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Abstract: The orthogonal basis functions (OBFs) method is a prevailing choice for the detection of 

undersurface magnetic anomaly targets. However, it requires the detecting platform or target to 

move uniformly along a straight path. To circumvent the restrictions, a new adaptive basis functions 

(ABFs) approach is proposed in this article. It permits the detection platform to search for a possible 

target at different speeds along any course. The ABFs are constructed using the real-time data of the 

onboard triaxial fluxgate, GPS module, and attitude gyro. Based on the pseudo-energy of an appar-

ent target signal, the constant false alarm rate (CFAR) method is employed to judge whether a target 

is present. Moreover, by defining the pixel as a relative possibility for a target at a geographic loca-

tion, a magnetic anomaly target imaging scheme is introduced by displaying the pixels onto the 

searching area. On-site experimental data are utilized to demonstrate the proposed approach. Com-

pared with the traditional OBFs method, the present ABFs approach can substantially improve the 

detection possibility and reduce false alarms. 

Keywords: magnetic anomaly target detection; orthogonal basis functions (OBFs); adaptive basis 

functions (ABFs); constant false alarm rate (CFAR) detection; magnetic anomaly target imaging 

 

1. Introduction 

When a ferromagnetic object is present, the local Earth magnetic field is disturbed to 

some degree, which is called a magnetic anomaly. Magnetic anomaly detection (MAD) is 

a sophisticated technique widely employed to locate a magnetic target hidden in a com-

plex environment [1–4]. Typical applications of MAD include the identification of unex-

ploded ordnance (UXO) [5,6], landmines [7,8], ships and submarines [9,10], archaeology 

[11], traffic surveillance [12,13], and magnetic tracers in biomedicine [14,15]. 

A ferromagnetic object may be treated as a magnetic dipole if the separation from the 

object to the magnetic sensor is more than several times the target’s dimension. Detection 

of a magnetic dipole target may involve two aspects: judgment of whether a magnetic 

dipole target is present and determination of the target location. 

To judge the existence of a target from a piece of measured data, one may choose a 

signal-based or noise-based scheme. For a signal-based method, the pseudo signal energy 

is estimated first, and then the constant false alarm rate (CFAR) method is employed by 

dynamically comparing the signal energy with the referenced background noise. The or-

thogonal basis function (OBF) decomposition first introduced in [16] may be the most 

popular approach to estimate the signal energy, by which the scalar magnetic anomaly 

signal of a magnetic dipole target is expressed by three OBFs, and the signal energy is the 

sum of the squares of the three expansion coefficients. If a scalar gradient signal is availa-

ble by using multiple scalar magnetometers, four OBFs can be used to express the gradient 

signal, and the pseudo signal energy is estimated using the four expansion coefficients 

[17]. The expansion coefficients may be projected on an ellipsoid surface to reduce the 
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impact of noise, and the modified coefficients are used to estimate the energy [18]. Because 

the OBFs method hinges on matched filtering, it is very suitable to detect a known signal 

contaminated by Gaussian white noise. To enhance the detection capability under com-

plex colored noise, a lot of techniques were proposed, including whitening filtering [19], 

optimized basis functions [20], adaptive filtering [21], Karhunen–Loeve expansion [22], 

etc. However, these signal-based methods assume that the detecting platform carrying the 

magnetic sensor moves uniformly along a straight path, so that the OBF expansion ap-

plies. If the detecting platform moves non-uniformly or along a hovering forward course, 

there is no target signal model available at the present stage. 

Noise-based detection methods are more suitable when the target signal model can-

not be established. By inspecting the statistical change of noise, whether a target signal is 

intruding may be judged. These kinds of schemes include the minimum entropy filtering 

(MEF) method [23], high-order crossing (HOC) method [24], fractal feature method [25], 

etc. Information entropy is calculated by estimating the probability density function of 

noise. The MEF approach leverages information entropy to detect a target signal, as it 

would experience a substantial decrease when a target signal is overlaid. The HOC 

method assesses the presence of a target signal by scrutinizing the disparity in HOC in-

formation between the measured data and background noise. Similarly, the difference in 

fractal characteristics between the target signal and noise is exploited to judge the pres-

ence of a target signal. However, these noise-based approaches are somewhat less robust 

and mainly operate by examining the differences between measured data and noise, rather 

than capitalizing on the features of target signals. In addition, some scholars have intro-

duced detection methods based on nonlinear stochastic resonance systems to enhance the 

signal using noise energy [26,27]. But the stochastic resonance method demands stringent 

system parameters and exhibits limited stability. Furthermore, a coherent filtering method 

may be employed to suppress the background magnetic noise if measured data from a ref-

erence magnetometer is available [28]. Compared with signal-based methods, noise-based 

detection methods may have higher detection rates but higher false alarm rates, as well. 

In recent years, machine learning methods have witnessed a remarkable upsurge in 

many research fields. In [29], the support vector machine (SVM) was applied to magnetic 

anomaly detection, which transformed the determination of signal presence into a binary 

classification conundrum. However, the SVM technique is susceptible to the pitfall of un-

derfitting, which potentially diminishes its practical efficacy. Convolutional neural net-

works (CNNs) were attempted in [30–32], where both 1-D CNNs in tandem with signal 

features and 2-D CNNs based on time-frequency diagrams were designed and trained to 

recognize magnetic anomaly signals. A deep learning model via an attention mechanism 

for vector magnetic anomaly detection was introduced in [33]. In [34], an end-to-end deep 

learning (DL) framework was introduced for magnetic anomaly detection (MAD) and de-

noising. In [35], a network with adaptive time–frequency feature expression to detect mag-

netic anomalies was proposed. Nevertheless, it should be noticed that machine learning 

(ML) methods exhibit a pronounced reliance on data and some degree of instability in 

terms of generalization capabilities. 

As for the determination of the location and magnetic moment of a magnetic dipole 

target, there are six scalar unknowns to solve. Based on the single magnetic dipole model, 

a magnetic dipole tracking and locating approach utilizing magnetic gradient tensor data 

for direct inversion was initially proposed in [36]. Both direct and iterative approaches 

have been reported in the literature. Direct methods are usually based on the availability 

of measured data from multiple magnetometers or magnetic gradiometers [37–39]. The 

Euler deconvolution method [40] and phase-based filtering method [41] may also be cat-

egorized as direct schemes. It should be mentioned that direct methods are usually sensi-

tive to measurement errors if high-order derivatives are required and calculated using the 

measured data, which results in unstable solutions. In contrast, iterative methods dis-

pense with the calculations of derivatives and establish profound mathematical mapping 

connecting the target location and magnetic moment with the magnetic anomaly fields. 
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Directionally sensitive algorithms are usually employed in iterative methods, such as the 

Levenberg–Marquardt algorithm [42], Gauss–Newton algorithm [43], simulated anneal-

ing [44], and genetic algorithm [45]. ML-based methods were also developed for the local-

ization of undersurface magnetic targets [46,47]. Nevertheless, these schemes are subject 

to the availability of sufficient training datasets. 

The purpose of this article is to present an alternative approach for detection and 

localization of undersurface magnetic dipole targets, such as shipwrecks, using an aero-

magnetic system. To meet the need to search for a target along an arbitrary course, a set 

of adaptive basis functions (ABFs) are derived to replace the orthonormal basis functions 

(OBFs) that are suitable only for straight courses. The target location and magnetic mo-

ment are determined by directly scanning the searching area and optimally matching the 

theoretical signal to the measured values. To show the possibility for a target localization 

in global geographic longitude and latitude coordinates, an imaging scheme is introduced 

via transformation of the geocentric coordinate system. 

The remainder of this article is organized as follows: In Section 2, the signal model is 

established by using the ABFs. Data preprocessing, target detection, and location methods 

are described in Section 3. In Section 4, on-site experiment validation is presented. Some 

concluding remarks are given in Section 5. 

2. Target Signal Modeling Using ABFs 

We assume that there are four sets of sensors installed on an aeromagnetic detecting 

platform, including an optical-pumping magnetometer (OPM), a triaxial fluxgate, a GPS 

module, and an attitude gyro. The OPM measures the magnitude of a vector magnetic 

field, which has very high precision, as small as a few pT (pico-Tesla). The triaxial fluxgate 

measures the three components of a vector magnetic field, which are used to calculate the 

attitude of the platform with respect to the local geomagnetic field. The GPS module rec-

ords the platform positions or flying course. The attitude gyro records the attitudes of the 

detecting platform with respect to the geographic coordinate system. 

The magnetic anomaly target can be taken as a magnetic dipole if the minimum dis-

tance from the target to the flying path is greater than several times the target’s dimension, 

which is well satisfied in this study. The magnetic anomaly target signal measured by the 

OPM can be written as 

( )
2 3

0

sig 5
1

3ˆ( ) ,
4

i i s

i

- R
B t M F

R



 =

=    
RR I

T M = r r  (1) 

where ˆ ( )tT  is the directional vector of the local geomagnetic field, M  is the target mag-

netic moment, I  is the identical matrix, ( ) ( ) st t= −R r r  is the radius vector from the tar-

get to the OPM, and ( ) ( ) sR t t= −r r . The coordinates ( )tr  are provided by the GPS mod-

ule, M  and sr  are the unknowns to be solved by using a piece of data centered at ( )dtr

, as shown in Figure 1. The T̂  is obtained by using the data of the fluxgate and gyro as 
ˆ ( ) ( ) ( )t t t= T u , where ( )tu  is the local geomagnetic directional vector with respect to 

the platform measured by the fluxgate, and ( )t  is a transform matrix from the platform 

system to the geographic system. Specifically, 

cos sin 0 cos 0 sin 1 0 0

( ) sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

t

   

   

   

− −     
     

= −
     
          

 (2) 

in which ( ), ( ) and ( )t t t    are the yaw, pitch, and roll angles of the platform with re-

spect to the geographic coordinate system. The basis functions in (1) are 
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where 1
ˆ( ) ( )R t t= x R , 2

ˆ( ) ( )R t y t= R , 3
ˆ( ) ( )R t z t= R , 1

ˆˆ( ) ( )T t x t= T , and so forth. We call 

them adaptive basis functions (ABFs) because they are constructed using the real-time 

data of ( )tr  and ˆ ( )tT . 

 

Figure 1. Illustration of airborne magnetic anomaly target detection. 

If the platform moves uniformly at speed v  along a straight line, refer to Figure 1; 

we will have 

ˆ ˆ ˆ( ) [( ) cos sin ] [( )sin cos ]s d d d dt vt Y x vt Y y hz   = − = + + − −R r r  

 0
ˆ ˆ ˆ[ cos cos sin ] [ sin cos cos ] sind s d d s d sR w x w y z      = + + − −  

(4) 

2 2 2 2 2 2

0( ) ( ) (1 )R vt Y h R w= + + = +  (5) 

2 2

0R Y h= + , 0/w vt R= , 0 cos sY R = , 0 sin sh R =  (6) 

where 0R  and 0 /R v =  are called the closest proximity approach (CPA) and character-

istic time, respectively. Substituting (4)–(6) into (3), we will obtain 

2

3 2 2.5

0

1
( ) , ,  1,2,3/

(1 )

i i i

i

a w b w c
F t iw t

R w


+ +
= =

+
=  (7) 

where , ,i i ia b c  ( 1, 2,3i = ) are coefficients relevant to the depression angle s  but inde-

pendent of the CPA 0R , and their detailed expressions are omitted. It shows that iF  is a 

linear combination of the Anderson-type function 2 2.5/ (1 )nw w+  ( 1, 2,3n = ). These three 

Anderson-type functions can be orthonormalized to become the three orthogonal basis 

functions (OBF) given by Ginzburg in [17], so that ( )iF t , and then the target signal sig ( )B t

, can be expressed by the three OBFs. 

In this paper, the general signal model (1) will be adopted, which permits the detect-

ing platform to search for a possible target along any course and at different speeds by 
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using a GPS module and a flight gyro to record the path and attitude of the detecting 

platform, respectively. 

3. Detection and Location 

3.1. Data Preprocessing 

In general, the measured values by the OPM may be written as five parts: 

opm geo pla diu sig noi( ) ( ) ( ) ( ) ( ) ( )B t B t B t B t B t B t= + + + +  (8) 

where geo ( )B t   is the local geomagnetic field, pla ( )B t   denotes the interference magnetic 

field generated by the detecting platform, diu ( )B t  reflects the diurnal magnetic variation, 

and noi ( )B t  accounts for other magnetic noises. 

We fit the geomagnetic field using linear interpolation within the interval 0 st t t  : 

10

geo 0

1

( ) ( )i i

i

B t f t 
=

= +  (9) 

where i  ( 0 10i  ) are undetermined coefficients, and 

1 2 3 4

2

5 6 7

2 2

8 9 10

( ) ,  ( ) ( ),  ( ) ( ),  ( ) ( )

( ) ( ),  ( ) ( ) ( ),  ( ) ( ) ( )

( ) ( ),  ( ) ( ) ( ),  ( ) ( ).

f t t f t x t f t y t f t z t

f t x t f t x t y t f t x t z t

f t y t f t y t z t f t z t

= = = =


= = =


= = =

 (10) 

In the above, ( )x t , ( )y t , and ( )z t  are the geographic coordinates of the detecting 

platform obtainable from the onboard GPS module. Please note that a constant term and 

a linear term are included in (9) because they are definitely not target signals and should 

be removed anyway. 

The magnetic interference generated by the detecting platform is compensated by 

using a classical Tolles–Lawson (TL) model [48]: 

3 3 3 3 3

pla

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )i i ij i j ij i j

i i j i i j

B t a h t b h t h t c h t h t
= = = = =

= + +    (11) 

where the first term denotes the permanent interference due to the remanent magnetism 

of the aircraft material, the second term denotes the induction interference due to the mag-

netization of the aircraft body by the geomagnetic field, and the third term denotes the 

eddy interference due to the time-varying of the direction of the local geomagnetic field 

with respect to the platform system. In (11), 1 2 3( , , )h h h  represents the directional vector 

of the local geomagnetic field measured by the onboard triaxial fluxgate, i.e., 
( ) ( ) / ( )i ih t H t H t= , with ( )iH t  being the i-th component and ( )H t  the amplitude, i.e., 

2 2 2

1 2 3( ) ( ) ( ) ( )H t H t H t H t= + + , and ( ) ( ) /i ih t dh t dt= . 

The geomagnetic field and platform interference are the principal quantities that 

swamp the target signal and should be eliminated first. To this end, we use the least square 

method (LSM) with ridge regression to solve the coefficients   in (9) and , ,a b c  in (11), 

i.e., defining and minimizing the following function: 

opm geo pla 2

1
( ) ( ) ( ) .

2
f B t B t B t= − −  (12) 

In this equation, (9) and (11) are substituted into (12), making / / 0f f  =   =α β  to 

solve for α   and β  , where α   and β   contain the coefficients { }i   in (9) and 

{   }i ij ija b c  in (11), respectively. 

Once these coefficients are found, we will obtain the remaining magnetic field as fol-

lows: 
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rem opm geo pla( ) ( ) ( ) ( ).B t B t B t B t= − −  (13) 

Because the presence of a target signal is a rare event, rem ( )B t  is largely the diurnal 

magnetic variation, which may be seen as a Gaussian-colored noise. So, a whitening filter 

is constructed as 

diu diu

1

( ) ( ) ( ) ( )
L

i

B t c i B t i t w t
=

= −  +  (14) 

where ( )w t  is white noise. The filter coefficients are found by the Yule–Walker equation: 

1

( , ) ( ) ( ),  1,2,...,
L

j

i j c j r i i L
=

= =  (15) 

diu diu( ) ( ) ( )r i B t i t B t= −   (16) 

diu diu( , ) ( ) ( )i j B t i t B t j t= −  −   (17) 

where   represents the statistical average over time t . In actual operation, the diu ( )B t  

in (16) and (17) is replaced with the rem ( )B t  of (13). The well-known Levinson–Durbin 

algorithm is used to solve (15). Finally, we obtain the sufficiently preprocessed data as 

res rem diu sig noi( ) ( ) ( ) ( ) ( )B t B t B t B t B t= − = +  (18) 

which is regarded as a possible target signal superimposed on whiting background noise. 

3.2. Target Signal Detection 

First, we separate out the apparent target signal from (18) using a sliding window 

centered at the detecting instant dt , i.e., / 2dt t T−    by minimizing the functional 

/2
2

res sig

/2

1
( ) ( ) ( )

2

d

d

t T

d

t T

f t B t B t dt

+

−

= −  (19) 

where sig ( )B t  is the signal model of (1) based on the ABFs given in (3). As illustrated in 

Figure 1, the target is supposed to be located at 

( ) sin ( )

( ) cos ( )

.

s d d

s d d

s

x x t Y t

y y t Y t

z h





= −


= +
 =

 (20) 

The magnetic moment M  is found by solving ( ) / 0d if t M  =  ( 1, 2,3)i = . By scan-

ning the horizontal parameter Y  at a step Y , i.e., Y k Y=  , we obtain a group of ap-

parent signals 

( )
3

1

( , ) ( , ) ( ), ( , )d i d i d s d

i

S t t k M t k F t t t k
=

− = − r r , / 2.dt t T−    (21) 

Next, we calculate the pseudo energy of each apparent signal and the averaged en-

ergy as 

/ 2
2

/2

( , ) ( , )

T

d d

T

E t k S t t k dt



−

= −  (22) 

/ 2

ave

/2

1
( ) ( , )

1

K

d d

k K

E t E t k
K =−

=
+

  (23) 
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where a total of 1K +  horizontal locations are checked. 

Then, we adopt the well-known constant false alarm rate (CFAR) method to judge 

whether there is a target signal in the segment of data with the threshold value: 

 
/ 2

threshold ave ave

/2

( ) ( ) ( )
2

T

d d d

T

E t E t T t E t T t dt
T




−

= − + + +  +
   (24) 

CFARln P = −  (25) 

where CFARP   is the prescribed CFAR, say, if CFAR 0.1P =  , 2.3 =  . In (24), the length of 

protected elements centered at the detecting instant dt  is taken to be T , and the lengths 

of reference elements on each side are also taken to be T . 

Finally, two curves ave ( ) ~d dE t t  and threshold ( ) ~d dE t t  are plotted, and a target is said 

to be present at the instant dt  if ave threshold( ) ( )d dE t E t . The lateral position of the target is 

taken to be at tar tarY k Y=   if ( , )dE t k  achieves the maximum value when tark k= . In the 

following experiments, we set 1000T =  points or 100 s, dt n t=   with 10t =  points 

or 1 s, and 100Y =  m. 

3.3. Target Locating and Imaging 

To display the relative possibility for a target residing at each location, a 2D image 

may be defined as 

threshold

( , )
( , ) .

( )

d

d

d

E t k
I t k

E t
=  (26) 

Obviously, the larger the ( , )dI t k , the greater the possibility for a target to be present 

at the location given by (20). 

Furthermore, we can convert the continuous strip image of (26) into a regional image 

on the global geographic coordinate system as dt  steps forward. As shown in Figure 2, if 

the longitude, latitude, and height given by the onboard GPS are ( ),  ( ) and ( )t t h t  , the 

position of the detecting platform in the geocentric coordinate system is [49] 

2 2
( ) cos cos

1 sin

a
X t h

e
 



 
= +  

− 
 (27) 

2 2
( ) cos sin

1 sin

a
Y t h

e
 



 
= +  

− 
 (28) 

2

2 2

(1 )
( ) sin

1 sin

a e
Z t h

e




 −
= +  

− 
 (29) 

where 6,378,137.0a =   m, 6,356,752.314245b =   m, and 2 21 /e b a= −  ; the relationship 

between the geocentric latitude   and geographic latitude   is 

( )2tan 1 tan .e = −  (30) 

Then, the local geographic coordinates ( ),  ( ) and ( )x t y t z t  (x-axis to the north, y-axis 

to the east, and z-axis downward) within the window / 2dt t T−    are 

( ) ( )

( ) ( )

( ) ( )

( ) sin 0 cos cos sin 0

( ) 0 1 0 sin cos 0

( ) cos 0 sin 0 0 1

d d d d d

d d d

d d d d

x t X t X t

y t Y t Y t

z t h Z t Z t

   

 

 

− −      
      

= − −      
      + − − −       

 (31) 
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In which ( )d dh h t= , ( )d dt = , and ( )d dt = . 

 

Figure 2. Geocentric coordinate system vs. geographic coordinate system. 

Consequently, if the target is present at the platform coordinates  , ,s s sx y z , its geo-

centric coordinates are 

( )

( )
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cos sin 0 sin 0 cos

sin cos 0 0 1 0 .

0 0 1 cos 0 sin

S d d d d d s
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S d d d s d

X X t x

Y Y t y

Z Z t z h

   

 

 
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        − +        

 (32) 

According to (27)–(30), the geographic longitude and latitude positions  ,s s   of 

the target can be obtained by 

( )1cot /s S SX Y −=  (33) 

2
1

2 2

(1 )
sin ,  .

1 ( / )

S

s s

S

Z a e
a h

a e Z a
 − − 

 = +   −
 (34) 

As a result, the strip image of (26) is converted into a regional image labelled with 

the geographic longitude and latitude as 

( )
( )

( )threshold

,
, .

,

s s

s s

d d

E
I

E

 
 

 
=  (35) 

Subsequent detection using image detection techniques may be attempted. 

4. Experiment Validation 

On-site experiments were conducted to validate the applicability of the proposed 

procedure. Figure 3 shows the magnetic detection airplane used for our experiments. As 

shown in Figure 4, a total of 10 artificial targets are assumed to be distributed in an area. 

The detection airplane is searching for the targets along a hovering forward course. The 

10 targets are successfully found using the proposed procedure, as indicated in the figure. 

A 2D image of the region around the 9th target is placed on the side of the figure. 
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Figure 3. Photo of our aeromagnetic detection aircraft. 

 

Figure 4. On-site experiment flight trajectory and positioning results. 

The raw data collected by the optical-pumping magnetometer (OPM) is shown in 

Figure 5a. The horizontal axis labels the sampling points with a sampling rate of 10 points 

per second, or 10 Hz. There are many peaks and troughs in the measured curve, which 

reflect the geological magnetic gradient along the course and magnetic interferences due 

to the jolting of the airplane. The 10 red segments in the curve indicate the places of the 10 

target signals. Figure 5b shows the preprocessed data (cyan line) using the schemes de-

scribed in Section 3.1, including geomagnetic fitting, interference compensating, and whit-

ing filtering and, finally, a bandpass filtering of 0.04–0.6 Hz. The black line shows the di-

rect bandpass filtering of the raw data. The 10 true target signals are shown in Figure 5b, 

too. It is obvious that the SNR of preprocessed data is greater than the SNR of directly 
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filtered data. The proposed preprocessed schemes have little impact on the target signals 

but reduce the magnetic noise/interference level. 

Figure 5c shows the detection results using the proposed ABFs method described in 

Section 3.2. It can be seen that the 10 targets were successfully detected without missing 

or false alarm. As for comparison, the prevailing OBFs method is applied, and the detec-

tion results are shown in Figure 5d, from which it can be seen that six targets are success-

fully detected (green places), four real targets are missing (gray places), and three false 

targets are distinguished (lilac places). The error detections by the OBFs method may be 

attributed to the signal model that requires the search path within a detection window to 

be along a straight line, but, in fact, it is along a curved line. 

In Table 1, the positioning errors are calculated, which are the distances between the 

“reported” true target locations and the detected locations given by the relative longitudes 

and latitudes. The average error is 156.55 m. The error may come from two aspects. One 

is the algorithm, and the other is the data or systematic errors. In terms of algorithms, we 

set the resolutions to be 70 m in the platform-moving direction and 100 m in the lateral 

direction, respectively. So, the algorithm error may be estimated to be 2 235 50 61+   m. 

As for the data, the on-board GPS has an error of about 30 m, and both the direction of the 

local geomagnetic field measured by the triaxial fluxgate and the attitude of the platform 

measured by the flight gyro have some degree of uncertainty. Therefore, the averaged 

error of 156.55 m is a little big but acceptable. Please note that the flying heights are about 

400 m, and the flight speeds are about 70 m/s. The lateral scanning range is within 1300 m 

on both sides of the flight route. 

Table 1. Detection and positioning statistics table. 

No. 
Detected 

Longitude 

Detected 

Latitude 

True 

Longitude 

True 

Latitude 

Positioning Error 

(Unit: m) 

1 0.4877 0.0355 0.4874 0.0364 104.99 

2 0.5363 0.0600 0.5380 0.0592 200.54 

3 0.5572 0.1281 0.5572 0.1290 100.08 

4 0.5887 0.1588 0.5896 0.1592 104.99 

5 0.5958 0.1809 0.5959 0.1800 100.64 

6 0.6323 0.2338 0.6339 0.2349 208.61 

7 0.5737 0.2312 0.5733 0.2329 193.71 

8 0.5298 0.2096 0.5314 0.2105 196.42 

9 0.5008 0.2487 0.5020 0.2479 154.84 

10 0.5496 0.2035 0.5515 0.2035 200.71 

Average      156.55 

For reasons of confidentiality, the latitude and longitude have been processed. 

Note that the magnetic moment M solved by (19) is just for extracting the target signal 

as (21). The value of M is discarded once the signal is constructed, because the magnetic 

moment is taken to be a random value in the generation of simulated target signals, and 

the simulated signals are scaled according to specified SNRs, so that the original magnetic 

moment has been lost/forgotten. Therefore, our detection task is to determine whether 

and where a magnetic dipole target is present; the size of the magnetic moment (ampli-

tude and orientation) is not concerned in this study. 
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Figure 5. Raw data, preprocessed data, and detection results. (a) Raw data. The 10 red segments in 

the curve indicate the locations of 10 target signals. (b) Preprocessed data. The black line shows the 

direct bandpass filtering of the raw data; the cyan line shows the preprocessed data using the 

schemes described in Section 3.1; the red line shows the direct bandpass filtering of the target signal. 

(c) Detection results using the present ABFs method. The black line represents the energy curve; the 

red line indicates the threshold. When the energy value exceeds the threshold, the existence of a 

target signal at that point is indicated (green stripes). (d) Detection results using the OBFs method. 

The gray stripes represent missed target signals; lilac stripes represent falsely detected target sig-

nals; and green stripes indicate correctly detected target signals. 

To further examine the detection performance, a series of Monte Carlo simulation 

experiments were conducted for different signal-to-noise rates (SNRs). In this paper, the 

SNR is defined as 

 
 10

mea

PPV bpf[ ( )]
20log  dB

PPV bpf[ ( )]

d

d

S t
SNR

B t
=  (36) 

where mea[ ( )]dB t  denotes a piece of measured background data of length T  centered 

at the instant dt , i.e., / 2dt t T−   . A simple process of detrending and subtracting the 

mean value is carried out. [ ( )]dS t   denotes a simulated target signal that is added on 
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mea[ ( )]dB t  to form contaminated data. “PPV” stands for the peak-to-peak value of the sig-

nal or background, and “bpf” stands for a bandpass filtering of 0.02–0.4 Hz. 

The generations of background magnetic fields and simulated signals are described 

in detail, as follows: 

The background or noise magnetic fields are real measured data. Every time, starting 

from a random place, a piece of data of 5000 points (or 500 s, because the sampling rate is 

10 points/s) is taken from the measured sequence (the total length of a measured sequence 

in one day is about 180,000 points or about 5 h, and 6 days’ data are used in the simulation 

experiments), and a total of 1000 sets of background magnetic field data (each is 5000 

points in length) are obtained. In the meantime, 1000 sets of data for fluxgate, flight gyro, 

and GPS, respectively, are obtained. 

The simulated signals are generated by using (1). The magnetic moment is taken to 

be ˆ ˆ ˆ
x y zM x M y M z= + +M , where ,  and x y zM M M  are empirically random values meeting 

7 77.4 10 6.3 10xM−      , 7 73.0 10 2.3 10yM−      , and 7 87.6 10 1.0 10zM−      . The 

ABFs are constructed by using (3), in which ˆ ( ) ( ) ( )t t t= T u  and ( ) ( ) st t= −R r r . ( )t  

is obtained by using the flight gyro data; ( )tu  is obtained by using the fluxgate data; ( )tr  

is obtained by using the GPS data; and sr   is the scanned target position of (20) with 

Y k Y=  , 13, ,13k = − , and 100Y =  m. A total of 1000 simulated signals are generated 

and then added to the 1000 sets of background noises according to the specified SNRs 

given by (36). Please note that the length of a simulated signal is 1000 points, while the 

length of a set of background noise is 5000 points. We randomly take a segment of 1000 

points from the 5000 points (say from 233 to 1232) to calculate the ABFs, and the simulated 

signal is also added to this segment. 

Finally, for each specified SNR, we obtain 1000 sets of simulated experimental data 

or “realizations”. Then, the ABFs, OBFs, and MED methods are employed to carry out the 

detections. In the detection process, the ABFs are dynamically constructed using the real-

time data of fluxgate, flight gyro, and GPS. As for the OBFs, the flight routes for the 1000 

realizations are assumed to be straight lines, and only one parameter, i.e., the characteris-

tic time 0 /R v = , is adjustable with 5 16  . In the simulated detections, only whether 

a target is present is of concern. 

In Figure 6, comparisons of detection probability between the present ABFs method 

with the conventional OBFs method and the minimum entropy detection (MED) method 

[23] are given. Figure 6a,b are the results without and with the data preprocessing de-

scribed in Section 3.1. The preprocessing is valuable for, say, raising the detection rate 

from 60% to 90% for 0 dB SNR. It is obvious that the present ABFs approach outperforms 

the typical signal-based OBFs method and noise-based MED method, especially for SNRs 

in the range of −5 dB to 0 dB. 

Please note that the present ABFs method is mainly for post-processing, because we 

need to collect some data to complete the data preprocessing as described in Section 3.1, 

which typically takes 500 s. Except for this delay, the detection can be carried out in real 

time for typical settings of resolutions in our experiments, which are 70 m and 100 m in 

the moving and lateral directions, respectively. 
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Figure 6. Comparisons of the detection probability against SNR of the present ABFs method with 

the prevailing OBFs method and MED method. (a) Without data preprocessing. (b) With data pre-

processing. 

5. Concluding Remarks 

In this article, a new adaptive basis functions (ABFs) method is proposed to remedy 

the conventional orthogonal basis functions (OBFs) method. The OBFs method demands 

the detecting platform move uniformly along a straight course. For an arbitrary flying 

course and a changing flight speed, so far, there is no target signal model available to 

match the measured data. The present signal model based on ABFs fills the gap. Appro-

priate preprocessing schemes are suggested to raise the signal-to-noise ratio (SNR) and 

detection possibility, which include the fitting of geological magnetic gradients, compen-

sation for magnetic interferences generated by the detecting platform, and whiting filter-

ing of diurnal magnetic variation. The constant false alarm rate (CFAR) detector is 

adopted to judge the presence of a target by using the pseudo signal energy as the detected 

quantity. Moreover, a 2D imaging scheme is introduced, whose pixels are the relative pos-

sibilities for a target that is located at a geographic position shown by longitude and lati-

tude. On-site experimental data are used to demonstrate the approach. Compared with 

the popular OBFs method and other existing methods, such as the typical minimum en-

tropy detection (MED) method, the present approach has much better detection perfor-

mance, especially for SNRs in the range of −5 dB to 0 dB. 
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