de Jesus Silva, C.V.; Ferreira-Ferreira, J.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the
Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [CrossRef]

31. Adhikari, A.; Montes, C.R.; Peduzzi, A. A Comparison of Modeling Methods for Predicting Forest Attributes Using Lidar Metrics.
Remote Sens. 2023, 15, 1284. [CrossRef]

32. Tian, X.; Sun, S.; Mola-Yudego, B.; Cao, T. Predicting individual tree growth using stand-level simulation, diameter distribution,
and Bayesian calibration. Ann. For. Sci. 2020, 77, 57. [CrossRef]

33. Gyawali, A.; Aalto, M.; Peuhkurinen, J.; Villikka, M.; Ranta, T. Comparison of Individual Tree Height Estimated from LiDAR and
Digital Aerial Photogrammetry in Young Forests. Sustainability 2022, 14, 3720. [CrossRef]

34. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.:Red Hook,
NY, USA, 2012; Volume 25.

36. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

37. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

38. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
39. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259.
40. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
41. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D. Thesis, Technical University of Munich,

Munich, Germany, 2012; Volume 385. [CrossRef]
42. Shi, J.Q.; Feng, Z.K.; Liu, J. Design and experiment of high precision forest resource investigation system based on UAV remote

sensing images. Nongye Gongcheng Xuebao/Transactions Chin. Soc. Agric. Eng. 2017, 33, 82–90. [CrossRef]
43. Brede, B.; Terryn, L.; Barbier, N.; Bartholomeus, H.; Bartolo, R.; Calders, K.; Derroire, G.; Moorthy, S.; Lau Sarmiento, A.; Levick, S.;

et al. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning. Remote Sens.
Environ. 2022, 280, 113180. [CrossRef]

44. Bucksch, A.; Lindenbergh, R.; Abd Rahman, M.; Menenti, M. Breast Height Diameter Estimation From High-Density Airborne
LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1056–1060. [CrossRef]

45. Heo, H.K.; Lee, D.K.; Park, J.H.; Thorne, J. Estimating the heights and diameters at breast height of trees in an urban park and
along a street using mobile LiDAR. Landsc. Ecol. Eng. 2019, 15, 253–263. [CrossRef]

http://dx.doi.org/10.3390/s19143212
http://dx.doi.org/10.1175/JTECH-D-11-00009.1
http://dx.doi.org/10.1016/j.compag.2023.107849
http://dx.doi.org/10.3390/rs11111309
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.003
http://dx.doi.org/10.3389/fpls.2022.914974
http://dx.doi.org/10.1016/j.rse.2021.112397
http://dx.doi.org/10.3390/rs12081288
http://dx.doi.org/10.1016/j.compag.2019.104875
http://dx.doi.org/10.3390/rs13010024
http://dx.doi.org/10.1016/j.rse.2019.111323
http://dx.doi.org/10.3390/rs15051284
http://dx.doi.org/10.1007/s13595-020-00970-0
http://dx.doi.org/10.3390/su14073720
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-3-642-24797-2
http://dx.doi.org/10.11975/j.issn.10026819.2017.11.011
http://dx.doi.org/10.1016/j.rse.2022.113180
http://dx.doi.org/10.1109/LGRS.2013.2285471
http://dx.doi.org/10.1007/s11355-019-00379-6


Remote Sens. 2024, 16, 368 23 of 23

46. Zhang, B.; Yuan, J.; Shi, B.; Chen, T.; Li, Y.; Qiao, Y. Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023.

47. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

48. Lahivaara, T.; Seppanen, A.; Kaipio, J.P.; Vauhkonen, J.; Korhonen, L.; Tokola, T.; Maltamo, M. Bayesian Approach to Tree
Detection Based on Airborne Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2690–2699. [CrossRef]

49. Huang, H.; Li, X.; Chen, C. Individual Tree Crown Detection and Delineation From Very-High-Resolution UAV Images Based on
Bias Field and Marker-Controlled Watershed Segmentation Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 2253–2262. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2013.2264548
http://dx.doi.org/10.1109/JSTARS.2018.2830410

	Introduction
	Research Significance and Background
	Research Landscape
	Research Status of Crown Width Extraction
	Research Status of Deep Learning in Forestry Segmentation
	Research Status of DBH Prediction of Trees

	Primary Research Focus

	Research Area and Data Acquisition
	Field Investigation and Data Acquisition
	Research Area
	Field Investigation and Data Collection

	Datasets Creation
	Synthesis of Orthophoto Map
	Generating Label Samples

	Evaluation Metrics
	Accuracy Assessment of Individual Tree Detection
	Crown Segmentation Accuracy Metrics
	Individual Tree Crown Area and DBH Accuracy Metrics


	Research Methods
	Crown Segmentation Method
	Watershed Algorithm
	BlendMask Algorithm

	Calculation of Crown Area
	Crown Area–DBH Model

	Research Results
	Model Training
	Data Processing and Preprocessing
	Crown Segmentation of Individual Tree
	Testing the Individual Tree Crown Area–DBH Model

	Evaluation of BlendMask's Performance in Individual Tree Crown Segmentation
	Crown Segmentation Effect
	Evaluation of Crown Segmentation Performance

	Performance Evaluation of Crown Area–DBH Model
	Comparative Analysis
	Final Function Validation

	Discussion
	Comparative Experimentation under Varying Light Intensities
	Analysis of Incorrect Segmentation Cases
	Image Segmentation Analysis of Different Sizes

	Conclusions
	References 

