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Abstract: Tobacco is a critical cash crop in China, so its growing status has received more and more
attention. How to acquire accurate plant area, row spacing, and plant spacing at the same time
have been key points for its grow status monitoring and yield prediction. However, accurately
detecting small and densely arranged tobacco plants during the rosette stage poses a significant
challenge. In Sichuan Province, the contours of scattered tobacco fields with different shapes are not
well-extracted. Additionally, there is a lack of simultaneous methods for extracting crucial tobacco
planting information, including area, row spacing, and plant spacing. In view of the above scientific
problems, we proposed a method to extract the planting information of tobacco at the rosette stage
with Unmanned Aerial Vehicle (UAV) remote sensing images. A detection model, YOLOv8s-EFF, was
constructed for the small and weak tobacco in the rosette stage. We proposed an extraction algorithm
for tobacco field area based on extended contours for different-shaped fields. Meanwhile, a planting
distance extraction algorithm based on tobacco coordinates was presented. Further, four experimental
areas were selected in Sichuan Province, and image processing and sample label production were
carried out. Four isolated tobacco fields with different shapes in four experimental areas were used
to preliminarily verify the effectiveness of the model and algorithm proposed. The results show
that the precision ranges of tobacco field area, row spacing, and plant spacing were 96.51~99.04%,
90.08~99.74%, and 94.69~99.15%, respectively. And another two experimental areas, Jiange County,
Guangyuan, and Dazhai County, Gulin County, and Luzhou, were selected to evaluate the accuracy
of the method proposed in the research in practical application. The results indicate that the average
accuracy of tobacco field area, row spacing, and plant spacing extracted by this method reached
97.99%, 97.98%, and 98.31%, respectively, which proved the extraction method of plant information
is valuable.

Keywords: tobacco; UAV image; object detection; tobacco field area; planting distance

1. Introduction

As a major agricultural country with 2 billion acres of basic farmland, China requires
a large amount of agricultural machinery to assist in field operations every year. With the
integration of deep learning technology with drone products and agricultural scenarios,
it promotes the qualitative improvement of agricultural management levels driven by
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informationization [1,2]. Such technologies provide not only more accurate data support
for the planting, management, and yield prediction of traditional crops but also new
perspectives and solutions for agricultural environmental monitoring, resource utilization
optimization, etc. [3–5].

Tobacco, as an important economic crop in China, is particularly prevalent in the
southwestern regions of Sichuan, Yunnan, and Guizhou provinces. The rapid and accurate
acquisition of tobacco planting information can provide a reference basis for tobacco
management departments to predict tobacco production, monitor the tobacco growth
environment, formulate tobacco variety promotion plans, and adjust tobacco planting plans.
However, due to the special geographical environment of high altitude, complex terrain,
and inconvenient transportation, dynamic monitoring of planting information (such as
area, density, row spacing, plant spacing, and yield prediction) has always been a challenge
faced by the Southwest region. Traditional manual statistical and measurement methods
have been proven to have shortcomings and high costs, making it difficult to quickly and
accurately obtain tobacco planting information. Drone remote sensing technology, with
its high efficiency, accuracy, and low cost, provides a powerful data source for precision
agriculture and plays an important role in monitoring tobacco planting area, growth, and
yield. At the same time, the application of this technology has also played a crucial role in
the sustainable development of tobacco production and the construction of tobacco smart
agriculture [6,7].

Currently, remote sensing images are widely used in agricultural applications such as
crop detection and weed identification. Tian et al. addressed the problem of changing light,
complex backgrounds, and overlapping objects in orchards through image enhancement
with the YOLOv3 network optimized with DenseNet, which can effectively detect apples
even in different grow conditions and complex environments [8]. Huang et al. designed a
two-stage model for intra-row crop detection and localization and completed the detection
and positioning of single rice plants in complex environments with diverse rice morpholo-
gies and partial overlap of rice [9]. Zhao et al. proposed an improved method based
on YOLOv5 for detecting wheat spikes from UAV images (small size, high density, and
overlapping spikes) and detected wheat spikes under occlusion and overlapping conditions
through the fusion of the refined detection process and the multi-resolution prediction
boxes [10]. Lu et al. combined the YOLOv5 with the Swin Transformer to identify over-
lapping bunches of grapes with a dense canopy under two different weather conditions
and two different stages of berry ripening [11]. Jin et al. addressed the problems of weed
species and appearance diversity, occlusion, and overlapping and different growth stages
in vegetable fields by detecting vegetable crops through CNN, and the experiment took
plants outside the detection box as weeds indirectly, which avoided the complex scenarios
of directly detecting weeds and improved the accuracy of weed detection [12].

The current method of extracting crop area mainly relies on remote sensing images,
which include crop classification and field segmentation. Zhu et al. proposed a method
combining convolution and morphology to extract tobacco planting area in UAV remote
sensing images with 95.93% accuracy [13]. After classifying the land cover from images,
Fang et al. calculated the crop area by cropping the research area following administrative
boundaries [14]. Wu et al. proposed a method by combining remote sensing data segmen-
tation with sample strip sampling that can estimate crop acreage in complex agricultural
landscapes with high accuracy [15]. Du et al. used the deeplabv3+model to classify and
extract the crop area from remote sensing images, and the accurate crop position and the
crop area were obtained in a small area [16]. De Macedo et al. applied the CLSTM network
for crop recognition based on remote sensing data and realized the classification of soybean,
corn, and cotton. Moreover, the estimation of crop area was obtained in large areas [17].
Huang et al. constructed a tobacco semantic segmentation dataset using unmanned aerial
remote sensing images in highland mountainous areas and realized accurate extraction of
tobacco field planting area on all four semantic segmentation models [18]. Furthermore,
remote sensing imagery has been extensively investigated in various domains, includ-
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ing road and building detection [19–21], natural disaster monitoring [22,23], land use
planning [24,25], as well as air quality assessment [26,27].

In the field of agriculture, the utilization of remote sensing images has demonstrated
significant potential, particularly in crop area extraction and crop detection. However, the
current research rarely effectively combines the two tasks. This limitation leads to scenarios
where the results of crop target detection cannot be used for crop area extraction or the
methods of crop area extraction cannot make full use of the information about crop target
detection. Moreover, there is a scarcity of small and dense tobacco detection literature
specifically based on remote sensing.

To address this issue, we selected tobacco as the research subject and designed a
tobacco planting information extraction algorithm based on high-resolution UAV images.
First, we integrated Squeeze-and-Excitation Networks (SENet) [28] and adaptively spatial
feature fusion (ASFF) [29] into YOLOv8s [30], creating a detection model named YOLOv8s-
Enhanced Feature Fusion (EFF). This model can rapidly and accurately detect densely
arranged small tobacco plants in UAV images. Subsequently, we utilize the tobacco detec-
tion results to effectively extract the planting area of tobacco fields with various shapes.
Lastly, building upon this foundation, we innovatively designed an algorithm for the ex-
traction of row spacing and plant spacing in tobacco fields. This algorithm further achieves
precise extraction of row spacing and plant spacing in tobacco fields, thereby enhancing
the accuracy and efficiency of tobacco production management.

The main contributions and significance of this paper are as follows:

1. For large-area tobacco planting monitoring, we propose a tobacco planting informa-
tion extraction method based on UAV images that can effectively identify and locate
small and densely planted tobacco plants and obtain the area, row spacing, and plant
spacing synchronously.

2. Aiming to detect small and dense tobacco, we built a tobacco detection model,
YOLOv8s-EFF, based on YOLOv8s. YOLOv8s-EFF integrates SENet and ASFF to
learn more fine-grained features of tobacco images, enhancing the detection perfor-
mance of tobacco.

3. We proposed a tobacco planting distance extraction algorithm based on tobacco coor-
dinates. The algorithm uses tobacco detection coordinates to realize the calculation
of plant spacing and row spacing. Meanwhile, the quantile method with a specific
threshold is applied to detect outliers, which alleviates the problem of over- or under-
detection in scenes of dense tobacco planting or small tobaccos and improves the
accuracy of the calculation results.

4. The shape of the tobacco field is variable in the real environment due to the planting
method, topography, etc. We creatively constructed an algorithm for extracting the
area of the tobacco field based on expanding contours. The algorithm can accurately
extract the contours and areas of tobacco fields with different shapes based on discrete
tobacco detection coordinates.

2. Materials and Methods
2.1. Experimental Area

We selected the Chongzhou Modern Agricultural R&D Base of Sichuan Agricultural
University (103◦39′24′′E, Latitude 30◦33′42′′N), Jiange County, Guangyuan City, Sichuan
Province (105◦27′02′′E, 32◦00′49′′N), Dazhai, Gulin County, Luzhou City, Sichuan Province
(105◦38′46′′E, 28◦07′35′′N), and Shifang City, Deyang City, Sichuan Province (104◦06′41E,
31◦06′31N) as the experimental areas (Figure 1), and then UAV images of the tobacco at
the rosette stage were taken. We use a DJI UAV equipped with a high-definition digital
camera to obtain tobacco images. The model of the UAV is the DJI Phantom 4 Pro quadrotor
UAV, with a net fuselage mass of 1.38 kg and a maximum endurance time of 28 min. The
high-definition digital camera adopts a Sony Cyber-shot DSC-QX100; the image sensor is
a 20 million-pixel CMOS sensor with automatic focus and an electronic shutter speed of
1/8000 s. The collection of UAV remote sensing images was conducted under bright sunlight
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and minimal cloud cover. The selected flight time window was from 11:00 to 13:00. The flight
altitude was maintained at 30 m, and the spatial resolution of the images was 0.8 cm.
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Figure 1. Location of the experimental area and UAV images.

2.2. Data and Preprocessing

We synchronously measured the ground data of some tobacco fields when obtaining
high-resolution UAV tobacco images. We measured 5 evenly set sample plots in the tobacco
field and took the average row spacing of consecutive 5 rows as the sample one in each
sample plot. In addition, we arranged the average row spacing of 20 consecutive plants as
the sample plant spacing and used the average row spacing and plant spacing of 5 sample
plots as the final row spacing and plant spacing of the tobacco field. In the tobacco field,
the irregular tobacco field was divided into multiple approximately regular areas, and each
area was measured separately. Finally, we cumulatively add the measured areas of each
region to obtain the ultimate manually measured tobacco field area. Additionally, for large
tobacco fields with a side length exceeding 30 m, we measure the GPS coordinates of distinct
turning points along the edge of the tobacco field. And we connect them sequentially to
form the contour of the tobacco field to obtain the measured area of a large tobacco field.

Focusing on tobacco detection, the tobacco dataset contains 1380 images with a resolu-
tion of 1024 × 1024, and then the dataset was randomly divided into 1103 training images
and 277 test images. In addition, in order to improve the generalization ability of the
model and prevent overfitting, we employed the image augmentation library, ‘imgaug’, to
perform data augmentation on the training images. This involved creating an augmentation
sequence incorporating brightness transformation, image scaling, flipping, and rotation.
Specifically, the random seed was set to 2023, brightness transformation varied between 0.8
and 1.2 times the original intensity, image scaling ranged from 0.8 to 1.2 times the original
size, rotation angles spanned from −25◦ to +25◦, and the probability of image flipping
was set to 0.5. Utilizing this augmentation sequence, we generated tobacco images that
simultaneously included the effects of the four mentioned augmentations along with the
corresponding transformed annotations. In conjunction with the original 1103 images, we
obtained a total of 2206 training images. The composition of the data for each experimental
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area is shown in Table 1. In the process of manually annotating tobacco targets, the crop-
ping of images resulted in the fragmentation of tobacco near the image edges. To address
this issue, we established the criterion that tobacco regions occupying less than 40% of
their original size were excluded from annotation. Figure 2 shows some manually labeled
tobacco images and the corresponding enhancement results.

Table 1. Tobacco dataset quantity.

Experimental Areas Original Data Augmented Data (1×) Training Set Test Set

Chongzhou 272 272 544 68
Dazhai 290 290 580 73
Jiange 278 278 556 70

Shifang 263 263 526 66
Total 1103 1103 2206 277
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Figure 2. Schematic of annotation and image enhancement. (a–d) all include the four types of image
augmentation mentioned above. Note: Images with subtle enhancement may be less noticeable.
For instance, in (a), we can easily observe the presence of flipping and brightness transformation;
however, it also includes subtle scaling and rotation.

2.3. Methods
2.3.1. Overall Process for Extracting Tobacco Planting Information

We constructed a tobacco detection model using YOLOv8s as the foundation and
tailored the network structure to address the smaller characteristics of tobacco at the rosette
stage, which is called YOLOv8s-Enhanced Feature Fusion (YOLOv8s-EFF). Additionally,
when detecting large-scale tobacco images captured by UAVs, we optimized the model’s
prediction process by adjusting parameters related to image overlap and non-maximum
suppression. This adjustment addresses issues such as varying tobacco planting density,
differences in tobacco size across different planting areas, and instances of under-detection
or over-detection of tobacco at the image edges. Subsequently, we built a tobacco detection
model for large-scale planting areas, which provides the center coordinates of tobacco
targets in UAV images. Leveraging the center coordinates of tobacco’s output by the object
detection model, we applied the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm [31] to partition different tobacco fields in UAV images. On this
basis, we propose a planting distance extraction algorithm based on tobacco coordinates to
achieve the calculation of tobacco row spacing and plant spacing. Specifically, we calculate
the distance between the tobacco row and its nearest neighbor as the plant spacing and the
average of the vertical distance between the tobacco row and another tobacco coordinate
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as the row spacing. Finally, by extending the initial contour of the tobacco field obtained
by the Alpha Shape algorithm, a tobacco planting area extraction algorithm based on the
extended contour is designed. This algorithm facilitates the extraction of the tobacco field
area within each region. The overall process of the proposed method is shown in Figure 3.
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2.3.2. Object Detection Model and Tobacco Field Region Division

Figure 4 illustrates the network architecture of YOLOv8s-EFF. The model structure is
divided into three components: Backbone, Neck, and Head. The model adopts CSPDarkNet
as its backbone, enhancing the gradient flow to extract rich feature information from the
input image. The Neck section constructs PANet through bottom-up and top-down path
aggregation, as well as feature fusion [32,33]. This structure intelligently integrates feature
information from various levels, improving the feature and position information of objects
at different scales in object detection. The Head portion of the model separates classification
from detection and replaces the anchor-based approach with an anchor-free one. It is
responsible for object classification, localization, and generating detection results.

In the network structure of YOLOv8s-EFF, we used SENet after the first C2f layer in
the backbone network to utilize shallow features and improve the detection performance of
small tobacco plants. This addition enhances the network’s awareness of channel features.
And the output of the SENet is fused with the shallow layers of PANet, providing more
precise positional and detailed information for small tobacco plants. This structure is called
SEBlock. In addition, considering PANet directly fuses feature maps of the different scales,
we introduce the ASFF module after PANet. This module adapts information from different
scales by learning weights, allowing the detection network to better adapt to targets of
various sizes. The ASFF module incorporates a spatial attention mechanism when fusing
features, aiding the model in more accurately localizing tobacco plants of different scales.
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Figure 4. Network Architecture for YOLOv8s-EFF.

During the inference phase, our primary objectives were twofold: first, to enhance the
subsequent calculations’ precision, and second, to ensure the comprehensive detection of all
tobacco targets. To achieve these goals, we employed a cropping strategy with overlapping
regions (20% by default) in the input test images, as visually depicted in Figure 5, where the
yellow dashed lines in the large image and the red regions in the small image indicate the
overlapping areas. To ensure that cropping can be performed in multiples of 1024 window
sizes, we applied zero-value padding at the image edges. This approach served a dual
purpose: it maximized the likelihood of detecting tobacco targets while compensating for
the potential loss of tobacco plants due to cropping of images. However, it introduced a
novel issue—duplicate detection at the cropped edges.

To address this issue, we applied a non-maximum suppression (NMS) method, which
allowed us to resolve the issue of duplicate detection. This suppression method was applied
following the mapping of the detection box’s position from the cropped small image back
to its true location. Subsequently, we converted the resulting tobacco detection frames into
center coordinates, representing the precise coordinates of each tobacco plant.
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Figure 5. Illustration of the cropping process for large-scale tobacco images in testing.

For the tobacco field region division, the center point coordinates were obtained
from the tobacco detection model. However, it was challenging to accurately determine
the number of tobacco fields in an image. Additionally, it was difficult to distinguish
the coordinates that belonged to the same tobacco field. To address these issues, we
have adopted the DBSCAN algorithm, which clusters tobacco coordinates to identify and
separate distinct tobacco fields. This algorithm relies on two key parameters: Eps and
MinPts. Eps is the neighborhood radius to calculate the density, and MinPts is the minimum
number of points required within a field to define a core point. These two parameters can
be automatically adjusted by the k-distance curve [31], which is formed by descending
the distance between each coordinate point and its k-nearest point. The first valley on the
curve can be used as Eps. In addition, if D is the distance from point P to its k-th nearest
neighbor, then the D neighborhood of P contains at least k + 1 points (including P itself),
so MinPts is usually set to k + 1. Therefore, if the value of k is determined, the automatic
setting of these two parameters will complete. When k is set to 4, the tobacco coordinates
can be effectively clustered and divided into different clusters. Each cluster represents each
tobacco field.

2.3.3. Planting Distance Extraction Algorithm and Outlier Detection

After obtaining the precise spatial coordinates of tobacco plants within each field, we
introduced an innovative planting distance extraction algorithm predicated upon these
tobacco coordinates. This algorithm addresses a series of critical issues arising from object
detection, such as over-detection and under-detection, by facilitating the computation of
tobacco field row spacing and plant spacing. Additionally, the algorithm incorporates a
mechanism designed to mitigate the impact of inaccurate tobacco plant coordinates on the
planting distance extraction process. This is achieved through the application of statistical
methods, including averaging methods and outlier detection, which serve to enhance the
reliability and robustness of the extracted planting distances. The following is our definition
and calculation method for plant spacing:

For each tobacco plant, the Euclidean distance between two nearest tobacco plants
is taken as the two plant distances of the tobacco. If the current tobacco coordinates are
(x, y) and other tobacco coordinates are (xi, yi), then the plant spacing d can be calculated
by Formula (1), where minD means to select the minimum and second-smallest distance
between other points and the current point as the plant spacing. Next, all the plant spacing
in each tobacco field area is arranged to obtain the average plant spacing d in this area, as
shown in Formula (2). In the process, we use the quartile method to detect outliers and filter
abnormally large or small plant spacing, d. dj is the plant spacing value filtered according
to the quartile of the corresponding limit. Qp is the quantile shown in Formula (3), p is the
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percentage (for example, p in Q25 is 25%), N is the total number of data, ⌊x⌋ is the integer
part of x, {x} is the decimal part of x, and Dx indicates the corresponding row spacing or
row spacing at the x position after the row spacing or row spacing is arranged from small
to large.

d = minD

(√(
x − xi)

2 +
(

y − yi)
2 , i ∈ (1, n)

)
(1)

d =
n

∑
j=1

dj/n, dj ∈ (1.5Q25 − 0.5Q75, 2Q75 − Q25) (2)

Qp = (1 − {x})× D⌊x⌋ + {p × (N − 1)} × D⌊x⌋+1, x = p × (N − 1), (3)

For row spacing, we calculate it as follows: the tobacco in the field is roughly dis-
tributed in a regular grid, and the spatial relationship between adjacent tobacco is shown
in Figure 6. The current tobacco coordinate, the adjacent tobacco coordinate, and the
coordinates of other tobacco are set as P(x, y), P0(x0, y0), and Pi(xi, yi), respectively. θ is the

angle between
→

PP0 and
→

PPi, sin θ =
→

PP0 ×
→

PPi/
(∣∣∣∣ →

PP0

∣∣∣∣× ∣∣∣∣ →PPi

∣∣∣∣). Then row spacing l in

Figure 6 can be calculated by Formula (4), where minL denotes the smallest distance in the
perpendicular distance between the selected Pi(xi, yi) and the straight line PP0 (greater than
d). In the standard cultivation of tobacco, the row spacing is generally 2 to 3 times the plant
spacing. Therefore, when traversing Pi, we restrict the range of its horizontal and vertical
coordinates within ±3d. This way, we only need to calculate the vertical distance between
the tobacco coordinates Pi(xi, yi) in the nearby one or two rows and the coordinates of the
current row. This reduces the number of times we need to calculate the vertical distance
when traversing Pi, improving the overall computational efficiency. In the actual tobacco
planting environment, as illustrated in Figure 7, we only need to traverse the coordinates
of tobacco points within the square dashed region centered at P(x, y) with a side length
of 6d to calculate the vertical distance and record the tobacco row spacing. Subsequently,
we averaged all row spacings within each tobacco field region to obtain the average row
spacing l shown in Formula (5). Similarly, we used the quartile method to filter and correct
the line spacing. lj as the row spacing after filtering according to the interquartile of the
corresponding inner limit.
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l = minL


→

PP0 ×
→

PPi∣∣∣∣ →
PP0

∣∣∣∣× ∣∣∣∣ →PPi

∣∣∣∣ ×
√(

x − xi)
2 +

(
y − yi)

2 , i ∈ (1, n)

 (4)

l =
n

∑
j=1

lj/n, lj ∈ (1.5Q25 − 0.5Q75, 2.5Q75 − 1.5Q25), (5)

2.3.4. Extracting Tobacco Field Area Based on Expanding Contour

In previous studies, crop area was often obtained through image segmentation. It
would be redundant for us to go back and build a tobacco segmentation model to estimate
the size of tobacco fields. Therefore, this research explores how to utilize tobacco detection
results to calculate the tobacco field area efficiently.

The tobacco coordinates obtained from the detection model are discrete, which makes
it impractical to directly compute the field area by pixel counting. Hence, a natural solution
is to consider utilizing tobacco field contours for area calculation. So, in order to obtain
various shapes of tobacco field area, we designed an area extraction algorithm based on
tobacco field contour. The steps of the improved Alpha Shape algorithm to obtain the initial
tobacco field contour are shown below:

1. Construction of Delaunay triangulation [34,35] based on tobacco coordinate points.
2. Traverse the Delaunay triangulation, calculate the circumscribed circle radius of each

triangle, and eliminate the triangles whose radius is greater than the alpha value.
3. In the remaining triangles, the edges that appear only once are reserved and connected

in turn in a counterclockwise direction to obtain the initial contour of the tobacco field.

The radius of the outer circle of the triangle is calculated as shown in Formula (6),
where edgex is the side of the triangle and S∆ is the area of the triangle.

R = edge1 × edge2 × edge3/4S∆, (6)

The results show that when Alpha = Eps, the triangles with large side lengths can be
better eliminated, and a reasonable contour of the tobacco field can be obtained.
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Certainly, the initial tobacco field contours we obtain are based solely on the tobacco
coordinate points. A proper tobacco field contour should extend further outward to
encompass the space for tobacco to grow on the ground accurately. Therefore, for the
purpose of calculating the actual area of the tobacco field more accurately and improving
the accuracy of the tobacco field contour, we use the calculated plant spacing as the
expansion length to expand the initial contour of the tobacco field, which can be suitable for
the actual contour of the tobacco field, and obtain a more accurate tobacco field area. The
initial contour of the tobacco field can be expanded in the following ways: in the contour
sorted counterclockwise ( P0 . . . Pn) (Figure 8), assuming that there are edges P0P1, P1P2
in the initial contour, it is necessary to expand the point P1 to the point Q by using the
average spacing d, and α is taken as the angle between

→
v1,

→
v2. From Figure 8, we can get

→
P1Q =

→
v1 +

→
v2, so the coordinates of point Q can be obtained by calculating

→
v1,

→
v2. The

modulus of
→
v1,

→
v2 is equal to the average plant spacing d divided by sin α (Formula (7)).

Then
→
v1,

→
v2 can be calculated by Formula (8) and (9), and Q(x, y) =

→
v1 +

→
v2 + P1(x1, y1).

∣∣∣→v1

∣∣∣ = ∣∣∣→v2

∣∣∣ = d

/
→

P1P0 ×
→

P1P2∣∣∣∣ →
P1P0

∣∣∣∣× ∣∣∣∣ →
P1P2

∣∣∣∣
 (7)

→
v1 =

∣∣∣→v1

∣∣∣∣∣∣∣ →
P1P2

∣∣∣∣ ×
→

P1P2 (8)

→
v2 =

∣∣∣→v2

∣∣∣∣∣∣∣ →
P1P0

∣∣∣∣ ×
→

P1P0, (9)
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Figure 8. Schematic of tobacco field contour expansion. The solid line segment is the initial outline of
the tobacco field connected counterclockwise, and the dashed line is the expanded contour of the
tobacco field.

If the points P0(x0, y0), P1(x1, y1) and P2(x2, y2) are co-linear, i.e., α is 0, then the
coordinates of point Q can be calculated from the slope of P1P2 and the pointing from P1
to P2. If the slope angle from P1 to P2 is set as θ ∈

(
−π

2 , π
2
)
, the slope as k ∈ (−∞,+∞),

the pointing from P1 to P2 can be denoted by (x2 − x1).Further, the point Q(x, y) can be
obtained from Formula (10). Note that k and x2 − x1 will not both be 0 at the same time.
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Q(x, y) =



(
x1 + d × sinθ, y1 − d × cosθ

)
, k ≥ 0, x2 − x1 ≥ 0(

x1 − d × sinθ, y1 + d × cosθ
)

, k ≥ 0, x2 − x1 < 0(
x1 + d × cos

(
θ + π

2
)
, y1 + d × sin

(
θ + π

2
))

, k < 0, x2 − x1 < 0(
x1 − d × cos

(
θ + π

2
)
, y1 − d × sin

(
θ + π

2
))

, k < 0, x2 − x1 ≥ 0

, (10)

Finally, we multiply the area enclosed by the extended contour by the spatial resolution
to obtain the planting area of the tobacco field. The area of the tobacco field can be calculated
by Formula (11), where r is the spatial resolution.

S = 0.5 × r2 × ∑n−1
i=0 (yi+1 + yi)(xi+1 − xi). (11)

3. Results and Discussion
3.1. Tobacco Detection

We compared YOLOv8s-EFF with four other detection models (YOLOv8s [30],
YOLOv5s [36], RetinaNet [37], and Faster R-CNN [38]) on the tobacco dataset we con-
structed. In addition, we provide the results of ablation experiments using the SEBlock
and ASFF modules separately in YOLOv8s. In our research, we used a specific experimen-
tal setting to train and evaluate our models: Python 3.8.16, i7-8700k, NVIDIA GeForce
2080Ti 11GB, 32GB RAM, 1TB SSD, and 2TB HDD. All models use pre-training weights
from the MSCOCO dataset [39] to speed up the training process. The optimizer applies
stochastic gradient descent (SGD). The model training employed initial hyperparameters,
which comprised an initial learning rate of 0.001, a batch size of 2, input image dimensions
established at 1024 × 1024, and a momentum value of 0.9. After 300 epochs of training, the
model’s performance on the current dataset appears to stabilize, indicating that 300 epochs
are sufficient to meet the training requirements. The evaluation metrics of the model are
shown in Table 2, where AP0.5 means the average accuracy (AP) when IoU = 0.5, and AP0.75
is the same. AP0.5:0.95 refers to the average accuracy of 10 different thresholds when IOU
increases from 0.5 to 0.95 in steps of 0.05. APS, APM, and APL are the average accuracy of
small, medium, and large object sizes, respectively.

Table 2. Model evaluation metrics.

Methods AP0.5:0.95 AP0.5 AP0.75 APS APM APL

YOLOv8s [30] 0.628 0.831 0.771 0.483 0.627 0.767
YOLOv8s + SEBlock 0.633 0.831 0.783 0.481 0.636 0.776

YOLOv8s + ASFF 0.642 0.831 0.787 0.492 0.638 0.789
YOLOv8s-EFF (ours) 0.644 0.831 0.789 0.498 0.642 0.785

YOLOv5s [36] 0.534 0.827 0.611 0.354 0.628 0.635
RetinaNet-R101 [37] 0.537 0.825 0.604 0.340 0.625 0.684

Faster R-CNN-R101 [38] 0.508 0.822 0.514 0.296 0.586 0.650

According to Table 2, the average accuracy (AP0.5:0.95) of improved YOLOv8s-EFF was
0.16 to 0.644 compared with the baseline YOLOv8s. The AP0.5 of each model is at a high
level, reaching about 0.82. However, in order to obtain more accurate tobacco coordinates,
the model should have higher accuracy under a higher IoU threshold. YOLOv8s-EFF
outperforms YOLOv8s, with an AP0.75 of 0.789, indicating superior accuracy in detection
results. So, YOLOv8s-EFF can better meet such requirements. Additionally, YOLOv8s-EFF
exhibits robust adaptability in object detection across different size ranges (APS, APM, and
APL), with AP values of 0.498, 0.642, and 0.785, respectively. These results highlight the
advantages of YOLOv8s-EF compared with other models.

Figures 9–11, respectively, illustrate the detection results of each model in different
environments for tobacco. It can be observed that when the tobacco size is small, both
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YOLOv8s-EFF and YOLOv5s can detect all tobacco in the images, but YOLOv5s may
have some issues with duplicate detections. On the other hand, RetinaNet-R101 and
Faster R-CNN-R101 may miss some smaller tobacco instances. In scenarios with dense
and overlapping tobacco, YOLOv8s-EFF is capable of detecting all tobacco, while other
models exhibit errors in detection and missed instances. In environments where tobacco
is uniformly distributed and relatively large, YOLOv5s and Faster R-CNN-R101 show a
few missed detections, while YOLOv8s-EFF and RetinaNet-R101 can detect all tobacco.
However, RetinaNet-R101 has an issue with incorrect overlapping detections. In summary,
YOLOv8s-EFF consistently outperforms other models in tobacco detection across several
testing environments.
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Figure 11. Detection results for scenes with uniformly distributed and large tobacco. Detection errors
of the model are marked with white arrows.

The primary cause of over-detection during prediction is attributed to image crop-
ping. As observed in the test images from the previous section, even partially visible
tobacco plants at the image edges (occupying only a few pixels) may trigger detections.
Consequently, a single tobacco plant might be associated with multiple non-overlapping
detection boxes. To alleviate this issue, we propose a solution involving image cropping
with overlapping regions and the application of NMS to remove redundant detection
boxes. Taking the detection results of a tobacco field in Chongzhou as an example, the
introduction of overlapping cropping substantially mitigated the issue of over-detection in
the detection box plot (Figure 12a,b), resulting in a more even and accurate distribution of
tobacco coordinates in the scatter plot (Figure 12c,d). Simultaneously, this method ensures
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the maximum possible detection of tobacco targets. In other words, even if the tobacco
in the preceding image cannot be accurately detected, it can still be identified through
overlapping portions in the subsequent image, addressing the issue of under-detection
resulting from image cropping. Although this method can resolve the majority of issues,
there may still be a small number of cases, similar to those depicted in Figure 12b, where
overlapping boxes are retained below the NMS threshold.
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Figure 12. Tobacco detection results before and after overlapping cropping. (a) The detection results
are without overlapping cropping. (b) The results after applying 20% overlapping cropping, followed
by NMS. (c,d) display the scatter plots of tobacco center coordinates.

3.2. Tobacco Planting Information Extraction
3.2.1. Isolated Tobacco Field

To validate the accuracy of the model and algorithm proposed in this research, four
distinct tobacco fields (Chongzhou (CZ), Dazhai (DZ), Jiange (JG), and Shifang (SF)) were
selected from four experimental areas based on their diverse shapes. We then applied the
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algorithms designed in this paper to calculate the area, row spacing, and plant spacing of
these selected tobacco fields.

While we optimized the detection coordinates of tobacco, the calculation of row
spacing and plant spacing still yielded a few outliers, either excessively large or small
(Figure 13). To further mitigate the impact of these outliers on the final results, we employed
the quartile method to identify and filter out outliers in the computed row and plant
spacing. The data after filtering outliers is shown in Figure 14. For visual representation,
we utilized a boxplot as a data visualization tool, which includes distinct elements. The
central rectangular box within the plot delineates the interquartile range (IQR), spanning
from the first quartile (Q1) to the third quartile (Q3), encapsulating the central 50% of the
data’s distribution. Within this box, a central line designates the median, signifying the
centrality of the data distribution. The whiskers extend from the box and typically include
the maximum and minimum data values within the range of 1.5 times the IQR. Data points
that deviate significantly from the box are considered outliers.
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The tobacco field contour could be obtained based on the contour algorithm (Figure 15c).
The solid straight line is the initial contour, and the dashed line is the contour after equidis-
tant expansion using plant spacing. From Figure 15, it can be observed that we accurately
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obtained the external contours of tobacco fields with various shapes. Furthermore, to
encompass the correct planting area corresponding to the growing space of tobacco plants,
we accurately expanded the initial contours based on the calculated plant spacing. More-
over, the use of overlapping cropped images and the NMS method significantly reduces
the problem of multiple detections of tobacco plants at the edges of small images or the
inability to detect them. This is well demonstrated by the evenly distributed coordinates
of tobacco plants in Figure 15b. The term “edges of small images” refers to the fact that
detection involves cropping the images from the large aerial images captured by the drone
into smaller sections, which are then fed into the detection network. On the edges of these
smaller images, a single tobacco plant might be divided into several sections, leading to the
problem of either detecting the same tobacco plant multiple times or not detecting it at all.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 24 
 

 

Figure 14. Boxplot after filtering data. 

The tobacco field contour could be obtained based on the contour algorithm (Figure 

15c). The solid straight line is the initial contour, and the dashed line is the contour after 

equidistant expansion using plant spacing. From Figure 15, it can be observed that we 

accurately obtained the external contours of tobacco fields with various shapes. Further-

more, to encompass the correct planting area corresponding to the growing space of to-

bacco plants, we accurately expanded the initial contours based on the calculated plant 

spacing. Moreover, the use of overlapping cropped images and the NMS method signifi-

cantly reduces the problem of multiple detections of tobacco plants at the edges of small 

images or the inability to detect them. This is well demonstrated by the evenly distributed 

coordinates of tobacco plants in Figure 15b. The term “edges of small images” refers to 

the fact that detection involves cropping the images from the large aerial images captured 

by the drone into smaller sections, which are then fed into the detection network. On the 

edges of these smaller images, a single tobacco plant might be divided into several sec-

tions, leading to the problem of either detecting the same tobacco plant multiple times or 

not detecting it at all. 

 

Figure 15. Tobacco field contour extraction. (a) Original image of a single tobacco field. (b) Tobacco 

detection results. (c) Tobacco field contour extraction results. 

We tabulated the actual measurement data and calculation results for four tobacco 

fields. MV and CV denote measured and calculated values, respectively. ACC denotes the 

accuracy, which is calculated as shown in Equation (12). 

ACC  1 |MV CV| MV⁄ 100%,  (12) 

Table 3 shows the calculation accuracy of tobacco field area, row spacing, and plant 

spacing ranges from 96.51% to 99.04%, 90.08% to 99.74%, and 94.69% to 99.15%, 

Figure 15. Tobacco field contour extraction. (a) Original image of a single tobacco field. (b) Tobacco
detection results. (c) Tobacco field contour extraction results.

We tabulated the actual measurement data and calculation results for four tobacco
fields. MV and CV denote measured and calculated values, respectively. ACC denotes the
accuracy, which is calculated as shown in Equation (12).

ACC = (1 − |MV − CV|/MV)× 100%, (12)

Table 3 shows the calculation accuracy of tobacco field area, row spacing, and plant
spacing ranges from 96.51% to 99.04%, 90.08% to 99.74%, and 94.69% to 99.15%, respectively.
The algorithm designed realizes the accurate extraction of planting information for an
isolated tobacco field. It shows the feasibility of using the tobacco coordinate output from
the detection model to calculate the tobacco planting information on the high-resolution
UAV image.
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Table 3. Tobacco field information statistics.

Tobacco Field Area Row Spacing Plant Spacing

CZ
MV 528.12 m2 107.3 cm 68.9 cm
CV 533.20 m2 107.02 cm 67.55 cm

ACC 99.04% 99.74% 98.04%

DZ
MV 3330.44 m2 109.5 cm 55.2 cm
CV 3414.06 m2 114.72 cm 55.67 cm

ACC 97.49% 95.23% 99.15%

JG
MV 487.53 m2 86.9 cm 37.7 cm
CV 497.18 m2 95.52 cm 39.70 cm

ACC 98.02% 90.08% 94.69%

SF
MV 1618.21 m2 101.6 cm 37.9 cm
CV 1674.62 m2 100.09 cm 38.47 cm

ACC 96.51% 98.51% 98.5%

While the calculation results exhibit a commendable level of accuracy, it is important
to acknowledge that some degree of error remains inevitable. The primary source of error
lies in the detection model, influencing the computation of tobacco field area, row spacing,
and plant spacing. Specifically:

For the tobacco field area, over- or under-detection of the model within the tobacco
field will not affect the extraction of the tobacco field contour. At this point, the calculated
area of the tobacco field is accurate. However, if the under-detection occurs at the edge of a
tobacco field, the formed contour will be connected to the internal tobacco coordinate or the
next edge tobacco coordinate (the connection method depends on the relationship between
the triangle edge length and the alpha value in the Delaunay triangulation network built
based on tobacco coordinates), so that the calculated tobacco field area is slightly smaller
or larger.

For the row spacing and plant spacing, over-detection or under-detection of the model
will make the calculated row spacing and plant spacing smaller or larger. In the inference
process, employing the overlap cropping image and NMS method effectively mitigates
common issues of over- or under-detection in many models. Additionally, the use of
the quartile method helps eliminate errors in row spacing and plant spacing caused by
over-detection or under-detection. These two aspects collectively ensure the accuracy of
the extracted row spacing and plant spacing results.

Another factor contributing to the calculation errors in row spacing and plant spacing
is related to the spatial resolution of the images. In this paper, the spatial resolution of the
UAV images is 0.8 cm. The positioning accuracy of tobacco coordinates by the detection
model and the data accuracy in the calculation process (rounding, decimal operations, etc.)
may introduce a deviation of several pixels, resulting in an actual distance of approximately
1–3 cm. The calculation errors are more pronounced when the row spacing and plant
spacing are relatively small.

Additional clarification is required regarding the extraction of tobacco field contours.
If the actual area of internal voids within a tobacco field, caused by occlusion or other
factors, is less than or equal to 12 m2, we opt to discard it, as illustrated in Figure 15c(DZ,SF).
This decision was reached following discussions with agricultural experts and tobacco
management authorities.

3.2.2. Composite Tobacco Fields

This paper proposes a tobacco planting information extraction algorithm based on
high-resolution UAV images. The feasibility of the proposed approach is validated through
the results obtained from multiple isolated tobacco fields. To further verify the applicability
of the model and algorithm in real-world production environments, we conducted tobacco
planting information extraction on large stitched UAV images.
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Figure 16a,b are from the Jiange and Dazhai experimental areas, respectively, as
illustrated in Figure 1. The Jiange experimental area is located in a mountainous region
where tobacco fields are scattered, exhibiting irregular shapes and significant variations in
size. The tobacco planting is relatively dense. In contrast, the Dazhai experimental area is
situated in a plain where tobacco fields are closer to each other, featuring relatively regular
shapes, and tobacco planting is sparser. As shown in Figure 16, the algorithm designed in
this paper successfully identified 23 and 5 tobacco fields in Jiange and Dazhai, respectively.

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 24 
 

 

3.2.2. Composite Tobacco Fields 

This paper proposes a tobacco planting information extraction algorithm based on 

high-resolution UAV images. The feasibility of the proposed approach is validated 

through the results obtained from multiple isolated tobacco fields. To further verify the 

applicability of the model and algorithm in real-world production environments, we con-

ducted tobacco planting information extraction on large stitched UAV images. 

Figure 16a,b are from the Jiange and Dazhai experimental areas, respectively, as il-

lustrated in Figure 1. The Jiange experimental area is located in a mountainous region 

where tobacco fields are scattered, exhibiting irregular shapes and significant variations 

in size. The tobacco planting is relatively dense. In contrast, the Dazhai experimental area 

is situated in a plain where tobacco fields are closer to each other, featuring relatively reg-

ular shapes, and tobacco planting is sparser. As shown in Figure 16, the algorithm de-

signed in this paper successfully identified 23 and 5 tobacco fields in Jiange and Dazhai, 

respectively. 

However, issues were encountered in regions where tobacco plants at the edges of 

two fields were connected, as observed in Figure 16b(D2). The current algorithm design 

proved insufficient to partition them into distinct tobacco fields. 

The parameters of the DBSCAN algorithm are automatically determined by con-

structing the k-distance curve based on the tobacco detection coordinates. Nevertheless, 

in large-scale unmanned aerial vehicle tobacco images, this curve is influenced by non-

tobacco areas such as roads, buildings, and other crops, resulting in a larger clustering 

radius Eps. Consequently, in the extensive tobacco field region shown in Figure 16a, dif-

ferent tobacco fields are more effectively separated from non-tobacco areas like ridges, 

yielding a result more consistent with the human visual perspective using the adaptive 

parameter DBSCAN algorithm. 

In contrast, Figure 16b illustrates lower separability between different tobacco fields, 

underscoring the need to further refine existing methods or explore innovative techniques 

for more effective separation of interconnected tobacco fields. 

   

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 24 
 

 

   

(a) (b) 

Figure 16. Tobacco field region division and contour extraction. (a) Jiange experimental area. (b) 

Dazhai experimental area. 

Additionally, we calculated the area, row spacing, and plant spacing for each identi-

fied tobacco field (Figures 17 and 18). Unlike the aforementioned isolated tobacco fields, 

the large stitched UAV images encompass multiple tobacco fields. Therefore, before cal-

culating the area, row spacing, and plant spacing, the DBSCAN algorithm was applied to 

cluster tobacco coordinates. This allows the separation of multiple tobacco fields in the 

high-resolution drone image and filters out inaccurately detected coordinates. From Fig-

ures 17 and 18, we can see that the row and plant spacing in the Dazhai tobacco fields are 

larger than those in the Jiange tobacco fields. This aligns with our earlier statement that 

“tobacco planting in the Jiange experimental area is dense, while in the Dazhai experi-

mental area, it is sparse.” In the Jiange experimental area, the extracted area ranges from 

25.45 m2 to 780.73 m2, with row spacing and plant spacing approximately around 95 cm 

and 40cm, respectively. In the Dazhai experimental area, the extracted area ranges from 

1501.09 m2 to 7378.31 m2, with row spacing and plant spacing approximately around 110 

cm and 58cm, respectively. We can see that the calculated row spacing and plant spacing 

in each experimental area show no significant fluctuations. This also highlights the adapt-

ability and stability of the algorithm designed in this paper to the differences in planting 

norms in different experimental areas. 

 

Figure 17. Calculation results of Jiange experimental area. 
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However, issues were encountered in regions where tobacco plants at the edges of two
fields were connected, as observed in Figure 16b(D2). The current algorithm design proved
insufficient to partition them into distinct tobacco fields.

The parameters of the DBSCAN algorithm are automatically determined by con-
structing the k-distance curve based on the tobacco detection coordinates. Nevertheless,
in large-scale unmanned aerial vehicle tobacco images, this curve is influenced by non-
tobacco areas such as roads, buildings, and other crops, resulting in a larger clustering
radius Eps. Consequently, in the extensive tobacco field region shown in Figure 16a, dif-
ferent tobacco fields are more effectively separated from non-tobacco areas like ridges,
yielding a result more consistent with the human visual perspective using the adaptive
parameter DBSCAN algorithm.
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In contrast, Figure 16b illustrates lower separability between different tobacco fields,
underscoring the need to further refine existing methods or explore innovative techniques
for more effective separation of interconnected tobacco fields.

Additionally, we calculated the area, row spacing, and plant spacing for each identi-
fied tobacco field (Figures 17 and 18). Unlike the aforementioned isolated tobacco fields,
the large stitched UAV images encompass multiple tobacco fields. Therefore, before cal-
culating the area, row spacing, and plant spacing, the DBSCAN algorithm was applied
to cluster tobacco coordinates. This allows the separation of multiple tobacco fields in
the high-resolution drone image and filters out inaccurately detected coordinates. From
Figures 17 and 18, we can see that the row and plant spacing in the Dazhai tobacco fields
are larger than those in the Jiange tobacco fields. This aligns with our earlier statement that
“tobacco planting in the Jiange experimental area is dense, while in the Dazhai experimental
area, it is sparse”. In the Jiange experimental area, the extracted area ranges from 25.45 m2

to 780.73 m2, with row spacing and plant spacing approximately around 95 cm and 40cm,
respectively. In the Dazhai experimental area, the extracted area ranges from 1501.09 m2

to 7378.31 m2, with row spacing and plant spacing approximately around 110 cm and
58cm, respectively. We can see that the calculated row spacing and plant spacing in each
experimental area show no significant fluctuations. This also highlights the adaptability
and stability of the algorithm designed in this paper to the differences in planting norms in
different experimental areas.
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Figure 18. Calculation results of Dazhai experimental area.

Due to the presence of numerous tobacco fields in the Jiange experimental area, we
measured the area, row spacing, and plant spacing of five representative tobacco fields,
as shown in Figure 16. The five fields are labeled J3, J11, J14, J15, and J18, respectively. A
comparison was made with the calculated results, as illustrated in Figure 19. The average
accuracy rates of area, row spacing, and plant spacing were 97.13%, 97.52%, and 97.63%,
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respectively. From the results, it can be seen that our proposed tobacco planting information
extraction algorithm achieves an overall calculation accuracy of around 97% in the Jiange
experimental area, demonstrating the reliability of the method. However, we observe
that the accuracy of row spacing and plant spacing in J14 is relatively lower. This is due
to the fact that J14 comprises a mixture of several tobacco planting directions, affecting
the calculation results of row spacing and plant spacing. For specific details, refer to
Figure 15(JG).
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Figure 19. Accuracy statistics of planting information calculation in Jiange tobacco fields.

Similarly, we measured the area, row spacing, and plant spacing of five tobacco
fields in the Dazhai experimental area, labeled as D1, D2, D3, D4, and D5, as shown in
Figure 16. The extraction accuracy of planting information for these five fields is shown in
Figure 20. The average accuracy rates for area, row spacing, and plant spacing were 98.86%,
98.43%, and 98.99%, respectively. The overall calculation accuracy exceeded 98%, further
demonstrating the effectiveness of the algorithm proposed in this paper for extracting
tobacco planting information.
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Figure 20. Accuracy statistics of planting information calculation in Dazhai tobacco fields.

Considering both experimental areas, the overall average accuracy rates for the ex-
traction of area, row spacing, and plant spacing reached 97.99%, 97.98%, and 98.31%,
respectively.

4. Conclusions

The research proposed an automatic calculation method for tobacco row spacing, plant
spacing, and tobacco field area based on dense small and medium-sized object detection in
UAV images. The experiment selected four typical areas in Sichuan Province of China as
experimental examples and extracted tobacco planting information by solving the problems
of a complex geographical environment, irregular shapes of tobacco fields, small tobacco
objects in the cluster stage, and dense tobacco planting. First, we realized the detection
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of dense small tobacco objects and the acquisition of tobacco spatial coordinates based on
the improved object detection model YOLOv8s-EFF. According to the tobacco dataset we
constructed, the AP0.5:0.95 of YOLOv8s-EFF reached 0.644, which was much higher than that
of other models. Second, based on the tobacco coordinate output from the detection model,
the DBSCAN algorithm was applied with adaptive parameters to effectively divide the
tobacco fields into different regions. Third, for the divided tobacco coordinates, we designed
a planting distance extraction algorithm based on outlier detection. The algorithm defined
the calculation method of tobacco row spacing and plant spacing and filtered abnormal
outliers through quartile detection, which reduced the impact of object detection model
error on planting distance calculation. Finally, a tobacco field area extraction algorithm
based on the extended contour was proposed. The algorithm extracted the contours of
different tobacco field shapes based on the improved Alpha Shape algorithm and expanded
the contour equidistantly according to the plant spacing so that the expanded contour
could be closer to the actual edge of the tobacco field and could calculate a more accurate
and reasonable tobacco field area. We verified the feasibility and accuracy of the tobacco
planting information extraction algorithm for isolated tobacco fields with different shapes
and in the actual production environment with composite tobacco fields. In the actual
production environment, the average calculation accuracy of the extracted tobacco field
area, row spacing, and plant spacing reached 97.99%, 97.98%, and 98.31%, respectively.
The successful application of the algorithm in both isolated and composite tobacco field
scenarios suggests its potential for real-world implementation in precision agriculture. The
method provides a reference for the calculation of crop spacing, row spacing, and tobacco
field area on UAV high-resolution images and provides valuable information support for
precision agriculture. In addition, we also note that there are some calculation errors due to
the influence of image resolution, model detection accuracy, and algorithmic calculation
methods. In the future, more work should be conducted to improve the algorithm and
optimize the tobacco detection model to further improve the stability and accuracy of
tobacco planting information calculation.
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