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Abstract: Maize gross primary productivity (GPP) contributes the most to the global cropland
GPP, making it crucial to accurately estimate maize GPP for the global carbon cycle. Previous
research validated machine learning (ML) methods using remote sensing and meteorological data to
estimate plant GPP, yet they disregard vegetation physiological dynamics driven by phenology. Leaf
nitrogen content per unit leaf area (i.e., specific leaf nitrogen (SLN)) greatly affects photosynthesis.
Its maximum allowable value correlates with a phenological factor conceptualized as normalized
maize phenology (NMP). This study aims to validate SLN and NMP for maize GPP estimation
using four ML methods (random forest (RF), support vector machine (SVM), convolutional neutral
network (CNN), and extreme learning machine (ELM)). Inputs consist of vegetation index (NDVI),
air temperature, solar radiation (SSR), NMP, and SLN. Data from four American maize flux sites
(NE1, NE2, and NE3 sites in Nebraska and RO1 site in Minnesota) were gathered. Using data from
three NE sites to validate the effect of SLN and MMP shows that the accuracy of four ML methods
notably increased after adding SLN and MMP. Among these methods, RF and SVM achieved the
best performance of Nash–Sutcliffe efficiency coefficient (NSE) = 0.9703 and 0.9706, root mean square
error (RMSE) = 1.5596 and 1.5509 gC·m−2·d−1, and coefficient of variance (CV) = 0.1508 and 0.1470,
respectively. When evaluating the best ML models from three NE sites at the RO1 site, only RF and
CNN could effectively incorporate the impact of SLN and NMP. But, in terms of unbiased estimation
results, the four ML models were comprehensively enhanced by adding SLN and NMP. Due to
their fixed relationship, introducing SLN or NMP alone might be more effective than introducing
both simultaneously, considering the data redundancy for methods like CNN and ELM. This study
supports the integration of phenology and leaf-level photosynthetic factors in plant GPP estimation
via ML methods and provides a reference for similar research.

Keywords: maize; GPP; machine learning; specific leaf nitrogen; phenology

1. Introduction

Gross primary production (GPP) represents the amount of organic matter and energy
through photosynthesis per unit time and area in territorial ecosystem [1]. The accumula-
tion of GPP in ecosystems is a process through which atmosphere carbon dioxide is fixed
by plant to form organic carbon [2]. GPP is a direct basis for reflecting the productivity
of territorial ecosystem and carbon reserves [3] and also the key factor to realize global
carbon balance [4]. The data from the Food and Agriculture Organization (FAO) show that
the global cropland area in 2020 was 1576 million hectares, accounting for about 12.09%
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of the world’s total land area [5]. This proportion is expected to increase in the future
to accommodate the food demand with an increasing population. Compared with other
natural ecosystems, the cropland accounts for 9.4% of the global total GPP [6], of which
maize GPP is the largest proportion (14.9% of global cropland GPP) [7]. Therefore, the
accurate estimation of daily maize GPP plays a significant role in evaluating the global
carbon cycle.

Several GPP estimation models have been developed and can be divided into three
categories: vegetation index (VI)-based models, process-based models, and light use
efficiency (LUE) models. VI-based models employ a purely statistical approach to estimate
GPP. For example, Sims et al. [8] utilized variables such as land surface temperature
(LST) and enhanced vegetation index (EVI). Nonetheless, models based on statistical
relationships between variables and GPP may not be optimally adaptable for estimation
in varying conditions, as the function developed for one site may not be applicable to
another site [9]. Process-based models comprehensively consider the integration of soil,
vegetation, and the atmosphere to dynamically simulate the physiological process of a
plant [10]. They are distinguished by their profound recognition of the mechanism of
vegetation growth and estimate GPP mechanistically. However, due to the scarcity and
quality of available vegetative parameters and the intricate nature of the model process,
it is difficult to generalize process-based models. LUE models use the maximum of LUE
(LUEmax) [11] for GPP calculation and consider the effect of environmental conditions
such as water, temperature, and phenology on vegetation photosynthesis [12–14]. However,
LUE models greatly rely on environmental factors. Water pressure variables like vapor
pressure deficit (VPD) cannot adequately characterize the effects of water availability on
vegetation production [15]. In addition, VIs (e.g., the normalized difference vegetation index
(NDVI) [16]) as a proxy for the fraction of photosynthetically active radiation (FPAR) will
also produce errors in the estimation of GPP [15]. In summary, the previously mentioned
methods have their own limitations and face challenges in GPP estimation. Therefore, there
is a crucial need to identify an efficient method for estimating GPP.

Crop growth is affected by growing environments (e.g., air temperature, soil proper-
ties, and field management) and controlled by plant phenology [17,18]. The heterogeneity
of time and space suggests that these factors interact and collectively affect crop production.
Changing factors affecting crop productivity often involve nonlinear processes [19,20].
Additionally, traditional methods fall short in supporting the development of modern
agriculture, which requires abundant data and robust algorithms [21]. Consequently,
machine learning (ML) has gained popularity. The ML method disregards the intricate
process of crop physics; instead, simple inputs and outputs assist in creating effective rela-
tionships and reconstructing knowledge frameworks [22]. It can effectively model complex
processes using extensive field data [23]. Several popular ML methods such as decision
tree (DT), random forest (RF), artificial neural network (ANN), and support vector ma-
chine (SVM) have demonstrated effectiveness in estimating ecosystem productivity [24–27].
Yet, existing studies mainly focus on simply utilizing topography, vegetation indices, and
meteorological data as model inputs for GPP estimation. They ignore the process of GPP
synthesis and lack the influence of plant physiological activation [28].

Ecosystems constantly adjust plant growth to cope with the changing environment,
causing seasonal variations and the formation of transitional periods known as phenology [29].
Changes like earlier leaf growth and delayed crop activity could affect the seasonal climate
and CO2 absorption [30]. Thus, phenology greatly affects ecosystem productivity [31] and
is vital for carbon fixation and photosynthesis. At the leaf scale of a crop, chlorophyll (Chl)
content per unit leaf area is closely related to the photosynthetic rate [32–34]. A previous
study established a close link between GPP and Chl [35]. However, obtaining significant
observed chlorophyll data is challenging [36]. Owing to the close correlation between
leaf Chl content and leaf nitrogen content per unit leaf area (i.e., specific leaf nitrogen
(SLN)) [37,38], the leaf photosynthetic rate is also strongly associated with SLN [39–41].
SLN changes with different phenological stages [42], and the maximum allowable SLN is a
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function of the phenological stage [43–45]. Therefore, it is of great significance to consider
the maximum allowable SLN and plant phenology as factors potentially affecting the leaf
photosynthetic rate in ML methods. This approach is expected to enhance the estimation of
maize GPP via ML methods from a physiological aspect by integrating SLN and phenology.

In this study, widely used meteorological data (i.e., solar shortwave radiation (SSR)
and air temperature (Tair)) and a satellite vegetation index (i.e., NDVI) were selected
to compose the control group of the input combination. The vegetation index is highly
correlated with GPP [46]. GPP is directly controlled by SSR [47]. Air temperature (Tair)
affects the carbon absorption of vegetation [48]. For comparison, input combinations
including SLN and maize phenology (represented by the normalized maize phenology
(NMP)) alone or simultaneously were created. The purpose of this study is to first verify
the importance of SLN and NMP, via RF methods, in improving maize GPP estimation with
different input combinations. Subsequently, the optimal input combination including SLN
or NMP will be applied to validate and compare three other ML methods’ performance
(i.e., the SVM, CNN, and ELM methods). This study attempts to determine the importance
of SLN and NMP in improving GPP estimation via ML methods and provide a reference
for similar research.

2. Materials and Methods
2.1. Study Area

This study acquired MODIS satellite NDVI data at a 250 m spatial resolution. Consid-
ering the limitations posed by mixed pixels (e.g., roads and buildings) at maize-planted
flux sites within this resolution, the research focused on data from four maize flux sites
in America (Figure 1). Data of the NE1, NE2, NE3, and RO1 sites were downloaded from
Fluxnet 2015 (https://fluxnet.org/, accessed on 10 June 2020). The RO1 site is situated in
Minnesota, while the other three sites, NE1, NE2, and NE3, are all located in Nebraska.
The NE1, NE2, and NE3 sites are in close proximity to each other, with a distance of
1.6 km between them. The NE1 site primarily grows maize in continuous year, while the
NE2 and NE3 sites have a maize–soybean rotation. The NE1 and NE2 sites are irrigated,
whereas the NE3 site is completely rainfed. The three sites in Nebraska have comparable
yearly temperatures and deep silt clay soils. Due to water stress in NE3, the maize planting
density is lower compared to the NE1 and NE2 sites. Furthermore, the NE1 and NE2
sites have sufficient soil moisture, ranging from 0.27 to 0.31, while NE3’s soil moisture is
below 0.19 [49]. The details of the NE1, NE2, NE3, and RO1 sites are listed in Table 1. The
locations of these sites and their corresponding MODIS footprints at a resolution of 250 m
are shown in Figure 1. The mixing phenomenon in the MODIS pixel including the flux site
is unobvious. This ensures the rationality of the following analysis.

Table 1. The details of the available daily data at four flux sites.

Site Longitude (◦W) Latitude (◦N) Available Year Data Size

NE1 −96.4766 41.1651
2001, 2002, 2003, 2004,
2005, 2006, 2007, 2008,
2009, 2010, 2011, 2012

1945

NE2 −96.4701 41.1649 2001, 2003, 2005, 2007,
2009~2012 1276

NE3 −96.4397 41.1797 2001, 2003, 2005, 2007,
2009, 2011 987

RO1 −93.0898 44.7143 2009, 2011 214

https://fluxnet.org/
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Project (CSP) of the University of Nebraska (http://csp.unl.edu/public/, accessed on 10 
March 2019). The start of season (SOS) and end of season (EOS) of the RO1 site were de-
fined by Zhang et al. [50] with the reconstructed daily NDVI time series by Zeng et al. 
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2. 

Figure 1. Locations of four flux sites (NE1, NE2, NE3, and RO1) and the MODIS pixel (red lines) with
250 m resolution corresponding to the sites.

2.2. Ground-Measured Data
2.2.1. Solar Shortwave Radiation (SSR), Air Temperature (Tair), and GPP Data

The data set of the RO1, NE1, NE2, and NE3 sites from Fluxnet 2015 provides hourly
Tair, net ecosystem exchange (NEE), ecosystem respiration (Re), and SSR. The daily mean,
minimum, and maximum Tair (i.e., Tmean, Tmin, and Tmax, respectively); NEE; and Re
were computed based on hourly data. GPP was defined by NEE subtracting Re. The
emergence and harvest days of three NE sites were obtained from the Carbon Sequestration
Project (CSP) of the University of Nebraska (http://csp.unl.edu/public/, accessed on
10 March 2019). The start of season (SOS) and end of season (EOS) of the RO1 site were
defined by Zhang et al. [50] with the reconstructed daily NDVI time series by Zeng et al. [51].
Consequently, the NE1, NE2, NE3, and RO1 sites have data availability for 1945, 1276, 987,
and 214 days, respectively (Table 1). GPP ranges for four sites are presented in Figure 2.
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2.2.2. Specific Leaf Nitrogen (SLN)

SLN (gN·m−2(leaf)) is defined as the nitrogen content per unit leaf area [38]. Ground-
measured leaf mass per unit leaf area (LMA, gC·m−2), foliage nitrogen content (FNC,
gN·100 g−1) and foliage carbon content (FCC, gC·100 g−1) at different phenological stages
in the NE1, NE2, NE3 sites were obtained from the Carbon Sequestration Project (CSP)
of the University of Nebraska (http://csp.unl.edu/public/, accessed on 10 March 2019).
Then, SLN was calculated through the formula of SLN = LMA × FNC/FCC. The SLN data
for the RO1 site were retrieved using multiple linear relationships established between
maize phenology and SLN, which were trained using NE1, NE2, and NE3 data (details
in Section 2.4). In the NE1, NE2, and NE3 sites, crop management practices (i.e., plant
populations, herbicide and pesticide applications, irrigation) have been employed in ac-
cordance with standard best management practices (BMPs) for production-scale maize
systems. To account for differences in water-limited attainable yield, plant densities were
lower in rainfed crops at the NE3 site than in irrigated crops at the NE1 and NE2 sites.
Total N fertilizer rates for both the irrigated and rainfed sites were adjusted for residual
nitrate measured in soil samples taken each spring before planting following recommended
guidelines (http://csp.unl.edu/public/sites.htm, accessed on 10 March 2019). Therefore,
it can be inferred that there was hardly any fertilizer stress in the NE1, NE2, and NE3
sites. The computed SLN based on LMA, FNC, and FCC can be a proxy for the maximum
allowable value.

2.3. Remotely Sensed NDVI

Daily NDVI, computed by (ρnir − ρred)/(ρnir + ρred), was applied in this study. ρnir
and ρred are the spectral reflectances of near-infrared and red bands, respectively. MODIS
MOD09GA and MOD09Q1 products downloaded via the Google Earth Engine (GEE)
platform [52] provided daily and 8-day composite spectral reflectances of these two bands
with a 250 m spatial resolution, respectively. Considering that directly computed NDVIs
from the original daily product have a low data quality and those from 8-day composite
product have a low temporal resolution, the DAVIR-MUTCOP method [53] was utilized
to reconstruct daily NDVI time series combining the MODIS daily and 8-day composite
products. It has been demonstrated that the DAVIR-MUTCOP method can effectively
reconstruct daily NDVI time series of varied land cover types, particularly for cropland [53].
The reason why MODIS NDVI data were selected was based on the fact that the ground-
measured data in three NE sites, especially for the maize GPP and SLN measurements,
were only available before 2012. Before 2012, other satellites like Landsat are hard to
use to provide reliable daily NDVI time series considering their low temporal resolution
(16 days for Landsat), although they can provide NDVI data with high spatial resolution
(30 m for Landsat). Additionally, satellites like Sentinel 2 can provide NDVI data with
both acceptable temporal and spatial resolutions (5~10 day and 10 m), but they only obtain
global NDVI data after 2016.

2.4. Relationship between Phenology and the Maximum Allowable SLN

Due to the big gap between satellite pixels (sub- to thousand-meter level) and plant
leaves (up to decimeter level), it is hard to directly retrieve SLN by satellite remote sens-
ing [54,55]. Previous studies have demonstrated that the maximum allowable SLN is a
function of crop phenology [43,56], which is the base for simulating leaf nitrogen in several
crop models, such as DSSAT-CERES [57], APSIM-Maize [58,59], SWAP, and WOFOST [60].
This provides a way to obtain SLN information after crop phenology is quantified. For
maize, the temperature plays a crucial role in controlling phenological development [61,62].
The W-E model (Equations (1)–(4)) [63] was adopted to describe phenological develop-
ment with daily mean air temperature data. To define the start of season (SOS) and the
end of season (EOS) of maize, the method proposed by Zhang et al. [50] was used with
the reconstructed NDVI time series data. Considering that photoperiod and soil condi-
tions (e.g., water status) may change the phenological stage which completely relies on

http://csp.unl.edu/public/
http://csp.unl.edu/public/sites.htm
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the temperature [64,65], a normalized maize phenological development factor of NMP
(Equation (5)) was finally utilized to reflect maize’s phenological development.

f (T) =
2(T − Tbase)

α(Topt − Tbase
)α − (T − Tbase)

2α(
Topt − Tbase

)2α
, Tbase ≤ T ≤ Tup (1)

f (T) = 0, T > Tup or T < Tbase (2)

α =
ln2

ln
[(

Tup − Tbase
)
/
(
Topt − Tbase

)] (3)

PDt =
∫ t

sos
f (T)dt (4)

NMPt = PDt/PDEOS (5)

where t is the growing date; T is the daily mean air temperature; Tbase, Topt, and Tup are
the minimum, optimal, and maximum temperature for maize growth, respectively, and
assumed as 8 ◦C, 28 ◦C, and 36 ◦C, respectively [66].

The NMP and SLN data from the NE1, NE2, and NE3 sites were used to establish the
statistical function between NMP and SLN. Subsequently, the SLN data of the RO1 site was
derived by applying the established function after NMP was obtained using Equations (1)–(5).

2.5. Methodology
2.5.1. ML Methods

Four ML methods, including random forest (RF), support vector machine (SVM),
convolutional neutral network (CNN), and extreme learning machine (ELM), were applied
and compared in this study.

RF [67] is a machine learning algorithm that introduces randomness based on bagging
ensemble learning [68]. It is widely used in the GPP estimation field [69–71]. The bootstrap
method [72] is adopted to randomly and repeatedly extract training sample sets to form a
forest containing m decision trees, thus producing m different results. The result of the final
model is determined according to the voting method. The samples that are not extracted
are called out-of-bag data, which are used to calculate out-of-bag error (OOB) and evaluate
the model’s generalization ability. The generalization error of an RF model comes to reach
the minimum as the number of trees increase. RF is also able to rank the importance of
model input variables. As the importance value increases, the input variable has a greater
impact on the output.

SVM is a tool for multi-dimensional function estimation and widely used in regression
and classification [73–75]. Its principle is to map an input vector to a high-dimensional
space to transform nonlinear regression into linear regression. Its superior generalization
ability compared to traditional statistical methods [76] may make it more feasible to achieve
satisfactory results in cross-site validation. This study chooses the penalty factor (c) and the
parameter of radial basis kernel function (g) as the model parameters to set up the model.

CNN is a deep learning algorithm composed of input, convolutional, pooling, and
fully connected layers [77]. The convolutional layer contains multiple convolutional ker-
nels: a one-dimensional (1-D) convolutional kernel is used for ordinal data such as time
series data, a 2-D convolutional kernel is used for images, and a 3-D kernel is used for video
and 3D images. CNN’s hierarchical structure gives it the flexibility and applicability for a
variety of complex regression tasks [78]. Compared to ANN, CNN demonstrates quicker
learning of complex problems through weight sharing, enabling greater parallelization [79].
However, the accuracy of CNN’s learning relies on a large amount of data, often in
the hundreds or thousands of data points. Fortunately, we have enough training data
(N = 4208) to make up for that.
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ELM is a new type of feedforward neutral network algorithm, consisting of input,
hidden, and output layers [80]. The connection weight between the input layer and the
hidden layer as well as the neuronal threshold value of the hidden layer are not adjusted
after setting. To optimize the model, just the number of neurons in the hidden layer and
the activation function need to be adjusted. Additionally, ELM converges significantly
faster than traditional algorithms because there is no need for iterative learning [81]. In
comparison to traditional networks requiring training all parameters, ELM simplifies the
attainment of a global optimal solution using random parameters [81].

2.5.2. Input Variable Combinations

Vegetation photosynthesis is regulated by the soil, the atmosphere, and plant physiol-
ogy. At the vegetation canopy scale, vegetation photosynthesis is closely related to solar
radiation, air temperature, and nitrogen validity [82]. In the ecosystem level, vegetation
photosynthesis is affected by climate, making the plant form different phenological stages.
VIs can greatly reflect the canopy characteristics of vegetation and thus are widely used
in models to estimate GPP. Based on previous research [27,74,83,84], NDVI, Tmean, Tmin,
Tmax, SSR, SLN, and NMP were selected as input variables. Different input combinations
were considered to evaluate the importance of input variables (Table 2). SLN and NMP
characterizing the physiology of vegetation were introduced in ML models (A1, A2, A3)
with the aim of enhancing model performance in contrast to existing studies. In this study,
A1 and A2 aimed to test if individually considering SLN or NMP positively affected maize
GPP prediction. A3, considering both SLN and NMP together, was utilized to compare
with A1 and A2. A3 aimed to explore how including NMP when SLN was already an input
(A1) or considering SLN when NMP was already an input (A2) impacts model accuracy.
It also assessed whether combining both inputs enhances or reduces the accuracy of the
original model (A0).

Table 2. Input variable combinations for comparison.

Symbol Input Variable Combination

A0 NDVI + Tmean + Tmin + Tmax + SSR
A1 NDVI + Tmean + Tmin + Tmax + SSR + SLN
A2 NDVI + Tmean + Tmin + Tmax + SSR + NMP
A3 NDVI + Tmean + Tmin + Tmax + SSR + SLN + NMP

2.5.3. The Importance of SLN and NMP

The importance of all input variables was determined using the RF method based on
the combination of A3. Additionally, to further verify the importance of NMP and SLN in
the ML model, A0 and A3 were used for a comparison to evaluate the effectiveness based
on the RF method from site to site. The NE1, NE2, and NE3 sites are in close proximity to
each other, but they vary in terms of data size and moisture conditions. All data from three
sites were selected to verify the role of SLN and NMP. The three sites are separated, and
site-to-site verification is chosen between adjacent sites. The purpose is to evaluate whether
the role of SLN and NMP is still maintained despite such differences. Three scenarios were
set up for verification as follows:

(1) NE1 for training and NE2 for testing: these two sites exhibit similar moisture levels,
yet possess varying data quantities, and the larger data set is utilized to validate the
smaller data set.

(2) NE1 for training and NE3 for testing: the water conditions at the two sites differ, and
the smaller data set is validated using the larger data set.

(3) NE3 for training and NE2 for testing: due to the varying water conditions at the two
sites, the smaller data set is employed to validate the larger data set.
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2.5.4. Comparison of Different ML Methods

First, the selected four ML methods were trained and tested with the data from the
NE1, NE2, and NE3 sites. A comparison of input variable combinations was conducted:
70% of data at three NE sites are randomly selected as the training set and the other 30% as
the testing set, and this process runs 1000 times. Then, in order to evaluate ML’s robustness,
the trained models based on the data from all three NE sites were further tested using
the data from the RO1 site. For the other three ML methods (SVM, CNN, and ELM), A0
was also chosen as the control combination. When adding SLN and NMP (A1, A2, A3), a
combination was selected for each ML method that results in the highest model accuracy
during training and testing in three NE sites for RO1 validation. As a result, each ML
method has two combinations of input variables for validation at the RO1 site.

2.6. Evaluation Metrics

Nash efficiency coefficient (NSE, Equation (6)), root mean square error (RMSE,
Equation (7)), bias (Equation (8)), coefficient of variation (CV, Equation (9)), unbiased
RMSE (URMSE, Equation (10)), and the slope of the fitting line between ground-measured
and estimated GPP were used to evaluate different models’ performance. The closer NSE
and slope are to one, and the closer RMSE, Bias, CV, and URMSE are to zero, the better the
performance of the model.

NSE = 1 −
∑n

i=1
(
ym,i − yg,i

)2

∑
(
ym,i − yg,i

)2 (6)

RMSE =

√
∑n

i=1
(
ym,i − yg,i

)2

n − 1
(7)

Bias =
∑n

i=1
(
ym,i − yg,i

)
n

(8)

CV =
n × RMSE

∑n
i=1 yg,i

(9)

URMSE =

√
RMSE2 − Bias2 (10)

where ym,i and yg,i are, respectively, the estimated and ground-measured GPP values of
i model, and n is data size.

A list of acronyms and the corresponding explanations for input variables, ML meth-
ods, and evaluation metrics are presented in Appendix A.

3. Results
3.1. Relationship between Phenology and the Maximum Allowable SLN

After maize’s phenological development represented by NMP was obtained using
Equations (1)–(5), a polynomial function was applied to quantitatively construct the rela-
tionship between SLN and NMP based on the ground-measured data from the NE1, NE2,
and NE3 sites (Figure 3). The curve shape of the fitting line in Figure 3 is consistent with
the set in crop models, for example, the WOFOST maize crop model [60]. By controlling
the same fitting parameters in Figure 3, the polynomial function was also used for the
RO1 site.
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Figure 3. SLN function based on the relationship between SLN and NMP with sufficient data from
sites NE1, NE2, and NE3. The dots represent the original data. The hollow circle represents the
averaged SLN at an interval of 0.03 NMP.

3.2. Comparison of Input Variable Combinations Based on RF
3.2.1. RF Model Calibration and Input Variable Importance

Data from the NE1, NE2, and NE3 sites were used to decide two parameters of RF
(mtree: the number of decision trees; ntry: the number of preselected variables for a tree)
considering NDVI, SSR, Tmin, Tmax, Tmean, SLN, and NMP as inputs. The gradient of
mtree is set to 0~1000, and ntry is set to 1, 2, 3, 4, 5, 6, and 7, respectively. The out-of-bag
error was characterized by mean square error (Figure 4).
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combinations. (b) Importance of input variables in NE1, NE2, and NE3 sites for GPP based on RF.

From Figure 4a, as mtree increased, the model became more stable, but the computation
time also increased. Thus, mtree was set to be 500. MSE had a low value when ntry was set
to be 1~3. Considering that seven variables were included in total and based on a previous
study [85], ntry was set to be 3. Figure 4b illustrates the importance ranking of input
variables in the RF model when mtree = 500 and ntry = 3. SSR played the most critical role,
accounting for about 43.3% of the total importance. This is easy to understand since SSR
is the energy source for plant photosynthesis. The second was NDVI, whose proportion
was 21.8%. The time series of NDVI effectively captures the changes in vegetation growth
during various phenological stages [86]. Although temperature affects vegetation growth
by controlling processes such as phenological development and enzyme activity [87],
three kinds of temperature (i.e., Tmin, Tmax and Tmean) showed the weakest role, only
accounting for 8.2%, 5.7%, and 5.5%, respectively. Interestingly, SLN and NMP also were
proved to have considerable effects on the RF model, and their proportions were greater
than the air temperature. As Figure 4b illustrates, these two factors played key roles in
GPP estimation.
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3.2.2. RF Performance in NE1, NE2, and NE3 Sites with Different Input
Variable Combinations

Input variable combinations in Table 2 were applied to test the performance of the
RF model (mtree = 500, ntry = 3) in three NE sites (70% of data for training, and the other
30% for testing with random selection) by running it 1000 times. The test results are
shown in Figure 5. In terms of mean value for comparison, A0 had the lowest accuracy
(NSE = 0.9574, RMSE = 1.8671 gC·m−2·day−1, Bias = −0.0174 gC·m−2·day−1, CV = 0.1805).
In contrast, when SLN and NMP alone or their combination were added as model inputs,
the distribution plot of NSE gradually moved to the right side while the plots of RMSE
and CV shifted to the left side with lower uncertainty. A3 obtained the highest accuracy
(NSE = 0.9703, RMSE = 1.5596 gC·m−2·day−1, Bias = 0.0029 gC·m−2·day−1, CV = 0.1508).
Thus, owing to the direct influence of SLN and NMP on carbon fixation such as maize
leaf’s photosynthetic rate, they both boosted the performance of models.
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Figure 5. Distribution of evaluation metrics of test results for different combinations (A0: (a,e,i,m);
A1: (b,f,j,n); A2: (c,g,k,o); and A3: (d,h,l,p)) using RF in NE1, NE2, and NE3 sites for 1000 running
times. µ is the mean value and σ is standard error. The line is the fitted normal distribution curve.
The column represents the data number.

Data combinations of A0 and A3 (the minimum and maximum in Figure 5) were
selected to further validate the effectiveness of NMP and SLN for RF among three NE
sites (one site for training with another site for testing, as described in Section 2.5.3). In
Figure 6, the estimated value was close to the ground-measured value when NMP and SLN
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were introduced in the model, whether for the NE1, NE2, or NE3 sites. They had higher
NSE and lower RMSE and CV values. Moreover, the slope of the fitting line was closer
to 1, and the intercept was closer to 0. In terms of NSE, RMSE, and CV, Figure 6a had the
best model performance, as both NE1 and NE2 sites were contiguous and irrigated maize
cropland and had similar growing environments. Figure 6e,f demonstrates the lowest
accuracy in performance for A0 and A3 combinations, primarily due to the difference in
growing environments (e.g., soil moisture) between the rainfed NE3 site and the irrigated
NE2 site. Another contributing factor to the weak correlation in Figure 6e is the relatively
small sample size for the NE3 site with a narrow GPP range (N = 987), making it difficult to
accurately estimate GPP for the NE1 site with a wide GPP range (N = 1945).

Remote Sens. 2024, 15, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 6. Scatter plots of A0 and A3 combinations, respectively, for NE1, NE2, and NE3 sites. (a,b): 
training in NE1 site and testing in NE2 site; (c,d): training in NE1 site and testing in NE3 site; and 
(e,f): training in NE3 site and testing in NE2 site. The red line is the fitting line between estimated 
GPP (GPPm) and ground-measured GPP (GPPg), and the dashed line is the 1:1 line. 

3.2.3. RF Performance in RO1 Site while Trained in NE1, NE2, and NE3 Sites 
RF performance was further validated in the RO1 site by training it with all data from 

the three NE sites (mtree = 500 and ntry = 3). The growing environments, including soil 
texture and moisture, weather, etc., were significantly different between the RO1 site and 
the three NE sites. It will further demonstrate whether the RF method trained by three NE 
sites could maintain the effectiveness when it was applied to other unknown sites. The 
validation results of four input variable combinations (Table 2) are shown in Figure 7. 
Although the estimated GPP of all combinations had a good linear relationship with 
ground-measured GPP (slope = 1.008~1.070 and NSE = 0.709~0.758), they showed a slight 
overestimation of GPP for the RO1 site (Bias = 0.609~1.464). Ground-measured GPP values 
of the three NE sites ranged from 0 to 33 gC·m−2·day−1 while ground-measured GPP values 
of the RO1 site ranged only between 0 and 22 gC·m−2·day−1. The maximum GPP value in 
the NE sites was higher than that in the RO1 site. This might be the reason why the esti-
mated GPP of the RO1 site tended to be overestimated when GPP data from the three NE 
sites were used for model training. In Figure 7, it can be seen that SLN and NMP have 
boosted the model precision in terms of NSE, RMSE, and CV. Therefore, the RF method 
considering SLN and NMP had potential for an unknown site’s GPP estimation. However, 

Figure 6. Scatter plots of A0 and A3 combinations, respectively, for NE1, NE2, and NE3 sites.
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and (e,f): training in NE3 site and testing in NE2 site. The red line is the fitting line between estimated
GPP (GPPm) and ground-measured GPP (GPPg), and the dashed line is the 1:1 line.

3.2.3. RF Performance in RO1 Site While Trained in NE1, NE2, and NE3 Sites

RF performance was further validated in the RO1 site by training it with all data
from the three NE sites (mtree = 500 and ntry = 3). The growing environments, including
soil texture and moisture, weather, etc., were significantly different between the RO1 site
and the three NE sites. It will further demonstrate whether the RF method trained by
three NE sites could maintain the effectiveness when it was applied to other unknown
sites. The validation results of four input variable combinations (Table 2) are shown in
Figure 7. Although the estimated GPP of all combinations had a good linear relationship
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with ground-measured GPP (slope = 1.008~1.070 and NSE = 0.709~0.758), they showed a
slight overestimation of GPP for the RO1 site (Bias = 0.609~1.464). Ground-measured GPP
values of the three NE sites ranged from 0 to 33 gC·m−2·day−1 while ground-measured
GPP values of the RO1 site ranged only between 0 and 22 gC·m−2·day−1. The maximum
GPP value in the NE sites was higher than that in the RO1 site. This might be the reason
why the estimated GPP of the RO1 site tended to be overestimated when GPP data from
the three NE sites were used for model training. In Figure 7, it can be seen that SLN and
NMP have boosted the model precision in terms of NSE, RMSE, and CV. Therefore, the RF
method considering SLN and NMP had potential for an unknown site’s GPP estimation.
However, it was noted that the results of both the A1 and A2 combinations were superior
than that of the A3 combination, particularly for the A2 combination. It was speculated that
there was redundancy in input data considering the explicit polynomial function between
SLN and NMP (Figure 3).
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3.3. Comparison of Different ML Model Performances
3.3.1. Comparison of Model Performance in NE1, NE2, and NE3 Sites

With 70% of data in the NE1, NE2, and NE3 sites as the training set and the other
30% as the testing set, three other ML methods (i.e., SVM, CNN and ELM) also completed
1000 random runs. The parameters of the SVM model were determined by the grid search
and cross-validation approaches [88] (c = 16, g = 1). The parameters of the CNN model were
determined by the stochastic gradient descent with momentum (SGDM) algorithm (max
epochs = 1000, mini batchsize = 1200, initial learn rate = 0.01, learn rate drop factor = 0.5). A
3 × 1 convolution kernel was used in the CNN model. An appropriate activation function
was the key factor to promote arithmetic speed for the ELM model, and a sigmoid activation
function was adopted for calculation (number of hidden layer nodes = 50). In Table 3, the
performance of all four ML methods is shown to be strong for estimating maize’s daily
GPP. The SVM was the best, and the evaluation metrics of NSE, RMSE, and CV were
improved compared with that of RF. CNN had the weakest performance, but its accuracy
was very close to other ML methods. It has also demonstrated that the performance of all
models significantly improved when SLN or NMP was introduced, although various ML
methods showed different sensitivity to them. As for RF and SVM, model performance was
better when SLN and NMP were considered simultaneously. But for CNN and ELM, NMP
had a stronger ability than SLN for model improvement. It was speculated that the data
redundancy in the input variables of SLN and NMP with a fixed polynomial relationship
led to this result. Combining Figure 7 and Table 3, the CNN and ELM methods might be
more sensitive to data redundancy than the RF and SVM methods.
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Table 3. Comparison of the performance of RF, SVM, CNN, and ELM at NE1, NE2, and NE3
sites. The bolded font represents the variable combination that makes the highest accuracy for each
ML method.

NSE RMSE Bias CV

µ σ µ σ µ σ µ σ

RF

A0 0.9574 0.0021 1.8671 0.0432 −0.0174 0.0621 0.1805 0.0046
A1 0.9653 0.0017 1.6848 0.0408 −0.0115 0.0571 0.1627 0.0042
A2 0.9688 0.0015 1.5965 0.0371 −0.0041 0.0535 0.1543 0.0040
A3 0.9703 0.0014 1.5596 0.0342 0.0029 0.0539 0.1508 0.0037

SVM

A0 0.9589 0.0019 1.8357 0.0401 −0.0521 0.0651 0.1772 0.0043
A1 0.9668 0.0016 1.6480 0.0378 −0.0139 0.0556 0.1594 0.0038
A2 0.9699 0.0014 1.5703 0.0353 0.0064 0.0562 0.1517 0.0039
A3 0.9706 0.0014 1.5509 0.0363 0.0163 0.0569 0.1470 0.0038

CNN

A0 0.9529 0.0059 1.9610 0.1151 −0.1513 0.1848 0.1897 0.0112
A1 0.9553 0.0029 1.9103 0.0637 −0.0454 0.1859 0.1847 0.0064
A2 0.9609 0.0029 1.7872 0.0647 −0.0231 0.1535 0.1729 0.0066
A3 0.9597 0.0022 1.8152 0.0490 −0.0031 0.1763 0.1755 0.0051

ELM

A0 0.9578 0.0019 1.8595 0.0390 −0.0004 0.0631 0.1795 0.0041
A1 0.9644 0.0016 1.7069 0.0374 0.0004 0.0567 0.1650 0.0038
A2 0.9681 0.0014 1.6146 0.0338 0.0014 0.8541 0.1560 0.0037
A3 0.9674 0.0015 1.6321 0.0363 0.0013 0.0542 0.1579 0.0039

3.3.2. Comparison of Model Performances in RO1 Site

Based on the results of Section 3.3.1, optimal input variable combinations (bolded font
in Table 3) were selected for four ML methods to validate the model performance using
the RO1 site, while data from three NE sites were used for training. The input variable
combination of A0 was considered the control combination. The ML methods provided
accurate estimates for GPP in the RO1 site, providing sufficient evidence of successful
parameter settings in Section 3.3.1 and ensuring the adequate generalization of the model
(Figure 7 for RF and Figure 8 for SVM, CNN, and ELM). The slope was close to 1 and
the intercept was close to 0. The URMSE was also computed and applied to further ana-
lyze the effect of SLN and NMP on each of the models. The ELM model performed best
(NSE = 0.765, RMSE = 2.549 gC·m−2·day−1, Bias = 0.621 gC·m−2·day−1 and CV = 0.219),
and the performance of the SVM model was rated as the second best (NSE = 0.764,
RMSE = 2.556 gC·m−2·day−1, Bias = 0.523 gC·m−2·day−1 and CV = 0.219) when the
variables SLN and NMP were not taken into account (A0 combination). Despite the inte-
gration of SLN and NMP leading to reduced accuracy in both SVM and ELM, as shown by
the evaluation metrics in Figure 8, the decline is not substantial. Additionally, Figure 8b,d
demonstrate that data points are more tightly clustered to the fitting line. In addition, in
Table 4, it could be also concluded that not all URMSEs of each model varied consistently
with RMSE. For both SVM and ELM, their URMSE decreased with the increase in RMSE.
Thus, the effectiveness of the SVM and ELM algorithms was still evident for site-to-site
validation. The consideration of NMP brought CNN the best accuracy (NSE = 0.766,
RMSE = 2.539 gC·m−2·day−1, Bias = 0.781 gC·m−2·day−1 and CV = 0.218), and its URMSE
also decreased. The accuracy of RF significantly increased when considering SLN and NMP
simultaneously, as shown in Figure 7d, with its URMSE reaching the second lowest level.
Moreover, all URMSE values decreased compared to the RMSE, and ELM had the lowest
URMSE. Therefore, one the one hand, based on the NSE, RMSE, and CV, the additional
input variables of SLN and NMP supported the RF and CNN algorithms in enhancing the
accuracy. One the other hand, according to the URMSE, all the ML models maintained
robustness with the supplement of SLN and NMP.
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Table 4. The comparison of RMSE and URMSE for ML methods introducing SLN and NMP or not
introducing them in RO1 site. The unit is gC·m−2·day−1.

RMSE URMSE

RF
A0 2.837 2.771
A3 2.654 2.213

SVM
A0 2.556 2.502
A3 2.656 2.280

CNN
A0 2.629 2.627
A2 2.539 2.417

ELM
A0 2.549 2.472
A2 2.571 2.168

4. Discussion

In this study, four ML methods were used to predict the maize GPP of three sites in
Nebraska (i.e., the NE1, NE2, and NE3 sites) and one site in Minnesota (i.e., the RO1 site).
Previous ML models simply took processed meteorological data and remote sensing data as
model inputs, without the consideration of influences from phenology and leaf physiology
on photosynthesis. The novelty of this study is integrating maize phenology (represented
by NMP) and leaf photosynthetic rate factor determined by phenology (represented by
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SLN) into the model inputs. The selection of appropriate input variables plays a key role
in GPP prediction [89]. The contribution rate of selected variables and the importance of
SLN and NMP are further verified by ranking the importance of input factors in the RF
method. SSR is the most important contribution factor (43.3%) to GPP, and it is the main
energy source of organisms. There is a direct relationship between photosynthesis and
SSR. The physiological process and photosynthesis of maize are regulated by the light and
thermal effects brought by radiation [90]. The contribution rate of NDVI is 21.8%, and it
is the most commonly used feature factor, which can reflect the plant canopy dynamics.
The greater the amount of green vegetation, the more infrared light it absorbs, leading to a
rise in NDVI [91]. Unexpectedly, the contribution of SLN and NMP factors exceeded that
of air temperature, suggesting that they also had a significant impact on GPP estimates.
Three kinds of temperature also have a certain proportion, reflecting the characteristics of
the climate of the site. In addition, by regulating the physiological process of vegetation,
temperature makes it form a phenological process for maize to a large extent. Therefore,
there is a certain correlation between temperature and phenological factor (NMP). But by
using data from three NE sites in Nebraska, the four ML methods all prove that the positive
effect of NMP on the model (A3) can compensate for the decrease in accuracy caused by
information overlap. Therefore, it is feasible to consider the three temperature and NMP
factors simultaneously.

The role of SLN and NMP were further validated from site to site in Nebraska using
the RF method. The division of the training set and test set was determined by the
respective data volume and water stress differences of the three sites, and the optimal
input variable combination of Section 3.2.2 was used. SLN and NMP both maintained
their positive impact on the model, but to different degrees, depending on the specific soil
and water information at each site. When the other three ML methods (SVM, CNN, and
ELM) were applied to GPP prediction for all three sites in Nebraska, good results were
also obtained (NSE > 0.95 and RMSE < 2 gC·m−2·day−1), and the estimation accuracy of
all methods was similar. Specifically, after considering SLN and NMP, the accuracy of
all models improved. But when SLN and NMP were considered at the same time, SVM
and RF had the greatest improvement, while for CNN and ELM, only when SLN or NMP
was considered separately. CNN uses a more complex model and weight sharing in its
algorithm, which can learn complex problems quickly. BP neural network algorithms use
single hidden layer feedforward neural networks (SLFNs) as universal approximators, but
their parameter optimization is complicated [92]. ELM just solves this problem, and its
hidden layer parameters do not need to be optimized. At the same time, the approximation
capability of SLFNs can be maintained. Therefore, the correlation between SLN and NMP
created an overlap of known information in CNN and ELM. Thus, the accuracy of CNN
and ELM decreased, so it was better to use only one kind of physiological information. In
the verification using the RO1 site, the addition of SLN and NMP enabled different ML
methods to obtain different results using the unbiased estimator (URMSE) for evaluation.
All ML methods had a high degree of fit of scatter points after considering physiological
information, which proved its effectiveness.

In the process of evaluating the accuracy of GPP prediction results, data uncertainty
has impacts on the verification of results. First, inaccurate GPP observations in flux towers
will produce errors [75], and there are uncertainties in NDVI remote sensing observation
data sources. The GPP at three Nebraska sites ranges from 0 and 32 gC·m−2·day−1, which
leads to the saturation of NDVI [93]. The reconstruction of NDVI using a 8-day MOD09Q1
product and a daily MOD09Q1 product can generally obtain higher accuracy. However,
in cloudy conditions, the 8-day composite product still contains continuous noise [53].
Secondly, the maximum allowable SLN we considered was obtained at leaf scale, which
has the problem of scale mismatch with meteorological data and remote sensing data.
Moreover, the SLN of the RO1 site was derived from the polynomial fitting relationship
between NMP and SLN at three sites in Nebraska, and the points in Figure 3 are still
discrete to some extent, which also brings uncertainty. Thirdly, when RO1 was used for
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verification, all models produced a high RMSE, which was probably due to the differences
in farmland management between the RO1 site and the three sites in Nebraska. Differences
in moisture and soil brought about spatial consistency. Finally, ML method sensitivity is
highly dependent on the amount of data and its accuracy [94]. While the data set used in
this study has high accuracy, errors in the training data set and correlations between input
variables (such as SLN and NMP) can affect GPP estimation.

Through the results, the advantages of SLN and NMP in improving maize daily
GPP estimation via four ML methods have been demonstrated. In the future, it would
be interesting to consider other vegetation indices in the input to correct the saturation
phenomenon of NDVI in high-value GPP. Moreover, certain important factors associated
with site meteorological data, such as vapor pressure deficit (VPD) and soil moisture, are
anticipated to be incorporated into the model. In addition, utilizing longer time spans of
data to increase data volume to enhance data alignment is another method to enhance
accuracy. Note that, owing to the fixed polynomial function between SLN and NMP, data
redundancy seemed to occur. On the one hand, in this case, the introduction of SLN or NMP
alone, rather than both, may guarantee the robustness of ML methods, such as ELM and
CNN (Table 3). On the other hand, direct measurement or high-frequency remote sensing
inversion of SLN is needed in the future to further study the value of SLN. However, the
big gap between satellite pixel and leaf blade areas will make it a big challenge for SLN
inversion via satellite platforms. Fortunately, low-altitude unmanned aerial vehicles (UAVs)
provide an available way at the regional scale.

5. Conclusions

GPP plays key role in maintaining carbon balance in terrestrial ecosystems and climate
change. It is essential to accurately quantify daily GPP. This study, taking maize as an
example, based on five traditional inputs (NDVI, SSR, Tmean, Tmin, and Tmax), we
discussed the importance of NMP and SLN in improving the daily GPP estimation via
four popular ML methods (RF, SVM, CNN, and ELM). The prediction results are assessed
in detail and comprehensively compared using accuracy metrics (NSE, RMSE, Bias, CV,
and URMSE).

The advantages of introducing NMP and SLN into inputs have been demonstrated by
all applied ML methods with the flux data in four sites. It is just that different ML methods
have different sensitivities to SLN and NMP. The significance of SLN and NMP was also
confirmed in the importance ranking of random forest. It is noted that considering the
fixed relationship between the maximum allowable SLN and NMP, for the CNN and ELM
methods, introducing NMP or SLN alone may obtain superior results than introducing them
simultaneously. This study indicates that plant phenology and leaf-level photosynthetic
factors have great value in improving GPP estimation via ML methods. But they have been
commonly ignored by previous research. ML methods with the consideration of SLN or
NMP are expected to improve the evaluation accuracy of global maize GPP.

All in all, as organic matter accumulates via maize photosynthesis, GPP exhibits a
direct correlation with photosynthesis rate. SLN and NMP, concurrently regulating photo-
synthesis, exert an influence on GPP synthesis. Integrating these dynamic physiological
aspects of maize as input variables into machine learning models has notably improved
the models’ accuracy. This study provided new insights to improve GPP estimation via
ML methods.
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Appendix A

Table A1. Acronyms and the corresponding explanations of input variables.

Acronym Full Name Units Source

Tmean Daily mean air temperature ◦C FLUXNET 2015
Tmin Daily minimum air temperature ◦C FLUXNET 2015
Tmax Daily maximum air temperature ◦C FLUXNET 2015
SSR Solar shortwave radiation MJ·m−2·day−1 FLUXNET 2015

NDVI Normalized difference vegetation index - MOD09GQ, MOD09Q1
SLN Specific leaf nitrogen gN·m−2(leaf) CSP of the University of Nebraska
NMP Normalized maize phenology - Wang-Engel model [64]

Table A2. Acronyms and the corresponding full name of machine learning (ML) methods (RF, SVM,
CNN, and ELM) and the model evaluation metrics (NSE, RMSE, CV, and URMSE).

Acronym Full Name

RF Random forest
SVM Support vector machine
CNN Convolutional neural network
ELM Extreme learning machine
NSE Nash efficiency coefficient (-)

RMSE Root mean square efficiency (gC·m−2·day−1)
CV Coefficient of variation (-)

URMSE Unbiased root mean square efficiency (gC·m−2·day−1)
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