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Abstract: Impact craters are extensively researched geological features that contribute to various
aspects of lunar science, such as evaluating the model age, regolith thickness, etc. The method for
identifying impact craters has gradually transitioned from manual counting to automated identifi-
cation. Automatic crater detection based on the digital elevation model (DEM) is commonly used
to detect larger craters. However, using only DEM has limitations in discerning smaller craters
(diameter < ~1 km). This study utilizes an improved Faster R-CNN algorithm and the Kaguya Terrain
Camera (TC) morning map to detect small impact craters in the Chang’e-5 (CE-5) landing site. It uses
model fusion to improve the precision of small crater identification. The results show a recall rate
of 96.33% and a precision value of 90.19% for craters with diameters exceeding 200 m. The model
found a total of 187,101 impact craters in the CE-5 region. The spatial distribution density of impact
craters with diameters ranging from 100 m to 200 m is approximately 2.5706/km2. For craters with
diameters ranging from 200 m to 1 km, the average spatial distribution density is about 0.9016/km2.
By the unbiased impact crater density of chronological analysis, the model age of the Im2 and Em4
geological units in the CE-5 region is 3.78 Ga and 2.07 Ga, respectively.

Keywords: Chang’e-5 landing site; Kaguya TC morning; impact crater detection; Faster R-CNN

1. Introduction

Impact craters are among the most typical and widespread geological features and
structures on the lunar surface. In lunar science, impact craters represent one of the
extensively studied geological landforms [1–3]. Research on impact craters contributes to
investigations into various aspects of lunar science, including the model age of mare units
on the moon [4], rock abundance [5], regolith thickness [6,7], and dielectric constants [8]. In
addition, the study of impact craters is not limited to the moon, but is also be applied to
different planetary systems. Examples include terrain analysis of Enceladus [9] and crater
studies associated with the DART mission [10,11].

The lunar surface is abundant, with numerous impact craters of varying sizes. Re-
search related to impact craters relies on their identification and characterization. Early
identification of impact craters primarily relied on manual labeling [12–14], morphological
feature extraction algorithms [15–18], and machine learning-based identification [2,19,20].
With advancements in computer vision and artificial intelligence, identifying impact craters
has gradually shifted toward deep learning. Continuously evolving deep learning algo-
rithms have made crater detection more accurate and efficient. In 2019, Silburt et al. [21]
processed the lunar digital elevation model (DEM) using UNET to identify craters. By
comparing with a manually generated crater catalogue, they achieved a recall rate of 92%.
Recall rate is an evaluation metric for evaluating neural network algorithms, indicating
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how many samples are correctly recognized in real samples. In 2020, Yang et al. [22]
employed transfer learning with neural networks to identify craters, discovering a to-
tal of 109,956 new craters, of which 18,996 were larger than 8 km in diameter. By 2022,
Tewari et al. [23] adopted unsupervised and semi-supervised learning for crater identifica-
tion, extracting crater morphology using a morphological approach. Moreover, algorithms
based on various neural network architectures have been successfully applied to crater
detection, yielding commendable results [24–28].

Automatic crater detection based on the DEM is commonly used to detect large
craters [26,28–31]. However, there are notable limitations in identifying small impact
craters using DEM data. This is primarily due to the typical image resolution of DEM being
59 m/pixel or larger [32]. Automated detection necessitates a minimum of 10 pixels to
identify impact craters reliably [33]. Consequently, accurate identification is possible only
for impact craters with a diameter of at least 590 m. Therefore, the lack of datasets and
pertinent references constrain research regarding the automated recognition of small impact
craters. Nevertheless, delving into the automated identification of small impact craters
holds significant importance. For example, Fu et al. [34] conducted a study on the sub-
surface structure and stratigraphy of Chang’e-4 mission’s landing site by analyzing small
impact craters (diameter < ~1 km) at the bottom of the Von Kármán crater. Fassett et al. [35]
delved into the study of terrain degradation utilizing small impact craters. During lunar
missions, a spacecraft’s lander needs to navigate potential landing hazards during its
descent. Small impact craters act as challenges for the landing process. Navigation sensors
and hazard detection cameras give the navigation system essential measurement data [36].
Research into the automatic identification of small craters can assist the descent and landing
process, contributing to the safe landing of the lander. Additionally, small impact craters
find frequent applications in secondary crater analysis [37,38] and the determination of
equilibrium diameters for specific regions [6,39]. The currently documented lunar impact
crater database contains over a million craters with diameters exceeding 1 km [14,31].
For small craters with a radius greater than r, the equilibrium cumulative size–frequency
distribution (SFD) per unit region is proportional to r −2 [40]. This infers that impact craters
larger than 100 m might exceed a billion in number, rendering manual identification of
small impact craters nearly infeasible. As a result, developing an automated method of
identifying smaller craters is important, although significant progress has been made in
crater recognition of large (diameter > ~1 km) craters.

The advancements in deep learning algorithms have significantly propelled research
on small lunar craters, yet challenges remain. In 2022, Fairweather et al. [41] manually
annotated impact samples and utilized the YOLOv3 network for training and identifying
craters in the Lunar Reconnaissance Orbiter (LRO) Narrow-Angle Camera (NAC) images.
For impact craters ranging from 100 m to 1 km, the recall rate is 0.89, but the precision value
is only 0.67. In 2023, La Grassa et al. [42] used a deep learning model based on YOLOLens
for impact crater identification. They employed Robbins’s impact crater catalogue [14]
and LRO wide-angle camera (WAC) images for crater detection. However, since Robbins’s
impact crater catalogue only includes craters with diameters larger than 1 km, there
are inherent limitations in identifying craters with diameters smaller than 1 km. Hence,
automated identification of small impact craters remains a challenging problem.

The landing site of Chang’e-5 (CE-5) is located in the Rümker region, with its geo-
graphic coordinates at 43.06◦N, 51.92◦W [43]. The CE-5 mission has collected 1731 g of
lunar samples from this region [44–47]. Li et al. [48] conducted lead–lead dating on the
basalt clasts returned by the CE-5 mission and obtained a radiometric age estimate of ap-
proximately 2.03 Ga. The present lunar time scale is divided into pre-Nectarian, Nectarian
(Nectaris basin), Imbrian (Imbrium basin), Eratosthenian (Eratosthenes crater), and Coper-
nican (Copernicus crater) based on the sediments and characteristics of the four impact
events [49,50]. The period of landing site in the CE-5 region is Nectarian. This suggests that
some geological units in the CE-5 region represent a relatively young geological model age
and have a smaller equilibrium diameter compared with the Apollo and Luna landing sites,
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making studying small craters especially significant. Therefore, in this study, an improved
Faster R-CNN algorithm [51] and Kaguya Terrain Camera (TC) morning map [52] were
utilized to identify small impact craters in the CE-5 landing site, enhancing the precision of
crater identification through model fusion [53]. The TC morning map boasts a remarkable
resolution of 7.403 m/pixel, significantly superior to the 59 m/pixel resolution typically
found in DEM imagery. This higher resolution enables more precise detection of smaller
craters. Furthermore, unlike LRO NAC images, the TC morning map eliminates the need
for image registration, thereby reducing errors in latitude and longitude that may arise
during the registration process. The improved Faster R-CNN model and Kaguya TC morn-
ing map were employed to predict the lunar impact crater catalogue for the CE-5 region.
Following crater catalogue retrieval, region density and dating analyses were conducted,
comparing them with the radiometric dating of samples collected in the CE-5 region. This
comparison can provide reference data for lunar dating and a new understanding of the
Moon’s geological history.

2. Materials and Methods

This section will introduce data preparation, neural network architecture, preprocess-
ing of images in the prediction region, post processing, model evaluation, and chronologi-
cal method. We created a workflow diagram (Figure 1) containing all steps based on the
data processing.
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The experiment was conducted on the CentOS 8.5 operating system, with the CPU
device being an Intel(R) Xeon(R) Platinum 8273CL CPU @2.20 GHz and the GPU device
being an NVIDIA RTX 3080Ti GPU with 12 GB onboard memory. The neural network
model used in the experiment is built based on Python’s deep framework Pytorch [54]. The
PyTorch version is 1.11.0, with CUDA version 11.6.

2.1. Data Preparation

The dataset preparation process consists of two main components: The first part is
the preparation before creating the dataset, which mainly includes the preparation of the
map, impact crater data and the matching method. The second part is dedicated to dataset
creation for training and testing neural networks.

2.1.1. Preparation before Creating Dataset

The dataset format used in this paper is the PASCAL VOC [55] format, commonly
used in object detection tasks. Creating a dataset in this format requires image and label
data. For image data, the Mercator projection method is utilized to reproject the Kaguya
TC morning map to get a new projection map (image). For label data, we employed the
CraterTools tool [56] in ArcMap to manually annotate craters on the Kaguya TC morning
map to obtain crater data (basic label data), which is presented in the form of latitude and
longitude coordinates. To create a dataset in PASCAL VOC format, the label data and
image data need to be matched; that is, the vector data (labels) are associated with the
raster data (pixels), which means that the corresponding impact crater area can be marked
on the image through the label data. Because the image data is expressed in the form of
pixels, the data in the latitude and longitude format of the label need to be converted into
the format of pixel coordinates in order to match the image. The process is shown in the
light-blue area in Figure 1. Converting coordinates in the latitude and longitude format of
the label data into coordinates in the pixel format requires using the Mercator projection
formula. The Mercator projection formula is expressed as follows.

X = Kln

[
tan
(

π

4
+

B
2

)
×
(

1 − esinB
1 + esinB

) e
2
]

, (1)

Y = K(L − L0), (2)

K =
a2

b
√

1 + e′ × cos2B0
× cos2B0, (3)
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√
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( a
b

)2
, (4)

e′ =

√( a
b

)2
− 1. (5)

The coordinate conversion utilized the Mercator projection, with a first latitude (B0)
of 44.1 degrees. The origin longitude (L0) was set to 0 degrees. The semi-major axis a and
semi-minor axis b of the Moon were assumed to conform to standard spherical dimensions,
both set to 1,737,400 m. The first eccentricity of the Moon (e) and the second eccentricity (e′)
were also taken into account. The transformation from geographical coordinates (L, B) to
lunar meter coordinates (X, Y) was achieved through Equations (1)–(5). Here, the longitude
and latitude coordinate range of the overall image region, the image resolution, and the
image pixel scale (the number of pixels in width and height) are known. By using the
latitude and longitude coordinates of the overall image region and the Mercator projection
Formulas (1)–(5), the meter-level coordinates of the upper-left and lower-right corners of the
overall image can be calculated. The longitude and latitude coordinates of the center point
of the impact crater are converted to meter-level coordinates through Mercator projection,
and then the mapping relationship between the meter-level coordinates of the upper-left
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and lower-right corner points of the overall image, as well as the pixel scale of the overall
image, is used to match the longitude and latitude geographic coordinates of the center
point of the impact crater with its corresponding position on the image. The diameter of
the impact crater is mapped to pixel level based on the resolution of the image.

The predicted craters in the target area are represented by pixel-level data, so the
pixel data need to be converted into longitude and latitude data to determine the location
of the impact crater on the lunar surface. The conversion process is the inverse process
of the above. Converting meter coordinates to geographical coordinates requires the
inverse Mercator projection transformation. The inverse Mercator projection transformation
formula is as follows.

B =
π

2
− 2arctan

[
exp(−

X
K ) × exp(

e
2 )×ln ( 1−e sin B

1+e sin B )
]
, (6)

L =
Y
K
+ L0. (7)

2.1.2. Region Partitioning and Dataset Generation

The alignment between the crater label data and the crater positions on the TC morning
map was achieved using the Mercator projection formula and associated calculations. A
synthetic TC morning map was defined within the range of 48◦W to 69◦W longitude and
39◦N to 48◦N latitude, which facilitates map data processing. This region comprised a
pixel dimension of 61,771 × 36,602. The CE-5 region encompasses the coordinates from
49◦W to 69◦W and 41◦N to 45◦N. The training region is designated within the coordinates
of 59◦W to 69◦W longitude and 45◦N to 48◦N latitude. Additionally, the testing region
was set within the coordinates of 55◦W to 59◦W longitude and 45◦N to 48◦N latitude. The
training and testing regions are located above the CE-5 region. Because the two regions are
adjacent to the CE-5 region, this is helpful for identifying the craters in the CE-5 region (see
Section 3.2 for the results).

Creating the dataset involves simultaneously processing image data and label data. In
dealing with image data, given the fixed 640 × 640 dimensions required by the improved
Faster R-CNN for input, it is crucial to crop the images from the training region to ensure
accurate extraction of impact crater features. To effectively train on smaller impact craters,
images measuring 1280 × 1280 pixels were randomly cropped within the training region,
and the data where the coordinates of the crater center lie within the cropped image region
and where the crater diameter is greater than 20 pixels were selected. Subsequently, these
images were resized to fit CNN’s input size.

In both the training and validation regions, a dataset was created by randomly crop-
ping images. This approach effectively enlarges the dataset without using the data aug-
mentation technique. The training set and the testing set generated randomly contain 4000
and 1000 images, respectively. Rather than segmenting the test region into smaller subsets,
the entire test region was evaluated as a whole, which enables a more accurate evaluation
of the performance of improved Faster R-CNN in the test region without introducing
additional errors. Additionally, employing model fusion [53] to enhance impact crater
identification precision involves using four models, necessitating four sets of training and
validation data.

2.2. Neural Network Architecture

In this study, the Faster R-CNN algorithm was adopted as the baseline of impact crater
recognition. Faster R-CNN belongs to the end-to-end object detection networks, which is a
classic two-stage object detection algorithm. However, the original Faster R-CNN demonstrates
suboptimal recognition performance for small targets. The RoI_Align structure [57] was
employed here to detect small impact craters better to replace the original RoI_Pool structure.
The RoI_Align structure has shown heightened accuracy for detection tasks, especially for
smaller objects. Given that all craters exhibit simple impact structures characterized by bowl-
shaped interiors and smooth walls [50], the three anchor box aspect ratios {1 : 2, 1 : 1, 2 : 1} of
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the original Region Proposal Network (RPN) were uniformly set to {1 : 1}. To further tailor
the detection for smaller craters, the dimensions of the anchor boxes after mapping were set
to {8× 8, 16× 16, 32× 32, 64× 64, 108× 108, 192× 192, 256× 256, 320× 320, 394× 394}.
These selections and configurations help accommodate the specific shapes and sizes of
lunar impact craters and reduce errors in small impact crater identification. Additionally,
ResNet-50 [58] was utilized as the backbone network.

The input image size for the improved Faster R-CNN model was set to 640 × 640 pixels,
with each cropped image having a resolution of approximately 7.403 m/pixel. This implies
that any crater with a diameter exceeding 4737.92 m would exceed the image dimensions.
Given the presence of impact craters in the CE-5 region surpassing this diameter, it is
necessary to crop images larger than the size of 640 × 640 pixels. However, the improved
Faster R-CNN mandates a fixed input image size, necessitating resizing images exceeding
this dimension to match the neural network’s input size.

Figure 2 illustrates the structure of the improved Faster R-CNN network. The structure
consists of four parts.

• Resize Processing: The first part involves resizing the input images to the fixed size
required by the improved Faster R-CNN.

• Backbone: The second part consists of the backbone, which employs ResNet-50 to
generate feature maps of a specific size. These feature maps are instrumental in
extracting essential feature information from the images.

• RPN: The third part is the RPN, which primarily focuses on extracting the region of
interest that potentially contains the target.

• Classification and Regression: The fourth part includes convolutional and pool-
ing layers used to output detection positions and classification information for the
target images.

• Additionally, Table 1 elucidates the alterations in improved Faster R-CNN feature
maps at different stages, helping to understand the feature extraction process.
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Figure 2. The structure of improved Faster R-CNN.

The resize operation is similar to downsampling, and it has not been included as
a part of the feature map transformations in Table 1. Special Conv 1, Max Pooling 1,
Special Conv 2, Special Conv 3, and Special Conv 4 constitute a portion of the backbone
network (ResNet-50), yielding feature maps with dimensions of 40 × 40 × 1024. Replace
the RoI_Pool structure in the baseline with the RoI_Align in the baseline to improve the
accuracy of identifying small targets. Special RoI_Align extracts all regions of interest into
feature maps with fixed dimensions. Subsequently, classification and regression operations
are performed via Special Conv 5 and Average Pooling, culminating in the recognition
results for the input image.
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Table 1. Feature maps of the improved Faster R-CNN.

Layer Name Feature Maps (Input) Feature Maps (Output)

Special Conv 1 640 × 640 × 3 320 × 320 × 64

Max Pooling 1 320 × 320 × 64 160 × 160 × 64

Special Conv 2 160 × 160 × 64 160 × 160 × 256

Special Conv 3 160 × 160 × 256 80 × 80 × 512

Special Conv 4 80 × 80 × 512 40 × 40 × 1024

Special RoI_Align 40 × 40 × 1024 14 × 14 × 1024

Special Conv 5 14 × 14 × 1024 7 × 7 × 2048

Average Pooling 7 × 7 × 2048 1 × 1 × 2048

2.3. Preprocessing of Images in the Prediction Region

The prediction region is split into two distinct sections: the test and the CE-5 regions.
Before prediction by the improved Faster R-CNN, the map in the prediction region was
cropped into smaller images. To accurately locate impact craters of different sizes, the image
dimensions were sorted into four distinct scales: 640 × 640, 1280 × 1280, 1920 × 1920, and
3840 × 3840. Smaller images target the detection of small craters, medium-sized images
were calibrated for detecting medium-sized craters, while larger scales focus on detecting
large craters. This approach mirrors the concept of an image pyramid [59], ensuring the
model retains sensitivity to craters across different scales.

The impact craters might be truncated in cropping images in the prediction regions.
There should be a 50% overlap region between adjacent cropped images of the same
dimension. This approach ensures that truncated impact craters remain intact in adjacent
or larger images, enhancing detection results. The final row and column of cropped images
might experience overlaps exceeding 50%. With this method, it could be calculated that the
maximum diameter of a complete Impact crater was approximately 14,214 m, which was
sufficient for crater detection in the test and the CE-5 region. In addition, when cropping the
predicted image, the longitude and latitude information and cropped pixel information of
each predicted sample image will be recorded, which is helpful for analysis and subsequent
research on the predicted crater data.

2.4. Postprocessing

The location and related details of the impact crater can be obtained through the
prediction of the improved Faster R-CNN. Predicted crater data expressed as DR. This sec-
tion encompasses handling impact crater data within the predicted regions, the extraction
method and the evaluation methods.

2.4.1. Data Processing for Predicted Impact Craters

The pixel coordinates information of the impact crater on the image were obtained
through the prediction of the improved Faster R-CNN model. Because the impact crater
might be truncated in the images, the predicted crater pixel coordinates extend beyond
the image boundaries, which leads to inaccurate crater identification. Impact craters with
low prediction confidence (less than 0.5) are also considered inaccurate. The inaccurately
recognized impact crater data need to be discarded. Furthermore, because there was an
overlap between adjacent images and shared regions in different-sized images, the exact
impact crater might be detected multiple times. Non-maximum suppression (NMS) using
GPU acceleration addressed this issue. The predetermined NMS threshold was set at 0.5.
Ultimately, an impact crater database for the predicted region by a single improved Faster
R-CNN model was obtained.
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Predictions from multiple improved Faster R-CNN models yield multiple separate
impact crater databases. These were merged into a comprehensive database through
multi-model data fusion. The process is as follows:

1. Extracting an impact crater coordinate data from one of the databases.
2. Then calculate the intersection over union (IoU) value with all the coordinates of

another impact crater database.
3. If a coordinate has an IoU value greater than 0.5, consider that both databases have

detected the same impact crater. Calculate the average coordinates and confidence
score of the two prediction results and retain the merged result. If the value of the
intersection ratio is less than 0.5, it means that the two crater databases did not detect
the same impact crater, and the data will be discarded.

4. Repeat this process until all coordinate data from one database has been processed.
5. Continue this merging process iteratively, merging multiple databases step by step; a

comprehensive database containing all impact craters is eventually obtained.

This iterative merging approach ensures the accuracy and reliability of the final
database while eliminating redundancies from duplicate detections of impact craters.

The data of impact craters in the database requires the conversion of pixel coordinates
to geographic coordinates to determine the precise location of impact craters on the lunar
surface. Assuming the DR data pixel coordinates relative to the entire map are given
by (a1, b1, a2, b2), we proceed to transform them into the new impact crater coordinates
(acen, bcen, pdiam) using the conversion process outlined in Formulas (8)–(10). Subsequently,
operations such as pixel mapping and inverse Mercator projection (Section 2.1.1) were used
to convert the coordinate format and establish an impact crater database.

acen =
a1 + a2

2
, (8)

bcen =
b1 + b2

2
, (9)

pdiam =
x2 − x1 + y2 − y1

2
. (10)

Furthermore, certain refinements to the pixel coordinates of the DR are essential. The
circular pixel coordinates for a DR are denoted by (acen, bcen, pdiam

2 ).

2.4.2. Processing Ground Truth Data for Impact Crater

The ground truth (GT) data regarding crater coordinates require relevant transfor-
mations for subsequent data processing analysis. Specifically, assume the geographic
coordinates of the GT data are given by (Lon1, Lat1, LDiam), where (Lon1, Lat1) denote the
longitude and latitude coordinates at the center of the actual impact crater, and LDiam (m)
represents the crater diameter. Initially, the geographic coordinates (Lon1, Lat1) were con-
verted into pixel coordinates xcen, ycen using a transformation process. LDiam was converted
into pixel units ldiam based on image resolution through the matching process outlined in
Section 2.1.1, the details of which are omitted here for brevity. Following this transformation,
the circular pixel coordinates are denoted as

(
xcen, ycen, ldiam

2

)
.

2.4.3. Extraction Method for Impact Crater

Upon obtaining the DR database, it is necessary to validate the recognition results of
the improved Faster R-CNN model. A method to discern if the DR data are truly positive
samples involves computing the IoU value between the pixel coordinates of DR and GT
datasets. A higher IoU value indicates a closer positional match between the predicted and
actual impact crater data. If the IoU value is larger than the defined threshold, the DR data
are classified as a positive sample.

The methodology entails computing the IoU value between the DR and GT data,
represented as circles, as illustrated in Figure 3. This data processing approach was adopted



Remote Sens. 2024, 16, 344 9 of 24

by Lin et al. [29]. Assuming the pixel coordinates of the DR circle are denoted as (xi, yi, ri),
and the pixel coordinates of the actual impact crater circle in the test region are denoted as(
mj, nj, rj

)
, the calculation of IoU value was implemented using Formulas (11)–(17).

IoU =
Intersection

πr2
i + πr2

j − Intersection
, (11)

Intersection =


0 , i f ri + rj ≤ d
min

(
πr2

i , πr2
j

)
, i f

∣∣ ri − rj
∣∣ ≥ d

c , other ,

(12)

d =
√(

xi − mj
)2

+
(
yi − nj

)2, (13)

Setting angle BAC as α and angle BCA as β. The region of quadrilateral ABCD is
denoted as SABCD.

α = arccos

(
r2

i + d2 − r2
j

2 × ri × d

)
, (14)

β = arccos

(
r2

j + d2 − r2
i

2 × ri × d

)
, (15)

SABCD = 2 × 1
2
× ri × d × sinα = ri × d × sinα, (16)

c =
2 × α

360◦ × πr2
i +

2 × β

360◦ × πr2
j − SABCD. (17)

Calculating the IoU value between the DR and GT data represented as circles and
comparing it to a predefined IoU threshold can determine whether the DR data constitute
a positive sample.
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2.5. Model Evaluation

After establishing the criteria for identifying the impact crater as a positive sample, the
improved Faster R-CNN model needs to be evaluated. In previous studies, neural network
evaluations have hinged on metrics like recall rate, precision, and F1 score [21,28,29]. Recall
rate measures how many DR data are correctly identified, which is the proportion of
predicted positive samples compared to the GT data. Precision evaluates the proportion
of correctly predicted positive samples from the DR data. A frequent occurrence in these
metrics is the trade-off between recall rate and precision: when one surges, the other might
decline. Therefore, the F1 score is a metric that balances recall rate and precision. Average
precision (AP) is a comprehensive metric for the performance evaluation of neural network
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models. The formula for calculating recall rate, precision value, and F1 score is as follows
(18)–(20). “Recall” in Formula (18) is expressed as recall rate.

Recall =
TP

TP + FN
, (18)

Precision =
TP

TP + FP
, (19)

F1 =
2 × Recalll × Precision

Recalll + Precision
. (20)

where TP represents true positives, indicating the number of the DR data correctly identified
as positive samples, FN , which stands for false negatives, represents the number of impact
craters in the GT data that are not correctly identified as positive samples by the predictions,
and FP, indicating false positives, refers to the number of the DR data points incorrectly
classified as positive samples.

In calculating AP, the methodology starts by arranging the DR data in a descending
hierarchy based on confidence scores. Recall rate and precision are determined progres-
sively for N (N = 1), positive samples. The formula calculates the maximum precision
value achieved at any recall rate level R̃ecall that satisfies R̃ecall ≥ Recall. This maximum
precision is considered the precision corresponding to the recall rate. The formula for
calculation is as follows. In Formula (21), the recall rate is abbreviated as R and R̃ecall is
abbreviated as R̃.

AP = ∑
n
(Rn − Rn−1) max

R̃:R̃≥Rn

P
(

R̃
)

. (21)

2.6. Chronological Method

The chronological analysis of the Moon relies on a limited number of sampling points
for radiometric dating. A method is the relative dating technique by studying the crater
density within the geological unit, with impact crater size–frequency distribution (CSFD)
analysis standing out as a prominent technique [49,50,60]. The rationale for crater-based
dating is that the cumulative frequency of external impacts stemming from celestial bodies
like asteroids and comets escalates with time. A region’s geological model age is inferred
by establishing a correlation between the model age and the density of these impact craters,
leveraging the knowledge gained from designated sampling points with known ages on
the lunar surface [1,60–62].

Upon obtaining the impact craters within the CE-5 region, a chronological analysis
of the geological units within the CE-5 region was conducted based on the impact crater
chronology proposed by Xie et al. [63]. Xie et al. utilized a maximum-likelihood estimation
approach to correct for biases in impact crater density, thus deriving the unbiased impact
crater density within the target region. The method considers the influence of terrain
variations on impact crater density, the effect of topographic degradation on crater density,
and measurement error. Lunar impact crater chronological analysis needs to be conducted
within consistent geological units. This study selected the geological units defined for the
CE-5 region by Qian et al. [64]. The division of these geological units is depicted in Figure 4.
In the CE-5 region, this study focuses on a chronological analysis of the larger geological
units, specifically the Im1, Im2, Em3, and Em4 units. This analysis was based on the impact
crater data of the selected geological units and their research methodology.
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3. Results
3.1. Model Evaluation of Test Region

Analyzing the prediction performance of the improved Faster R-CNN model in the
test region involves the DR database and GT database of the region. Wang et al. [33]
experimentally showed that impact crater identification is considered reliable when the
crater size exceeds 10 pixels. For this study, the resolution of the TC morning map used is
7.403 m/pixel. During the evaluation process, data analysis was conducted using impact
crater diameters larger than 100 m, 200 m, and 500 m.

In assessing impact crater data with a baseline diameter of 100 m, the DR and GT
database used for this evaluation must encompass craters exceeding 100 m. For impact
craters with diameters larger than 200 m or 500 m, while assessing the recall rate, the
number of positive samples is determined by calculating the IoU value between the impact
crater data with diameters greater than 200 m or 500 m in the GT database and all DR
data. Meanwhile, in assessing precision, the number of positive samples is determined by
calculating the IoU value between impact crater data with a diameter exceeding 200 m or
500 m in the DR database and all GT data. The minimum IoU threshold was set at 0.5, and
the minimum confidence score for DR data was 0.8. The evaluation results are presented in
Table 2.

Table 2. Evaluation results for the test region with crater diameter thresholds.

Diameter (m) Recall Precision F1 AP

100 88.63% 77.25% 82.55% 85.82%

200 96.33% 90.19% 93.16% −
500 93.44% 97.06% 95.22% −

Within the test region, the number of DR data with diameters exceeding 100 m and a
confidence score above 0.8 was 30,060, whereas the actual count of craters in that region
was 26,197. Referring to data from Table 2, when craters have a diameter threshold set at
100 m, the recall rate achieves 88.63%, and the AP value rises to 85.82%. By increasing the
crater diameter benchmark to 200 m, the recall rate was enhanced to an impressive 96.33%.
When the crater diameter threshold was set at 500 m, the precision value peaks at 97.06%.

The test region was divided into eight zones by averaging longitude to scrutinize the
detection performance. Adjacent regions exhibit a longitude difference of 0.5◦W, while the
intervals of latitude remain consistent. Furthermore, if the center point of the crater falls
within a zone, the data is considered to belong to that zone. We did not account for cases
where DR data and their corresponding GT data are not in the same zone. Additionally,
the minimum recorded impact crater diameter was larger than 100 m. The recognition
results for these eight zones are depicted in Table 3 and Figure 5a. Furthermore, Figure 5b
illustrates the variations in different evaluation metrics for impact craters with a diameter
larger than 200 m under different IoU threshold conditions.
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Table 3. Identification of 8 testing zones.

Region Longitude Latitude GT DR TP FP FN

1 55◦W–55.5◦W 45◦N–48◦N 3442 3933 3037 896 405

2 55.5◦W–56◦W 45◦N–48◦N 3613 4306 3258 1048 355

3 56◦W–56.5◦W 45◦N–48◦N 3351 4011 3018 993 333

4 56.5◦W–57◦W 45◦N–48◦N 3373 3886 2998 888 375

5 57◦W–57.5◦W 45◦N–48◦N 3259 3631 2839 792 420

6 57.5◦W–58◦W 45◦N–48◦N 2999 3515 2693 822 306

7 58◦W–58.5◦W 45◦N–48◦N 3118 3404 2715 689 403

8 58.5◦W–59◦W 45◦N–48◦N 3042 3374 2631 743 411
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As depicted in Table 3 and Figure 5a, it is clear that Region 2 identified the most
impact craters and achieved the highest recall rate among all regions—an impressive
90.17%. However, its precision value is 75.56%. While Region 6 echoes a recall rate akin
to Region 2 and Region 3, its precision surpasses both. Region 7 exhibited the highest
precision of all regions—79.76%. However, its recall rate was relatively lower, suggesting
that while Region 7 excels in accurate crater identification, several craters might have
eluded detection.

Figure 5b illustrates the variation in evaluation metrics within the IoU threshold
continuum from 0.2 to 0.86, incremented by 0.03. The experimental results demonstrate
a similar overall trend in the evaluation metrics. At an IoU threshold of 0.2, the recall
rate is 96.84% and the precision value is 90.52%. The curves show minimal fluctuations
within the IoU threshold spectrum of 0.2 to 0.6. However, around the IoU threshold
of approximately 0.68, a pronounced dip becomes evident in all trajectories. When the
IoU threshold escalates to 0.8, the recall rate and precision value drop to around 45%.
As the IoU threshold increases, the alignment standard between DR data and GT data
improves and the number of positive samples decreases, resulting in fewer data points on
the evaluation curve.

3.2. Identification of the CE-5 Region

This segment pertains to predicting impact craters in the CE-5 region, utilizing the
Kaguya TC morning map. The region in the red box in Figure 6a represents the CE-5
region. Within this region, when the confidence score threshold was set at 0.5, the predicted
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number of impact craters reached 197,285, of which 50,492 have diameters exceeding
200 m. Elevating the confidence score benchmark to 0.8 trims the predicted crater total to
187,101, where 48,835 surpass the 200 m diameter mark. This indicates that craters falling
below the 200 m diameter threshold form roughly three-fourths of the entire collection.
The visualization of mapping DR (predicted impact crater) data with a confidence level
exceeding 0.8 onto the Kaguya TC morning map is shown in Figure 6.
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From Figure 6c, the improved Faster R-CNN model accurately detects impact craters
with more regular shapes and achieves good results in less prominent impact craters. This
suggests that utilizing the Kaguya TC morning map enables the effective extraction of
crater features, resulting in more accurate crater identification. It is worth noting that this
study defaults to using DR data in the CE-5 region with confidence scores exceeding 0.8.

3.3. Chronological Analysis of Selected Geological Units in the CE-5 Region

This section includes information about the number of impact craters in the Im1,
Im2, Em3, and Em4 geological units within the CE-5 region and chronological analysis.
The number and area information of impact craters with different diameter ranges within
each geological unit are shown in Table 4. For the impact craters located at the geological
boundary, it is considered that the center of mass locates which geological unit and impact
craters belong to that geological unit. N<200 m represents the number of impact craters with
a diameter less than 200 m, N200 m−1 km represents the number of impact craters with a
diameter ranging from 200 m to 1 km, and N>1 km represents the number of impact craters
with a diameter larger than 1 km.

Table 4. Number and area of impact craters in the Im1, Im2, Em3, and Em4 geological units.

Geological Unit N<200 m N200 m−1 km N>1 km Total Area (km2)

Im1 11, 996 5346 21 17, 363 4437.37

Im2 58, 142 26, 800 216 85, 158 25, 069.69

Em3 8704 1875 10 10, 589 2786.20

Em4 53, 596 11, 690 39 65, 325 16, 790.08

Based on the data from Table 4, the Im2 geological unit encompasses the most extensive
area, leading to the highest count of detected meteorite craters within it. Specifically, there
were 216 impact craters that exhibited a diameter larger than 1 km. On the other hand,
the Em3 geological unit, being the smallest area, registered the lowest count for craters
exceeding 1 km in diameter, with a total of just 10. Furthermore, following Xie et al.’s new
chronology based on unbiased impact crater density, chronological analysis was carried
out for the geological units. The results are depicted in Figure 7.

In Figure 7, the red blocks depict the measured SFD, with the starting point of the black
line indicating the minimum fitting diameter for the SFD. Among these geological units,
the model age of Im2 geological unit is the oldest, estimated to be around 3.78 Ga, and its
fitted cumulative crater diameter density is about 0.0059/km2. For the Em4 geological unit,
the best-fitted cumulative density of crater diameters is 0.0016/km2, with an age estimation
of 2.07 Ga. This is very close to the unbiased impact crater density derived by Xie et al. [63]
(0.0015/km2) and with the sample age determined by Li et al. [48] (2.03 Ga). The model age
results obtained using the automated crater recognition technique align closely with these
studies, attesting to the accuracy of this dating methodology. Experimental results indicate
that the Im1 and Im2 geological units are comparatively younger than the Em3 and Em4
units. We will further discuss the dating results of these four geological units in Section 4.4.



Remote Sens. 2024, 16, 344 15 of 24
Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 7. Chronological analysis results for the geological units (a) Im1, (b) Im2, (c) Em3, and (d) 
Em4. 

4. Discussion 
4.1. New Evaluation Metrics 

In the model evaluation section of Section 3.1, it is essential to consider the unique 
aspects of evaluating impact craters. During the labeling process, some manually marked 
impact craters, especially the tiny ones and those marked due to oversight, might have 
been inadvertently excluded from the labels. These factors were not considered in the 
evaluation, impacting the recall rate and precision of the assessment. Furthermore, despite 

Figure 7. Chronological analysis results for the geological units (a) Im1, (b) Im2, (c) Em3, and (d) Em4.

4. Discussion
4.1. New Evaluation Metrics

In the model evaluation section of Section 3.1, it is essential to consider the unique
aspects of evaluating impact craters. During the labeling process, some manually marked
impact craters, especially the tiny ones and those marked due to oversight, might have been
inadvertently excluded from the labels. These factors were not considered in the evaluation,
impacting the recall rate and precision of the assessment. Furthermore, despite implement-
ing overlapping regions to mitigate the truncation effect on impact craters, truncation could
still influence evaluation, particularly at the edges of the entire testing region.
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The detection results in the testing region show that impact craters with diameters
between 100 m and 200 m are the majority. Regrettably, the impact craters within this
diameter range were prone to oversight during manual labeling. Therefore, a new formula
has been introduced in the experiment to redefine the recall rate and precision values for
impact craters with diameters exceeding 100 m. To diminish discrepancies in assessment, a
reevaluation was conducted on the relationship between the number of FP impact craters
with predicted confidence scores surpassing 0.99 and various evaluation criteria. N99 repre-
sents the number of FP impact craters with predicted confidence scores exceeding 0.99. The
FP impact craters with confidence scores exceeding 0.99 are illustrated in Figure 8b, where
yellow circles delineate TP data and green circles outline impact craters with confidence
scores above 0.99 among FP. The formulas for the redefined recall rate and precision are
expressed as follows.

Recallnew =
TP + N99

FP
× FN × Recall

TP + FN
, (22)

Precisionnew =
TP + N99 × Recall

TP + FP
. (23)
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Upon examining the green circles in Figure 8b, it is evident that a majority of FP with
a confidence score of 0.99 or higher are actually true-positive data. Most of these impact
craters have diameters below 200 m, and number 1229. The new recall rate for impact
craters with diameters above 100 m is 90.45%, and the new precision value is 80.87%. This
signifies an improvement of 1.82% in recall rate and a 3.62% increase in precision compared
to the original values. For instances where the confidence score dips below 0.99, there
exists the likelihood of identifying genuine impact craters, TP. This suggests significant
optimization potential in terms of impact crater labeling and evaluation.

4.2. Identification Performance in the Test Region

We used a comparison between two regions to analyze the prediction results. The
first region spans from 55◦W to 56.5◦W and from 46◦N to 47◦N, which is characterized by
relatively flat terrain. The second test region ranges from 56.5◦W to 58◦W and from 45.5◦N
to 46.5◦N, and it features relatively complex terrain. Figure 9 displays the detection findings
for these two zones, and Table 5 summarizes the identification results across both regions.
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Figure 9. Recognition results for the two test regions. (a) Original TC morning view. (b) Predictive ef-
ficacy of detected impact craters compared to actual ones. The IoU threshold for determining positive
samples for DR and GT data was set to 0.5. Blue circles indicate undetected actual impact craters, red
circles show newly identified predicted impact craters, and yellow circles outline accurately predicted
impact craters that match actual ones. (c) Localized display of the two testing regions.

Table 5. The recognition results for the two test regions.

Region Diameter (m) GT DR TP FN FP Recall Precision Recallnew Precisionnew

1 100 3321 4049 3024 297 1035 91.06% 74.50% 92.50% 78.66%
2 100 3218 3848 2928 290 920 90.99% 76.09% 92.39% 79.86%

The recognition results in Figure 9a,b show that these two regions’ newly identified
impact craters tend to have smaller diameters. Meanwhile, relatively larger and more
distinct craters are almost all successfully detected. Comparing the data for the two
regions in Table 5, Region 1 exhibits a recall rate 0.07% higher than that of Region 2, but
with 1.59% lower precision. Under the revised evaluation criteria, the recall rate for both
regions increases by about 1.4%, with precision value rising roughly 4%. Region 1 achieved
slightly higher recall due to the relatively flat terrain. However, the abundance of newly
identified impact craters contributes to a lower precision in identification. Conversely,
in the comparatively intricate terrain of Region 2, the count of newly identified impact
craters is lower, resulting in a higher precision. The disparities in detection results between
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these two regions are minor, indicating commendable recognition efficacy in simple and
moderately complex terrains.

4.3. Density Analysis of the CE-5 Region

This section involves a comparative analysis of the DR data in the CE-5 region with
the impact crater data presented by Jia et al. [47]. The objective is to analyze the number
of impact craters within different diameter ranges and the spatial distribution density of
impact craters in the CE-5 region. When calculating the density of impact craters in the CE-5
region, Jia et al. used a method based on a search radius to count and calculate the crater
density. Slightly deviating from Jia’s method, this experiment divided the CE-5 region into
40 segments along the longitude direction, each spanning 0.5◦W, and 20 segments along
the latitude direction, each spanning 0.2◦N. This division resulted in 800 smaller regions
within the CE-5 region. Count the number of impact craters in each small region, calculate
the area of each region using surface integration, and then calculate the spatial distribution
density of impact craters. In the experiment, an impact crater is considered to be located
within a specific region if its central coordinates fall within that region.

Figure 10a compares impact crater counts across various diameter ranges. Specifically,
within the 100 to 200 m range, the DR data surpass Jia’s data by 29,748. In the 200 m
to 1 km range, the DR data exceed Jia’s by 16,462. For impact craters with a diameter
exceeding 1 km, the DR data outnumber Jia’s by over a hundred. Furthermore, in the
CE-5 region, there are 338 impact craters with a diameter exceeding 1 km in the DR
data. In comparison, Robbins’s lunar impact crater catalogue data [14] in the same range
shows 357 impact craters. This indicates a close alignment between the DR data by the
improved Faster R-CNN and Robbins’s data for impact craters with a diameter exceeding
1 km. Figure 10b,d represent the spatial distribution density of impact craters exceeding
200 m in diameter within the CE-5 region, with Figure 10b based on Jia’s database and
Figure 10d based on the DR data. In the Em4 geological unit, the DR’s density closely
aligns with Jia’s marked density. In contrast, in other regions, the DR’s density exceeds
that of Jia. Figure 10c,d show the spatial distribution density of impact craters with
diameters exceeding 100 m and 200 m, respectively, in the CE-5 region DR data. Within the
longitude range of 58◦W to 69◦W and latitude range of 41◦N to 45◦N, the heatmap colors in
Figure 10c,d remain relatively stable, suggesting a balance between the number of impact
craters exceeding 200 m in diameter and those in the 100 to 200 m range. However, in the
region spanning from 49◦W to 58◦W and 41◦N to 45◦N, there is a more noticeable color
variation in both Figure 10c,d, indicating a relatively higher number of impact craters in
the 100 to 200 m range. Additionally, the impact crater densities for the entire CE-5 region
were calculated. The spatial distribution density for impact craters with diameters ranging
from 100 m to 200 m is approximately 2.5706/km2. For craters with diameters ranging from
200 m to 1 km, the distribution density is approximately 0.9016/km2. For impact craters
with diameters exceeding 1 km, the distribution density is approximately 0.0063/km2.
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Figure 10. (a) Comparison of the number of impact craters in different diameter ranges between the
DR data and the Jia’s data in the CE-5 region. (b) Spatial distribution density of impact craters with
diameters exceeding 200 m from Jia’s data. (c) Spatial distribution density of DR data with diameters
exceeding 100 m in the CE-5 region. (d) Spatial distribution density of DR data with diameters
exceeding 200 m in the CE-5 region.

4.4. Chronological Analysis of CE-5 Geological Units

This section compares the results of the chronological analysis within the Im1, Im2,
Em3, and Em4 geological units in the CE-5 region with the work of Jia [47] and Wu [5]. They
utilized Neukum’s method [60] to analyze the model age of the geological units. This study
used the method of Xie et al. to correct for biases in impact crater density, thus deriving
the unbiased impact crater density within the geological units, and this method of N(1)
is represented by
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(1) when modeling production functions (PFs) [63]. The comparative
N(1) (Table 6) and model age (Table 7) of the geological units of Im1, Im2, Em3, and Em4
are shown.

From Tables 6 and 7, the N(1) obtained by Neukum’s method for the geological unit
data in this study is larger than that of Jia and Wu. These higher values are primarily
from the increased impact craters identified through the automated recognition approach.
The
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(1) value in the Im1, Em3, and Em4 geological
units fall between the values reported by Jia and Wu. Conversely, in the Im1 and Em3
geological units, the chronological dating results of this study indicate an older age than
those reported by Jia and Wu. This discrepancy might be attributed to the use of different
chronology systems. Considering that the fitting diameter might affect the dating results,
the same diameter fitting range is used for the Im1 geological unit here for comparison with
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previous works. The findings are in close agreement with the analysis in Table 6. In the Im1
and Im2 geological units, the relative age data obtained in this study align closely with Wu’s
research. The age estimates for these two units are, on average, about 0.25 Ga higher than
Wu’s. Conversely, for the Em3 and Em4 geological units, the results of this study are more
in line with those presented by Jia et al. Within the Em3 geological unit, our assessments are
roughly 0.28 Ga higher than Jia’s, while for the Em4 unit, the age values remain consistent.
The dating results of the Em4 geological unit are highly consistent with the lead–lead
dating results of the basalt debris returned by Li et al. [48]. This validates the effectiveness
and reliability of the dating technique for the density of unbiased impact craters, further
indicating a strong correlation between radioactive isotope dating and dating of the density
of these unbiased impact craters, deepening researchers’ understanding of the sediment and
characteristics of impact events, and providing a reference for the pre-Nectarian, Nectarian,
Imbrian, Erasthenian, and Copernican systems on the moon during lunar history.

Table 6. N(1) for the Im1, Im2, Em3, and Em4 geological units.

Geologic Unit
N(1)

(×10−3km−2;
This Study)
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Table 7. Model ages for the Im1, Im2, Em3, and Em4 geological units.

Geologic
Unit

Area
(km2)

Model Age
(Ga; This Study)

Model Age
(Ga; Jia et al. [47])

Model Age
(Ga; Wu et al. [5])

Im1 4437.37 3.68+0.02
−0.029 3.23+0.035

−0.042 3.48+0.03
−0.04

Im2 25,069.69 3.78+0.0054
−0.0092 3.27+0.022

−0.025 3.47+0.02
−0.02

Em3 2786.20 2.82+0.26
−0.28 2.54+0.41

−0.50 2.06+0.24
−0.24

Em4 16,790.08 2.07+0.079
−0.12 2.07+0.026

−0.027 1.49+0.17
−0.17

5. Conclusions

In this study, we demonstrate the performance of an improved Faster RCNN in
identifying impact craters on the Kaguya TC morning map and use an unbiased crater
density approach to date four geological units within the CE-5 region. The results show
that the trained improved Faster R-CNN is effective in identifying impact craters with
diameters exceeding 200 m on the Kaguya TC morning map (resolution 7.403 m/pixel).
The model fusion strategy was used to process the identified impact craters. For craters
with a diameter exceeding 200 m, the recall rate is 96.33% and the precision value is 90.19%.
We compared the results to previous work. Fairweather et al. [41] used LRO NAC images
to identify impact craters of 100 m–1 km with a recall rate of 89.0% and precision of 67.0%.
Mao et al. [28] used DEM and LRO WAC image recognition, with a recall rate of 85.0% and
precision of 81.4%. La Grassa et al. [42] used Robbins’s lunar catalogue and lunar mosaic
LROC mission orthographic projection tiles to create a dataset. The results obtained using
the super-resolution reconstruction method when the scale factor (SF) is 2 are that the recall
rate is 90.3% and the accuracy is 85.9%. Different algorithms and data processing methods
used, as well as different datasets, will lead to different results. Although we did not have
a method to control the comparison variables, the results show that we have achieved
good results in identifying impact craters using new maps, improved algorithms and data
processing methods, as well as chronological analysis of unbiased crater densities for the
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Im1, Im2, Em3 and Em4 geological units within the CE-5 region. The analysis shows that
the Im2 geological unit has the oldest model age, estimated to be approximately 3.78 Ga. In
contrast, the Em4 geological unit has the youngest model age of approximately 2.07 Ga.
Notably, the age determination of the Em4 unit is in good agreement with the radiometric
dating of the CE-5 region.

In addition, we provide a complete workflow for automatic identification of impact
craters and discovered a total of 187,101 impact craters in the CE-5 region, which is 12,808
more than the database of Jia et al. [47]. The spatial distribution density of impact craters
within the range of 100 m to 200 m is approximately 2.5706/km2. For impact craters with
diameters ranging from 200 m to 1 km, the spatial distribution density is approximately
0.9016/km2.

This study focuses on the automatic identification of small impact craters (diameter < ~1 km)
in the CE-5 region. There are limitations in using DEM to identify small impact craters. It
will be possible to combine DEM and image reconstruction methods [65] to identify impact
craters in the future.
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