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Abstract: The fraction of absorbed photosynthetically active radiation (fPAR) is an important pa-
rameter reflecting the level of photosynthesis and growth status of vegetation, and is widely used in
energy cycling, carbon cycling, and vegetation productivity estimation. In agricultural production,
fPAR is often combined with the light use efficiency model to estimate crop yield. Therefore, accurate
estimation of PAR is of great importance for improving the accuracy of crop yield estimation and
ensuring national food security. Existing studies based on vegetation indices have not considered the
effects of genetic variety, light, and water stress on fPAR estimation. This study uses ground-based
reflectance data to simulate 21 common Sentinel-2 vegetation indices and compare their estimation
ability for winter wheat fPAR. The stability of the vegetation index with the highest correlation in
inverting fPAR under different cultivars, light, and water stress was tested, and then the model was
validated at the satellite scale. Finally, a sensitivity analysis was performed. The results showed that
the index model based on modified NDVI (MNDVI) had the highest correlation not only throughout
the critical phenological period of winter wheat (R? of 0.6649) but also under different varieties,
observation dates, and water stress (R2 of 0.918, 0.881, and 0.830, respectively). It even performed the
highest R? of 0.8312 at the satellite scale. Moreover, through comparison, we found that considering
water stress and variety differences can improve the estimation accuracy of fPAR. The study showed
that using MNDVI for fPAR estimation is not only feasible but also has high accuracy and stability,
providing a reference for rapid and accurate estimation of fPAR by Sentinel-2 and further exploring
the potential of Sentinel-2 data for high-resolution fPAR mapping.

Keywords: fraction of absorbed photosynthetically active radiation; MNDVI; winter wheat;
vegetation index; Sentinel-2

1. Introduction

Winter wheat is one of the major food crops in China. By monitoring and estimating
winter wheat yield, the growth status of wheat in the field can be obtained in a timely
manner, which is an important reference for food market supply and its stability supply [1].
In addition, by keeping track of winter wheat yield, the government can adjust grain
reserves, and import and export policies in a timely manner to achieve stable market
supply and price control, which is important for maintaining market order, increasing
farmers’ income, and ensuring national food security [2].

With the advancement of satellite technology and image processing algorithms, remote
sensing technology can quickly obtain wide-area and high-resolution image data of vast
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agricultural fields, thereby achieving near real-time monitoring and prediction of crop
growth and yield [3]. The principle of remote sensing monitoring of crop yield is to observe
and analyze the characteristics of crop reflection, radiation, or absorption of electromagnetic
energy in different spectral bands, establish models related to crop yield, and infer crop
growth and yield [4,5]. To achieve near real-time crop yield prediction based on remote
sensing technology, it is necessary to quickly obtain parameter data for high-precision and
wide-area models. How to efficiently obtain the parameters for a wide-range yield model
based on remote sensing data has become an urgent and essential issue to be addressed.
A large number of yield estimation studies, especially winter wheat yield, have been
conducted based on remote sensing technology, such as empirical statistical models [6],
light use efficiency models [7], crop models [8], and machine learning models [9,10].

Light use efficiency (LUE) models have been shown to accurately and widely estimate
winter wheat yield [7,11]. The fraction of absorbed photosynthetically active radiation
(fPAR) is an essential variable in the calculation of vegetation gross primary productivity
(GPP) based on LUE models, and it is one of the important parameters in ecological balance
and carbon sink estimation [12]. fPAR is defined as the ratio of photosynthetically active
radiation (PAR) absorbed by crops or vegetation cover to the total incident photosyntheti-
cally active radiation and represents the ability of vegetation to perform photosynthesis,
participate in carbon cycling, and maintain energy balance. In addition, fPAR is an im-
portant parameter in many ecosystem productivity models, crop yield estimation models,
and gross primary productivity estimates [13]. Rapid and accurate estimation of fPAR can
improve the accuracy of crop yield estimates, which is important for crop management and
food security.

Current methods for obtaining fPAR can be categorized into four main approaches:
(1) Ground-based measurements, where instruments such as Sunscan and AccuPAR are
used to measure multiple canopy incidence, canopy reflectance, ground incidence and
ground reflectance at measurement points to calculate fPAR; (2) Estimation of vegetation
indices using remote sensing, which indirectly calculates fPAR by establishing linear or
non-linear relationships between vegetation indices and fPAR [14,15]; (3) Physical models,
such as the porosity method and three-dimensional radiation transfer models, which
estimate fPAR by simulating the transmission and absorption of light in vegetation based
on the spectral characteristics of the vegetation and environmental factors. Often LAI and
fPAR are inverted together, as LAI estimation also uses radiation transfer models [16,17];
(4) Machine learning, which involves constructing radiation transfer models between fPAR
and remote sensing data using methods such as remote sensing data and neural networks.
Ground-based measurements are laborious and time-consuming at large scales. Machine
learning methods require a large number of training samples, and the transferability of the
trained models has yet to be verified [18,19].

Currently, many scientists have calculated global vegetation fPAR and published
numerous products that are updated regularly. Most of these calculations are based on
physical models, including MODIS fPAR and LAI products [20], with a temporal resolution
of up to 4 days/500 m. The GLASS product [21] has a temporal resolution of 8 days/250 m,
and Hi-GLASS couples physical models with machine learning algorithms and achieves
a 30 m fPAR inversion using Landsat satellite data [22]. The same products include
MISR [23], MERIS [24], SeaWiFS [25], and GEOV1 [26] and so on. These products have
spatial resolutions ranging from 500 m to 50 km and temporal resolutions mostly ranging
from 8 days to 1 month. Most products are calculated based on radiative transfer models
or neural network algorithms [27]. However, there is still no globally scaled long-term time
series product available. Scholars around the world have conducted significant research on
vegetation productivity based on existing products, contributing to important studies at
large temporal and spatial scales [4,28]. In the North China Plain, the winter wheat planting
to harvesting period is approximately from mid to late March to early June, spanning
about 3 months. The cropping structure in this region is complex, with fragmented and
heterogeneous wheat plots. Even with the use of 30 m spatial resolution fPAR products,
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the presence of mixed pixels remains possible. Ground-based measurement methods
cannot provide comprehensive fPAR data and integrating physical models and machine
learning methods into existing cloud computing platforms presents challenges. Existing
products often require extensive computation prior to release, making real-time release
within the plant growth cycle challenging. The vegetation index has been proven to be
an effective parameter for vegetation monitoring, as it exhibits a more comprehensive
ability to reflect the growth status of the preparation in comparison to the reflectance [29].
Therefore, the vegetation index method has become a relatively simple and feasible way to
quickly estimate large amounts of real-time fPAR data.

Many studies have shown a good linear or non-linear relationship between vegetation
indices and fPAR, which are widely used in lighting efficiency models such as the GLO-
PEM model [30], the VPM model [31], and the EC-LUE model [11]. In these models, the
relationship between vegetation indices and fPAR is defined as fPAR = a x VI+ b [32].
Other studies have also suggested that fPAR = a x e’VI [27]. Relevant studies on the
calculation of fPAR using vegetation indices are listed in the Appendix A.

In a previous study, fPAR estimation was conducted in Shandong Province in the
North China Plain [33]. Spectral radiometers were used to simulate reflectance bands
of Sentinel-2 data and calculate several vegetation indices for fPAR estimation. Ground
experiments were conducted during the jointing, heading, and flowering stages of winter
wheat. The experimental results suggested that the red edge band made a significant
contribution to the fPAR calculation. However, the experiments did not take into account
the important factors of different levels of water stress in wheat and the differences between
varieties. It remains to be investigated whether the linear relationship between fPAR
and vegetation indices is altered by water stress and variety differences. Therefore, this
study mainly focuses on the following tasks: (1) finding vegetation indices suitable for
calculating winter wheat fPAR at different growth stages, varieties, and water stress levels
and establishing a correlation model between vegetation indices and fPAR; (2) evaluating
the estimation accuracy of the model under different varieties, water stress levels and
growth stages; and (3) assessing the reliability of the model at the satellite scale.

2. Materials and Methods
2.1. Study Area

The study area was located in the experimental base of Dryland Agriculture Research
Institute of Hebei Academy of Agriculture and Forestry Sciences in Shenzhou City (5Z). The
coordinates of the site are 37°54'15.63''N, 115°42/29.32"E. It is located in a warm temperate
semi-arid region with monsoon climate. It has distinct continental climate characteristics,
with distinct seasons and simultaneous occurrence of rain and heat. The average annual
temperature is 13.4 °C, and the annual precipitation is 486 mm, which is suitable for
the growth of grain crops. The soil in this area is light loam, which is rich in mineral
nutrients but deficient in organic matter and available nitrogen and phosphorus nutrients.
In addition, Zhoukou City (ZK) in the southern part of North China Plain and Huaibei
City (HB) in the eastern part were used to verify the applicability of the selected vegetation
indices in different regions. ZK is located at 33°03'-34°20'N and 114°05'-115°39'E, with a
total area of about 11,959 square kilometers, and is one of the major grain production bases
in the country. HB is located at 116°24’-117°03'E and 33°16'-34°10'N, with an average
annual precipitation of 760 mm to 840 mm. At the same time, both regions were subjected
to multiple artificial irrigations during the winter wheat growing season, and the growth
conditions of winter wheat differed significantly from SZ.

The experiment was conducted in a split-plot model in a randomized complete block
design in 2023, with three blocks. The field plots received the different levels of irrigation
(IS—Table 1), and 11 common winter wheat varieties in the North China Plain were
distributed in the subplots: T1 (Chang8744), T2 (Shimai22), T3 (Luyuan472), T4 (Shimail5),
T5 (HengH1603), T6 (Xinmai28), T7 (Jimai418), T8 (Shannong?28), T9 (Nongda212), T10
(Heng4399), and T11 (Jimai22).



Remote Sens. 2024, 16, 362

4 0f 23

Table 1. Irrigation time and amount of irrigation for the irrigation schemes in the experiment.

Total Irrigation

Irrigation Scheme Irrigation Data Phenological Phase Volume (m? ha-1)
1S-A 2 April 2023 gomiing 1500
owering

IS-B None None 0

Is-C 28 November 2022 Overwintering 750
IS-D 7 March 2023 Regreen 750
IS-E 2 April 2023 Jointing 750
IS-F 9 April 2023 Jointing 750
IS-G 16 April 2023 Booting 750

Therefore, a total of 231 ground plots were set up, with each plot measuring 1.5 x 6
m, with an area of 9 square meters per plot, and 11 winter wheat varieties were randomly
planted in these plots. The distribution of all plots and the distribution of each variety
observed for each IS from left to right are shown in Figure 1.
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Figure 1. RGB image of the research area captured by UAV on 5 August 2023 and the distribution of
varieties in all plots of each IS.

The winter wheat seeds in all plots were sown on 15 October 2022, at a planting density
of 375 plants per square meter. The basal fertilizer applied during sowing consisted of
pure nitrogen fertilizer (225 kg ha~1), P,O5 (112.5 kg ha~1), and K,O (112.5 kg ha~1). No
additional fertilizer was applied during the growing season.

2.2. Ground Data Collection
2.2.1. fPAR Data

fPAR was measured by the SunScan plant canopy analyzer (Produced by Delta-T
in the UK), which consists of a 1 m probe and a handheld PDA. The probe contains a
total of 64 quantum sensors and is connected to the PDA using an RS-232 cable. When
measuring the fPAR of each plot, the incident light and effective radiation were mea-
sured separately for 3 canopy incident (PAR;in_can), 3 canopy reflectance (PARre—can), 3 soil
incident (PAR;y—goi1), and 3 soil reflectance measurements (PAR._s0i1) of photosyntheti-
cally active radiation (PAR). The fPAR of the plot was obtained by averaging these three
measurements. The spatial relationship between the probe and the winter wheat plots is
shown in Figure 2. Due to the time-consuming nature of fPAR observations, to ensure
that all measurements were completed between 10 a.m. and 2 p.m., only one replicate
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experiment for each water treatment was selected for ground data collection, resulting in a
total of 77 ground plot measurements per session. The horizontal angle between adjacent
measurements was set to 45°. The fPAR of each plot is defined as:

PARjn—can — PARre—can — (PARin—soil — PARre—soil)
PARin—can

fPAR = 1)

Figure 2. Scheme of ground measurement method of fPAR.

2.2.2. Spectral Reflectance Data

Winter wheat canopy hyperspectral data were collected using a spectroradiometer
(Field Spec 4, wavelength range: 350-2500 nm, spectral resolution: 1 nm) manufactured
by ASD (Analytical Spectral Devices Inc., Boulder, CO, USA). The measurements were
carried out between 10.00 and 14.00 in good weather conditions and with sufficient illu-
mination. A whiteboard was used for reflectance calibration. The measurement position
was approximately 0.5 m from the wheat canopy. At the same position as the fPAR mea-
surement, 10 canopy spectral curves were obtained and their average was taken as the
spectral reflectance curve of the plot. The near-ground hyperspectral data were then fitted
to the reflectance of different bands from the Sentinel-2 satellite using the spectral response
function [34].

The date 28 March represents the early tillering stage for winter wheat, 28 April is
the end of tillering and the start of grain filling, and 2 May is the early grain filling stage
for winter wheat. The total ground base measurements were performed at two complete
phenological stages of tillering and heading, but also early grain filling data, covering the
main growth phenophases of winter wheat. The dates and weather conditions of ground
data collection are shown in Table 2.
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Table 2. Dates of reflectance and fPAR measurements and the weather conditions.

28 30 . . 11 13 15 18 27 29
Date March March 1April 8 April April April April April April April 2 May
fPAR v v v v v v v v v v v
Reflec. Vv v v v v v Vv v v v v
Weather ! C C/s S S/R S C C C C/S S C/R

1 C represents cloudy, S represents sunny, R represents rain, / indicates weather changes, such as S/R indicating
sunny to rainy.

2.3. Sentinel-2 Data

Sentinel-2 data were used in this study. These data provide high spatial resolution
surface reflectance products in 13 bands with a revisit period of approximately 5 days
(twin satellites) and a spatial resolution ranging from 10 m to 60 m. They have high
application value in agricultural monitoring. Sentinel-2 data at the L2A level, obtained
from the Copernicus Data Open Access Hub (https:/ /scihub.copernicus.eu/dhus/#/home
(accessed on 15 January 2020)), were used in this study. Vegetation indices were calculated
using SNAP 9.0.0 software, and the Biophysical Processor tool was used to calculate fPAR
in the field area and to analyze the relationship between satellite winter wheat vegetation
indices and fPAR. This tool relies mainly on radiative transfer models to generate a
comprehensive database of vegetation characteristics and reflectance and then trains a
neural network to estimate canopy characteristics from reflectance, providing canopy data
with a maximum spatial resolution of 10 m, such as LAI, fPAR and fraction vegetation
coverage (FVC).

In this study, Sentinel-2 L2A data were downloaded from early March to late May in
SZ. A total of 90 winter wheat plots were obtained by combining high-resolution Google
Earth images. Among them, 60 plots were used as training samples and 30 plots as
validation samples. These training samples are randomly and uniformly distributed within
the selected spatial region of the experimental area. Based on a 100-tree random forest
classifier, winter wheat mapping was performed with an overall classification accuracy of
96%. The obtained spatial distribution data of winter wheat were used to mask vegetation
indices and fPAR to verify the correlation between satellite vegetation indices and fPAR
during key phenological periods.

In order to verify the applicability of the selected vegetation indices in other regions of
the North China Plain, the same processing method was used to select winter wheat areas
in ZK and HB, and the fPAR values based on the physical model were used to verify the
applicability of the fPAR values obtained based on vegetation indices in different regions.

Due to the different bandwidths between the high-spectral data measured by the ASD
spectrometer and the Sentinel-2 data, in order to simultaneously compare the applicability
of different vegetation indices at different scales, it is necessary to use the satellite’s spectral
response function to convert ground spectral data into satellite band reflectance. The
method [23] was referenced to establish a one-to-one correspondence between ground
reflectance and satellite reflectance. Sentinel 2 data were acquired simultaneously from
two satellites, A and B, but there is a certain difference in the central wavelengths of the
two satellites (https:/ /sentiwiki.copernicus.eu/web/s2-mission#Acquisition-Resolutions
(accessed on 15 January 2020)). In order to facilitate the simulation of ASD data as the
reflection of Sentinel 2 data, we have compromised the central wavelengths of the two
satellites. For example, the central wavelength of the blue band for Sentinel 2a was 492.7 nm,
while was 492.3 for Sentinel 2b. Therefore, we chose 492.5 nm as the center wavelength
for the simulation and performed similar processing on other bands. The correspondence
between the ASD spectrometer and the satellite is shown in Appendix B.

2.4. Vegetation Indices

A total of 21 common vegetation indices were used to analyze their correlation with
ground measured fPAR. These vegetation indices have been used to estimate fPAR
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for different vegetation types and have shown varying degrees of estimation capability.
Therefore, the aim of this study is to evaluate their ability to estimate fPAR during the
main growth stages of winter wheat. Their definitions and calculation methods are shown
in Table 3.

Table 3. The different vegetation indices used in this study and their calculation methods based on
the reflectance bands of the Sentinel 2 data.

Index Name Definition of Indices ! Index Name Definition of Indices !
NDVI = MNDVI el e}
EVI 25 X ggre6x Ez —= 72% < B2 T 1 SAVI 1i358 ;rg(gfé}gg)
wort moen e B o
B8 + (0.74 x B4 + 0.26 x BI2) B3
GCVI B-1 CIR % -1
RVI L MNDWI it
DVI B8 — B4 NDBI L
LSWI-b8b11 b GNDVI e
LSWI-b8b12 b NIRV o ;ng x B8
sl .
BSA + B12

1 In the equation, B4, B8, and others are the band numbers of the simulated Sentinel 2 data in Table A2.

The correlation between vegetation indices and fPAR is typically represented by
linear, power, and exponential functions. We simulated the ground-based ASD reflectance
data as Sentinel-2 vegetation indices and established three different estimation models:
linear, exponential, and logarithmic. We then selected the most stable vegetation index in
terms of correlation during key growth stages and validated its accuracy at the satellite
scale using Sentinel-2 data.

2.5. Accuracy Assessment

Due to the effect of low temperatures, the emergence rate of the T3 and T5 varieties
under certain irrigation conditions was insufficient, resulting in poor growth of the whole
winter wheat plot. In addition, the emergence rate of some varieties under different irriga-
tion conditions did not meet the measurement standards. Therefore, plot data with fPAR
measurements below 0 were excluded during modeling and validation. The coefficient
of determination (Equation (2)) and root mean squared error (RMSE—Equation (3)) were
used to assess the stability and accuracy of the correlation relationships:

. 5I(fPAR, - PAR;)’

i (rar,— A

@

. N2
RMSE = \/ %ZLO (fPAR; - fPAR,)", @)
where fPAR; represents the actual ground measurement value, f PARi represents the
estimated value of the model, and fPAR; represents the mean value of the estimates, n
represents the number of plots participating in the accuracy validation, and i represents
the i-th ground plot. The statistical tool used in this study is based on R language code to
fit the correlation between fPAR and different vegetation indices. At the same time, the
coefficient of determination R? and the root mean square error (RMSE) of the model are
calculated and plotted in Excel.
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3. Results
3.1. Correlation between Vegetation Indices at Different Phenological Stages

Different weather conditions exist on different observation dates, and due to seasonal
changes, variations in the solar zenith angle may cause changes in the correlation between
vegetation indices and fPAR on different measurement dates. In this study, the near-
ground reflectance of all 11 measurement days is simulated as Sentinel-2 vegetation indices,
and three estimation models (linear, exponential, and logarithmic) were established with
fPAR measured by SunScan. The coefficient of determination R? was also calculated. The
results of linear correlation are shown in Table 4.

Table 4. Determination coefficient R? of linear correlation between vegetation indices and fPAR.

Date 28 March 30 March 1 April 8 April 11 April 13 April 15 April 18 April 27 April 29 April 2 May
NDPI 0.583 0.659 0.621 0.719 0.621 0.742 0.812 0.828 0.324 0.550 0.919
NDVI 0.588 0.643 0.685 0.721 0.612 0.758 0.821 0.839 0.500 0.681 0.917
MNDVI 0.596 0.674 0.695 0.732 0.652 0.761 0.830 0.840 0.498 0.679 0.911
LSWIB8B12 0.523 0.607 0.442 0.616 0.567 0.632 0.733 0.760 0.183 0.364 0.899
LSWIB8aB12 0.520 0.607 0.439 0.615 0.567 0.630 0.729 0.758 0.180 0.365 0.899
OSAVI 0.672 0.648 0.725 0.741 0.636 0.717 0.835 0.812 0.570 0.740 0.897
NDWI 0.506 0.602 0.565 0.728 0.622 0.640 0.817 0.809 0.375 0.516 0.882
LSWIB8B11 0.541 0.658 0.438 0.632 0.572 0.630 0.720 0.756 0.160 0.371 0.878
NDBI 0.541 0.658 0.438 0.632 0.572 0.630 0.720 0.756 0.160 0.371 0.878
LSWIB8aB11 0.536 0.658 0.434 0.629 0.570 0.627 0.714 0.753 0.155 0.372 0.877
SAVI 0.715 0.646 0.705 0.703 0.622 0.630 0.799 0.726 0.431 0.661 0.837
EVI2 0.725 0.655 0.698 0.687 0.626 0.612 0.785 0.699 0.412 0.640 0.808
EVI 0.720 0.652 0.659 0.639 0.605 0.560 0.770 0.674 0.316 0.573 0.779
NIRV 0.731 0.644 0.640 0.634 0.582 0.536 0.726 0.611 0.357 0.588 0.742
DVI 0.712 0.616 0.565 0.589 0.526 0.466 0.675 0.543 0.314 0.541 0.683
CIG 0.501 0.545 0.486 0.600 0.589 0.597 0.772 0.701 0.321 0.432 0.639
CIR 0.590 0.632 0.616 0.580 0.617 0.670 0.767 0.664 0.421 0.556 0.636
GCVI 0.492 0.541 0.481 0.594 0.582 0.594 0.769 0.695 0.321 0.432 0.631
RVI 0.585 0.631 0.614 0.577 0.614 0.669 0.767 0.660 0.422 0.556 0.631
MNDWI 0.150 0.307 0.237 0.574 0.536 0.146 0.418 0.679 0.261 0.318 0.238
MTCI 0.550 0.502 0.497 0.646 0.587 0.617 0.661 0.573 0.437 0.354 0.361

In terms of linear correlation, MNDVT is the most stable. In the 11 measurement results,
the correlation coefficient was in the top five for all vegetation indices ten times. NDVI and
OSAVI followed with a total of eight occurrences, and NDPI had six occurrences within the
top five. This indicates that MNDVI can achieve a high level of estimation capability for
fPAR under different light conditions throughout the critical growth period. The results of
the exponential correlation are shown in Table 5.

In the exponential correlation between fPAR and vegetation indices, OSAVI is the
most stable. On all eleven observation dates, the coefficient of determination is in the top
five for all vegetation indices. NDVI and MNDVI follow with ten occurrences each, while
NDPI appears in the top five eight times. The results of the logarithmic correlation are
shown in Table 6.

In logarithmic correlation, OSAVI still performs the best, followed by NDVI and
NDPIL However, the coefficient of determination R? is lower compared to linear and
exponential correlations.

Through the analysis of these three correlations, the correlation results are consistent
with Dong [33], indicating the reliability of our observational accuracy. The differences
in the correlations indicate that variations in weather conditions, water stress levels, and
crop varieties during the observation period led to different correlation relationships. It
is difficult to establish different correlation models for different growth stages, varieties,
lighting conditions, and water stress during the actual estimation process. In addition, it is
difficult to obtain irrigation and variety data for winter wheat in the North China Plain.
Therefore, using a single vegetation index to establish a stable and highly correlated model
is more feasible and convenient in practical production and life.
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Table 5. Determination coefficient R? of exponential correlation between vegetation indices and

fPAR.
Date 28 March 30 March 1 April 8 April 11 April 13 April 15 April 18 April 27 April 29 April 2 May
NDVI 0.667 0.686 0.719 0.766 0.794 0.755 0.814 0.777 0.510 0.704 0.912
NDPI 0.640 0.655 0.642 0.731 0.775 0.720 0.792 0.765 0.336 0.569 0.887
MNDVI 0.668 0.686 0.721 0.765 0.804 0.753 0.817 0.775 0.506 0.699 0.885
OSAVI 0.732 0.661 0.750 0.769 0.789 0.711 0.816 0.755 0.550 0.748 0.867
LSWIB8B12 0.571 0.564 0.453 0.616 0.724 0.610 0.710 0.705 0.196 0.385 0.861
LSWIB8aB12 0.560 0.563 0.449 0.614 0.724 0.607 0.706 0.703 0.193 0.386 0.861
NDWI 0.542 0.492 0.571 0.714 0.770 0.616 0.790 0.750 0.379 0.520 0.854
LSWIB8B11 0.573 0.563 0.442 0.599 0.668 0.593 0.681 0.696 0.171 0.384 0.807
NDBI 0.563 0.563 0.442 0.599 0.668 0.593 0.681 0.696 0.171 0.384 0.807
LSWIB8aB11 0.559 0.561 0.437 0.596 0.665 0.590 0.676 0.692 0.166 0.384 0.806
SAVI 0.751 0.618 0.718 0.713 0.737 0.622 0.769 0.675 0.407 0.658 0.788
EVI2 0.750 0.605 0.703 0.683 0.711 0.601 0.748 0.646 0.386 0.633 0.747
EVI 0.745 0.596 0.671 0.648 0.700 0.558 0.739 0.625 0.293 0.571 0.733
NIRV 0.734 0.559 0.628 0.614 0.624 0.524 0.678 0.561 0.332 0.575 0.669
DVI 0.704 0.514 0.558 0.572 0.568 0.456 0.631 0.501 0.291 0.528 0.614
CIG 0.493 0.410 0.448 0.485 0.550 0.544 0.701 0.619 0.314 0.414 0.531
GCVI 0.484 0.406 0.443 0.512 0.542 0.541 0.697 0.614 0.313 0.413 0.522
CIR 0.568 0.549 0.554 0.492 0.536 0.605 0.686 0.570 0.411 0.531 0.505
RVI 0.564 0.548 0.552 0.490 0.532 0.603 0.686 0.567 0.411 0.530 0.499
MNDWI 0.165 0.137 0.223 0.537 0.556 0.143 0.404 0.612 0.234 0.284 0.235
MTCI 0.571 0.462 0.473 0.602 0.602 0.601 0.570 0.541 0.502 0.344 0.348
Table 6. Determination coefficient R? of logarithmic correlation between vegetation indices and fPAR.
Date 28 March 30 March 1 April 8 April 11 April 13 April 15 April 18 April 27 April 29 April 2 May
LSWIB8aB12 0.509 0.498 0.434 0.604 0.522 0.627 0.730 0.767 0.177 0.358 0.970
NDPI 0.568 0.563 0.611 0.704 0.578 0.737 0.810 0.838 0.321 0.543 0.897
NDVI 0.574 0.568 0.674 0.704 0.573 0.752 0.814 0.847 0.498 0.674 0.891
OSAVI 0.657 0.551 0.713 0.724 0.599 0.711 0.833 0.822 0.572 0.733 0.882
LSWIB8B12 0.511 0.498 0.437 0.606 0.521 0.629 0.739 0.769 0.181 0.357 0.869
LSWIB8aB11 0.519 0.513 0.426 0.619 0.506 0.626 0.724 0.768 0.152 0.362 0.859
LSWIB8B11 0.522 0.515 0.431 0.621 0.502 0.629 0.729 0.772 0.156 0.361 0.858
MNDVI 0.568 0.560 0.672 0.698 0.559 0.749 0.817 0.855 0.494 0.666 0.848
SAVI 0.702 0.519 0.695 0.688 0.589 0.624 0.802 0.737 0.436 0.655 0.832
EVI2 0.711 0.513 0.689 0.672 0.591 0.606 0.793 0.713 0.417 0.636 0.809
EVI 0.706 0.488 0.648 0.623 0.570 0.553 0.775 0.687 0.321 0.568 0.774
NIRV 0.718 0.476 0.632 0.622 0.551 0.530 0.744 0.630 0.366 0.586 0.752
CIR 0.542 0.547 0.629 0.592 0.599 0.668 0.838 0.768 0.417 0.565 0.725
RVI 0.548 0.552 0.628 0.593 0.602 0.670 0.840 0.761 0.420 0.566 0.719
DVI 0.705 0.439 0.561 0.582 0.506 0.461 0.692 0.556 0.322 0.541 0.693
CIG 0.474 0.409 0.491 0.609 0.568 0.601 0.820 0.756 0.320 0.440 0.688
GCVI 0.466 0.407 0.487 0.604 0.562 0.599 0.818 0.749 0.321 0.440 0.682
MTCI 0.533 0.507 0.495 0.634 0.566 0.608 0.672 0.580 0.414 0.346 0.359

3.2. Comparison of the Estimation Ability of Vegetation Index for fPAR at the Entire Crop Season

In Section 3.1, we found that the correlation between vegetation indices and fPAR
is strongly influenced by external factors. In order to find a more stable and strongly
correlated vegetation indeX, this study simulated the near-surface reflectance of all 11 days
as Sentinel-2 vegetation indices and established three correlation relationships with fPAR
measured by SunScan. The coefficient of determination R? was calculated and the root
mean square error (RMSE) was calculated using all measurement data for validation. The
results are compared in Table 7.
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Table 7. Statistical parameters of linear, exponential, and logarithmic estimation models between
fPAR and vegetation indices across the entire crop season.

VI Name Correlation Equation R? RMSE
Linear fPAR = 2.0245V] — 1.0714 0.5926 0.1460

NDVI Exponential fPAR = 0.0135¢*416V1 0.6639 0.1350
Logarithmic fPAR = 0.897 + 1.4085In(VI) 0.5350 0.1479

Linear fPAR = 0.8841VI — 0.0778 0.3183 0.1896

EVI Exponential fPAR = 0.1137e19701V1 0.2793 0.2039
Logarithmic fPAR = 0.7987 + 0.6834 In(VT) 0.3312 0.1812

Linear fPAR = 1.0278VI — 0.1327 0.3710 0.1878

EVI2 Exponential fPAR = 0.1047e>2415V1 0.3271 0.1976
Logarithmic fPAR = 0.8652 + 0.7263In(VI) 0.3795 01810

Linear fPAR = 1.9513VI — 0.7944 0.6174 0.1314

NDPI Exponential fPAR = 0.0262¢*178V1 0.5993 0.1379
Logarithmic fPAR = 1.0248 + 1.1763In(VI) 0.5595 0.1418

Linear fPAR = 0.0537VI + 0.2337 0.5601 0.1513

GCVI Exponential fPAR = 0.2605e01041V1 0.4554 0.1846
Logarithmic fPAR = —0.1525 + 0.4101 In(VI) 0.6191 0.1408

Linear fPAR = 0.0189VI + 0.3206 0.5625 0.1510

RVI Exponential fPAR = 0.3101¢%0364V1 0.4403 0.1900
Logarithmic fPAR = —0.2361 + 0.3266 In(VI) 0.6569 0.1342

Linear fPAR = 0.9682VI + 0.1724 0.2292 0.2510

DVI Exponential fPAR = 0.2016e>125V1 0.2056 0.2608
Logarithmic fPAR = 1.014 + 0.4972In(VI) 0.2492 0.2342

Linear fPAR = 1.5195VI — 0.4365 0.4828 0.1643

LSWI-b8b11 Exponential fPAR = 0.0561¢>2612V1 0.5029 0.1641
Logarithmic fPAR = 0.9571 + 0.8496 In(V1) 0.4309 0.1722

Linear fPAR = 1.6303VI — 0.5253 0.5099 0.1598

LSWI-b8b12 Exponential fPAR = 0.0453¢35301V1 0.5252 0.1704
Logarithmic fPAR = 0.9679 + 0.8994In(VT) 0.4498 0.1698

Linear fPAR = 1.7019VI — 0.1852 0.5899 0.1465

LSWI-b8Ab11 Exponential fPAR = 0.1022¢35364V1 0.5437 0.1615
Logarithmic fPAR = 1.1191 + 0.6148 log (V1) 0.5147 0.1593

Linear fPAR = 1.6419VI — 0.5382 0.5065 0.1603

LSWI-b8Ab12 Exponential fPAR = 0.044¢33565V1 0.5718 0.1610
Logarithmic fPAR = 0.9693 + 0.9155 log (V1) 0.4486 0.1693

Linear fPAR = 1.2789VI — 2.853 0.6184 0.1413

MNDVI Exponential fPAR = 0.0772¢27526V1 0.6649 0.1340
Logarithmic fPAR = 0.8524 + 0.5247 In(V1) 0.4507 0.1697

Linear fPAR = 1.4475VI — 0.3471 0.3939 0.1789

SAVI Exponential fPAR = 0.0643¢>183V1 0.3550 0.1921
Logarithmic fPAR = 1.0034 + 0.9054 log (V1) 0.3926 0.1791

Linear fPAR = 2.0953VI — 0.7524 0.5131 0.1602

OSAVI Exponential fPAR = 0.0267¢*5933V1 0.5088 0.1642
Logarithmic fPAR = 1.1456 + 1.1901 In(VT) 0.4815 0.1642

Linear fPAR = 0.0555VI + 0.2298 0.5663 0.1503

CIG Exponential fPAR = 0.2583¢"1078V1 0.4619 0.1874
Logarithmic fPAR = —0.1415 + 0.4099 In(VT) 0.6229 0.1401

Linear fPAR = 0.0194VI + 0.3379 0.5652 0.1504

CIR Exponential fPAR = 0.3205e"0374V1 0.4432 0.1925
Logarithmic fPAR = —0.1098 + 0.2925In(VT) 0.6545 0.1346

MNDVI Linear fPAR = —2.0363VI — 0.2734 0.3038 0.1908
Exponential fPAR = 0.0939e~4027V1 0.2924 0.1981

Linear fPAR = —1.6941VI — 0.1741 0.5951 0.1445

NDBI Exponential fPAR = 0.1047e~351VI 0.5490 0.1983
Linear fPAR = —2.2472VI — 1.0779 0.6097 0.1423

NDWI Exponential FPAR = 0.0155¢471V1 0.6166 0.1493
Linear fPAR = 1.0492VI + 0.1605 0.2966 0.1924

NIRV Exponential fPAR = 0.1998¢22752V1 0.2582 0.2182
Logarithmic fPAR = 1.0382 + 0.4852In(V1) 0.3228 0.1890

Linear fPAR = 0.1447VI — 0.1454 0.5749 0.1490

MTCI Exponential fPAR = 0.117602909V1 0.4807 0.1845

Logarithmic fPAR = —0.6513 + 0.7761 In(VI) 0.6001 0.1464
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Among them, MNDWI, NDBI, and NDWI values are less than 0, so there is no loga-
rithmic correlation with fPAR. The fitting results show that different vegetation indices
have significant differences in fitting fPAR, and the accuracy of linear, exponential, and
logarithmic fits also varies. OSAVI shows better estimation ability in discriminating obser-
vation dates, but throughout the critical growth period, its coefficient of determination R?
with fPAR is highest at 0.5131. This indicates that OSAVI is strongly influenced by lighting
conditions and the correlation model established using it lacks stability, making it difficult
to estimate fPAR for the entire critical growth period. When a single vegetation index is
used for fitting, MNDVI, NDVI, NDPI, RVI, and DVI show good fitting accuracy. Among
them, MNDVI maintains a high correlation both throughout the critical growth period and
at different dates, indicating its stability in different phenological stages, different solar
weather conditions, and solar zenith angles. Therefore, MNDVI has great potential for the
estimation of fPAR.

3.3. Stability Test of MNDVI Estimation for fPAR

In Section 3.2, we found that MNDVTI has high stability and correlation in estimating
fPAR during the entire critical growth period of winter wheat. However, whether using
the same correlation equation for fPAR estimation during the critical growth period can
maintain high accuracy across different varieties and irrigation schemes still needs to be
verified. Therefore, in this study, the estimated values of fPAR were obtained based on the
following equation:

fPAR = 0.0772¢%7526MNDVL )

To verify the accuracy of the estimated values, the study used actual measured values
for validation and used the coefficient of determination R? and the root mean square error
RMSE as accuracy evaluation indicators to assess the robustness across different varieties,
irrigation schemes, and dates.

3.3.1. Accuracy Assessment Based on Different Varieties

The measurement of canopy reflectance and fPAR could not be completed due to
insufficient emergence of T3 and T5 varieties in some plots and the inability to measure
IS-F and IS-G in all plots on 11 April and 18 April due to irrigation. However, the measure-
ments from all other plots were included in the accuracy validation. Figure 3 shows the
relationship between the estimated values calculated using Equation (3) and the ground
truth measured values, where the horizontal axis represents the estimated values and the
vertical axis represents the measured values.

It can be seen that, with the exception of variety T10, the other varieties have a good
correlation and a low RMSE. The variety T6 has the highest coefficient of determination
of 0.918, while variety T1 has the lowest RMSE of 0.074. This indicates that MNDVI
can maintain high stability among different varieties, and in actual production processes
in regions such as the North China Plain, it is difficult to obtain extensive sowing data.
MNDVTI has great potential for application in yield estimation in these research areas.
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Figure 3. Validation of estimation accuracy of index model based on MNDVI in different varieties.

3.3.2. Accuracy Assessment Based on Different Lighting Conditions

When estimating the vegetation index fPAR, the changing light conditions during crop
growth, including solar zenith angle and light intensity under different weather conditions,
play a crucial role in determining the stability of the correlation between the vegetation
index and fPAR. These light conditions include solar zenith angle and light intensity under
different weather conditions, which can affect the correlation between fPAR and other
indicators. Therefore, when using MNDVI to estimate fPAR, it is necessary to validate the
accuracy of this index on different observation dates. To validate the estimation accuracy of
MNDVI on different observation dates, we calculated the corresponding estimated values
using Equation (3). These estimates represent the fPAR at different observation dates. Our
study aims to demonstrate the high stability of using MNDVI for fPAR estimation during
different phenological stages and under varying light conditions. The accuracy validation
results are shown in Figure 4, which contributes to evaluating the applicability of this
method under different environmental conditions.
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Figure 4. Validation of estimation accuracy of index model based on MNDVI in different light

conditions and phenological stages.

3.3.3. Accuracy Assessment Based on Different Irrigation Scheme

The irrigation scheme has caused varying degrees of water stress on winter wheat, as
the North China Plain has a wide spatial range and uneven distribution of precipitation.
To validate the stability of estimating fPAR using MNDVI under different water stress-
induced growth variations, and to ensure that the estimation accuracy of relevant models
is not significantly reduced when applied on a large scale and influenced by crop growth
status. The validation results are shown in Figure 5.
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Figure 5. Validation of estimation accuracy of index model based on MNDVI in different
irrigation schemes.

Comparing the estimated results with the actual measured results, except for the IS-C
irrigation scheme, which has a relatively lower coefficient of determination, the accuracy
of the other different water stress levels can generally meet the requirements of practical
application. The IS-C scheme has good growth performance in almost all plot areas, which
makes it difficult to obtain a high R?, but it has the lowest RMSE. This indicates that MNDVI
can consistently and accurately estimate fPAR under different levels of water stress.

3.3.4. Accuracy Assessment at Satellite Scale

Ground experiments have shown that MNDVI has a stable ability to retrieve fPAR,
with minimal influence from variations in light conditions, crop varieties, and growth
differences, enabling its application in large-scale fPAR retrieval. However, further ex-
periments are needed to verify its accuracy at the satellite scale. Therefore, in this study,
three cloud-free 10 m Sentinel-2 images of the SZ during the critical growth stages of
winter wheat were selected for accuracy validation. The validation area was chosen as
a 1000 x 1000 pixel (10 x 10 km) region, with non-winter wheat areas masked out. All
winter wheat pixels in this region were used for validation. The fPAR calculated using
the Biophysical Processor tool in SNAP 9.0.0 software was used as the ground truth data
to verify the reliability of the data obtained from Equation (3). Figure 6 shows the results
of the comparison between the actual fPAR and the estimated fPAR during the critical
phenological stages. The coefficients of determination for the three stages were 0.718,
0.550, and 0.578, with the lower coefficient in the later stage possibly due to the higher
fPAR values. However, overall, the estimated values were lower than the actual values,
indicating a certain underestimation phenomenon in this method, which may be caused by
vegetation index saturation in the later stages.
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Figure 6. Comparison of MNDVI estimation results and true values on satellite scale in SZ.

In this study, we compare the ability of satellite-scale physical models and the em-
pirical model obtained in this research to retrieve winter wheat fPAR in the southern
and eastern parts of the North China Plain, specifically in ZK and Huaibei HB. The fPAR
values of the two models were calculated based on Sentinel-2 images during the critical
phenological period of winter wheat, and the results are shown in Figures 7 and 8. In ZK,
the determination coefficients of the fPAR values estimated by the two models were 0.9003,
0.7818, and 0.6534, while in Huaibei, they were 0.6929, 0.7183, and 0.8312. It can be seen that
even at the satellite scale, the fPAR estimated based on MNDVI and the physical model
still have a good correlation in different regions and under different planting conditions,
further demonstrating the universality of estimating fPAR based on MNDVL

Physical Model
Estimation Value

Empirical Model
Estimation Value

3 March 2023, ZK

Figure 7. Comparison of MNDVI estimation results and true values on satellite scale in ZK.
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Figure 8. Comparison of MNDVI estimation results and true values on satellite scale in HB.

4. Discussion
4.1. The Necessity of Considering Variety and Water Stress

The current models from existing research have not accounted for differences in
varieties and water stress. Therefore, further validation is needed to determine whether the
fPAR estimation model based on the vegetation index will produce accuracy differences
under different varieties and water stress. For instance, the estimation model conducted by
the variety of T3 should be applied to T11 to test its suitability among different varieties.
Similarly, the models based on one IS also should be assessed by other ISs to ensure the
necessity of considering water stress or not.

The correlation model between the vegetation index MNDVI and fPAR based on T3
is Equation (5).

fPAR = 1.4198 x MNDVI — 0.4126, ®)

It was found that the model achieved R of 0.710 when used to estimate T3, as shown in
Figure 9a. However, when this model was used to estimate the fPAR of variety T11, some
plots had estimated fPAR values less than 0, as shown in Figure 9b, which is an incorrect
estimation result. Similarly, Equation (6) is based on IS1 to establish a correlation model
between MNDVI and fPAR.

fPAR = 0.3647 x MNDVI +- 0.535, (6)

When using the measurement value of IS-A for accuracy verification, the RMSE is
0.077, as shown in Figure 9¢, while when using IS-G for verification, the RMSE is 0.245, as
shown in Figure 9d. It can be seen that without considering the differences in variety and
water stress, there will be significant errors in the estimation results and even unreasonable
estimation values. This indicates the need to consider the differences in variety and
water stress.
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Figure 9. The impact of considering differences in water stress and variety on the accuracy of fPAR
estimation. (a) Establish relevant models based on measurement data from T3; (b) Validate the
estimation accuracy of the models using measurement data from T11; (c) Establish relevant models
based on measurement data from IS-A; (d) Validate the estimation accuracy of the models using
measurement data from IS-G.

4.2. Sensitivity Analysis of MNDVI

In the current study, fPAR in the light use efficiency model is often calculated based
on NDVI, for example in EC-LUE [35] where fPAR = 1.24 x NDVI — 0.168. This study
believes that MNDVI may have greater advantages; therefore, we compared the two
vegetation indices and analyzed the response differences in winter wheat growth during
the winter wheat growing season. Therefore, we compared it with NDVI to analyze the
differences between the two vegetation indices during the growth process of winter wheat.
The current study indicates that NDVI shows saturation in estimating fPAR during the
peak growth period of crops [36], making it difficult to estimate accurately. Therefore, based
on the MODIS daily reflectance data product (MCD43A4), we compared the variations of
pure winter wheat pixels in the North China Plain from 1 January to 30 June to analyze the
saturation status of the two vegetation indices. Figure 10 shows the time series curves of
NDVI and MNDVI after being filtered by a moving average window of size 5, as well as
the absolute values of their slopes during different periods.



Remote Sens. 2024, 16, 362

18 of 23

1.0 0.05
== |INDV| ==—=NDVI
e INDV/| ====NDVI|
08 0.04
o
3 0.03
© 0.4
> 0.02
S o2
0.01
0.0
-0.8 0.00 I\ AN
0 45 90 135 180 0 45 90 135 180
1.0 0.06
e \INDV/| e NDV|
0.8 e VINDV/| e NDV/| 0.05
o 06 0.04
2 a
‘>" 0.4 0 0.03
- (/2]
> 02 0.02
0.0 0.01
-0.8 0.00
0 45 90 135 180 0 45 90 135 180
DOY DOY

Figure 10. Comparison of MNDVI and NDVI response to changes in winter wheat growth.

From Figure 10, it can be seen that the range of MNDVI is approximately —0.1 to
0.75 with a range of 0.85, while NDVI ranges from 0.25 to 0.85 with a range of 0.6. The
absolute values of the slopes of MNDVI are also greater than those of NDVI throughout
the growth cycle. Even after winter wheat has reached the jointing stage, when NDVI
changes less and the absolute value of the slope is smaller, MNDVI still has a larger slope
and continues to show a changing trend. The above two points indicate that, compared to
NDVI, firstly, MNDVI is more sensitive to vegetation growth changes, and the differences
in vegetation growth changes are more pronounced for MNDVI. Secondly, MNDVI is
less prone to saturation and even after the jointing stage of winter wheat, there are still
significant changes in MNDVI. Therefore, MNDVI has an advantage in estimating fPAR.

4.3. The Potential of MNDVI in Estimating Winter Wheat Yield

The fPAR estimation results at the satellite scale reveal the MNDVI-based model
for estimating large fPAR proposed in this study has a certain underestimation at the
beginning or end of major phenological periods when compared with physical models.
This underestimation phenomenon may still be caused by MNDVI saturation, although
MNDVI is relatively less susceptible to saturation as compared with NDVI. Therefore, in
future research, it is the key to find a vegetation index that can be less prone to saturation
for improving the estimation accuracy of fPAR.

From Table Al, it can be seen that different vegetation fPAR have different linear
relationships with vegetation indices. Even for the same vegetation type, there are varia-
tions in the linear relationship between different vegetation indices and fPAR. Different
research areas, even with the same crop and different vegetation indices, have obtained
different linear relationships. This may be due to differences in observation conditions,
satellite data, and even different phenological stages, which can lead to differences in linear
relationships [27]. In the North China region, which is mainly characterized by smallholder
agriculture, there is a complex cropping structure, different winter wheat varieties, signifi-
cant climatic variations, and a wide range of phenological stages. If a model is established
to relate vegetation indices to fPAR based on a specific region or variety of winter wheat,
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it may result in significant differences in fPAR estimation for the entire region. Therefore,
in order to improve the accuracy of winter wheat fPAR calculation in the North China
Plain and to improve the accuracy of winter wheat yield estimation, it is necessary to find
vegetation indices that are stable throughout the phenological period and more suitable
for fPAR estimation in the North China Plain. This will enable the construction of a more
universally applicable fitting model to improve the accuracy of wheat yield estimation.

The present study uses simulated Sentinel-2 reflectance data to find that the MNDVI-
based index model has high stability and good applicability in estimating winter wheat
fPAR. Moreover, the computation of MNDVI requires only the use of near-infrared and red-
band reflectance data, which allows the acquisition of fPAR data with a spatial resolution
of 10 m. This has significant application value in agricultural monitoring of regions with
complex crop structures, such as the North China Plain. In particular, it can be combined
with existing vegetation index downscaling algorithms, such as STARFM [37] and CRC [38],
to reconstruct high spatiotemporal resolution vegetation index data and thereby calculate
high spatiotemporal resolution fPAR data. This is of great reference value for agricultural
monitoring in cloudy and rainy areas.

Due to the difficulty in obtaining high spatiotemporal resolution fPAR data, existing
light use efficiency models mostly rely on 8-day, 15-day, or monthly averages to estimate
crop yield. For example, EC-LUE uses Landsat 7/8 to estimate fPAR based on NDVI every
8 days [39], which can introduce significant errors in the calculation results. If high spatio-
temporal resolution fPAR data can be obtained and combined with light use efficiency
models for winter wheat yield estimation, it can improve the accuracy of yield estimation.

5. Conclusions

In this study, we first simulated Sentinel-2 satellite reflectance based on ground ASD
data and compared the correlation between commonly used vegetation indices and pho-
tosynthetically active radiation at different observation dates. Secondly, we constructed
an index correlation model based on MNDVI throughout the critical growth period and
validated the accuracy of the fPAR estimation using the model under different crop va-
rieties, observation dates, and water stress conditions. Finally, we compared it with the
commonly used vegetation index NDVI and carried out a sensitivity analysis. The main
conclusions of this study are as follows: (1) due to differences in observation conditions and
crop characteristics, the correlation between vegetation indices and fPAR can vary; (2) the
index model based on MNDVI is the most stable and accurate model, with a coefficient of
determination for fPAR throughout the critical growth period of winter wheat reaching
0.6649. Under different cultivars, observation dates, and water stress conditions, the highest
coefficients of determination can reach 0.918, 0.881, and 0.830, with the lowest RMSE being
0.088, 0.096, and 0.089. At the satellite scale, the highest coefficient of determination is
0.8321; (3) MNDVI is more sensitive to changes in winter wheat growth and less prone to
saturation compared to NDVI. In conclusion, using MNDVI for fPAR estimation during
the critical growth period of winter wheat can provide good estimation results, and the
estimation accuracy is less affected by internal and external factors.

This study’s results demonstrate the feasibility of using high spatial resolution fPAR
estimation for winter wheat based on Sentinel-2 vegetation indices. By using MNDV], it is
possible to quickly and accurately obtain fPAR data with a spatial resolution of 10 m. This
can assist in near real-time agricultural monitoring and provide a reference for rapid crop
yield estimation.
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Appendix A

Table A1l. Empirical models of vegetation index with fPAR in existing studies.

VI Equation Vegetation Type
NDVI fPAR = 1.24 x NDVI — 0.168 Winter wheat [35]
fPAR = 1.25 x ReNDVI — 0.10;
Red edge NDVI fPAR = fPAR_ .. x f(NDVI); Cron, soybean [40]
fPAR,,, =0.95
NDVI F(NDVI) = max (min(%, 1) , ()) Grassland, farmland and forest [41]
NDVI fPAR = 1.0 x NDVI - 0.05 Forest [42]
GNDVI fPAR = 0.1825¢!8588x GNDVI Cron [43]
MTCI fPAR = 0.72 x MTCI 4 0.08 Cron and forest [44]
VARI fPAR = 1.314 x VARI + 0.189 Grassland [45]
NDPI fPAR = 0.972 x NDPI — 0.028 Grassland [32]
Appendix B

Table A2. Spectral parameters of the simulated Sentinel-2 satellite.

Central . Spatial
No. Band Band Name Wavelength (nm) Bandwidth (nm) ASD Range (nm) Resoll;tion (m)
B2 Blue 492.5 65 460-525 10
B3 Green 559.5 35 542-577 10
B4 Red 664.5 31 649-680 10
B5 RE-1 704 14 697-711 20
B6 RE-2 740 14 733-747 20
B7 RE-3 781.5 19 772-791 20
B8 NIR 833 104 781-885 10
B8A NIR2 864.5 21 854-875 20
B9 Water vapor 944 20 934-954 60
B10 SWIR-Cirrus 1375.5 29 1361-1390 60
B11 SWIR-1 1612 92 1566-1658 20
B12 SWIR-2 2194 180 21042284 20




Remote Sens. 2024, 16, 362

21 0f 23

Appendix C

Table A3. The abbreviation and full name of the vegetation index used in this study [33,34].

Abbreviation of

Vegetation Index

The Full Name of Vegetation Index

Abbreviation of
Vegetation Index

The Full Name of Vegetation Index

NDVI

EVI
EVI2

NDPI
GCVI
RVI
DVI
LSWI-b8b11

LSWI-b8b12
LSWI-b8Ab11
LSWI-b8Ab12

Normalized Difference Vegetation
Index
Enhanced Vegetation Index
Enhanced Vegetation Index 2
Normalized Difference Phenology
Index
Green Chlorophyll Vegetation Index

Ratio Vegetation Index
Difference Vegetation Index
Land Surface Water Index-b8b11

Land Surface Water Index-b8b12
Land Surface Water Index-b8Ab11
Land Surface Water Index-b8 Ab12

MNDVI

SAVI
OSAVI

CIG
CIR
MNDWI
NDBI
GNDVI

NIRV
MTCI

Modified Normalized Difference
Vegetation Index
Soil Adjusted Vegetation Index

Optimized Soil Adjusted Vegetation Index

Chlorophyll Index Green
Chlorophyll Index Red

Modified Normalized Difference Water

Index

Normalized Difference Built-up Index
Green Normalized Difference Vegetation

Index

Near-Infrared Radiance of Vegetation
Meris Terrestrial Chlorophyll Index
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