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Abstract: Utilizing in situ measurement data to assess satellite-derived long-term ocean color products
under different observational conditions is crucial for ensuring data quality and integrity. In this
study, we conducted an extensive evaluation and analysis of Visible Infrared Imaging Radiometer
Suite (VIIRS) remote sensing reflectance (Rrs) products using long-term OC-CCI in situ data from 2012
to 2021. Our research findings indicate that, well beyond its designed operational lifespan, the root
mean square difference accuracy of VIIRS Rrs products across most spectral bands remains superior
to 0.002 (sr−1). However, VIIRS Rrs products in shorter wavelength bands (e.g., at 412 nm) have
exhibited significantly lower accuracy and a long-term bias in recent years. The annual precision of
VIIRS Rrs products demonstrated a declining trend, particularly in coastal or eutrophic waters. This
degradation in accuracy highlights the imperative for continuous monitoring of VIIRS performance
and further advancements in the atmospheric correction algorithm, especially to address satellite
records at high solar zenith angles (SZAs) and observation zenith angles (OZAs). Our analysis
indicates that, in observation environments with high SZAs (greater than 70◦), the accuracy of
VIIRS Rrs products has declined by nearly 50% compared to typical solar zenith angle observation
conditions. To address the challenge of declining accuracy under large observation geometries,
we introduced the neural network atmospheric correction model (NN-V). Developed based on
meticulously curated VIIRS products, the NN-V model exhibits outstanding performance in handling
VIIRS data in conditions of extensive observation geometries. During the winter season in high-
latitude marine regions, the NN-V model demonstrates a remarkable enhancement in ocean color
product coverage, achieving an increase of nearly 20 times compared to traditional methods.

Keywords: ocean color; VIIRS; atmospheric correction; diurnal change; large solar zenith angle

1. Introduction

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is the successor
to the Moderate Resolution Imaging Spectroradiometer (MODIS) for generating ocean
color and earth data products. The VIIRS is a multidisciplinary instrument mounted on
the Joint Polar Satellite System (JPSS)—Suomi National Polar-orbiting Partnership Satellite
(S-NPP), launched in October 2011. The VIIRS sensor features 22 spectral bands ranging
from 412 nm to 12 µm, including 16 moderate-resolution bands with a maximum resolution
of 750 m, 5 high-resolution bands at 375 m, and a day/night band (DNB) suitable for
global observations of the land, oceans, atmosphere, and cryosphere. The VIIRS data
products have been made available from 2012 to 2023, spanning approximately 12 years,
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which notably exceeds the planned life expectancy of 5 to 7 years. Recent studies have
indicated that the MODIS/Aqua longevity is impressive, as it continued to operate over a
period of 21 years beyond its design lifetime of 6 years, despite minor adjustments made to
further improve the retrieved ocean color products. The long-term ocean color records of
the MODIS/Aqua instrument also led to notable performance degradation and indicated
the need for new calibration methods. For instance, Meister et al. (2014) proposed a
calibration method specifically targeting the MODIS bands. This method only utilized the
central part of the MODIS scan to generate the averaged L3 data products at the desired
spatial and temporal scales [1]. Using the restricted L3 data accounting for scan angles
and cross-calibration coefficients for each scan angle, the cross-calibration coefficients for
the central part were determined to be close to 1 as an indicator of good calibration. The
residual trends persisted on the scan edges, particularly at the 412 and 443 nm bands. For
the 412 nm band, the correction at the scan edges reached up to 3%. When evaluating
the long-term VIIRS ocean color products, Cao et al. (2013) found that the degradation of
the mirror component of the VIIRS rotating telescope stabilized at approximately 30% [2].
However, continuous monitoring of its performance over a long period is necessary. Uprety
et al. (2015) conducted an analysis of the radiometric performance of the VIIRS sensor
by comparing it with other satellite instruments such as MODIS/Aqua and Landsat 8
OLI [3]. The results showed that the stability of most VIIRS bands was better than 0.5%
and the uncertainty was around 1%. After accounting for spectral differences, the absolute
radiance deviation estimated through cross-calibration between VIIRS and MODIS was
less than 2% for each waveband. In general, similar to the MODIS/Aqua instrument
calibration activities, it is critical to assess the long-term spatial and temporal ocean color
products of VIIRS and ensure their accuracy and integrity for global ocean applications on
a regular basis.

Most of the existing validations of VIIRS products have primarily relied on data
collected from fixed platforms (such as buoys) or AERONET-OC observation stations
installed on offshore oil platforms. During the early launch phase of VIIRS, Hlaing (2013)
validated the accuracy of VIIRS products based on nearly one year of data (2012) from
two coastal AERONET-OC (LISCO and WaveCIS) sites. The results showed that the VIIRS
products were capable of capturing seasonal and temporal variations of water properties,
with an average correlation coefficient greater than 0.96 for all bands except the 412 nm
band and an average absolute percentage difference (APD) of approximately 20% [4].
However, the VIIRS products were underestimated at 412 nm bands. To address this issue,
Hlaing et al. (2014) performed extensive radiative transfer simulations of the coupled
ocean–atmosphere system using the aerosol optical properties and outgoing radiance data
from the AERONET-OC sites and performed the radiometric proxy calibration of VIIRS
in visible and near-infrared bands. The difference in the blue band was approximately
0.5% [5]. Wang et al. (2015) evaluated the VIIRS ocean color products using data from the
Marine Optical Buoy (MOBY) near Lanai Island, Hawaii, which included the normalized
water-leaving radiance spectra (nLw(λ)) and chlorophyll-a (Chl-a) concentration in five
bands of VIIRS [6]. The results showed that the VIIRS Chl-a concentrations in global
oligotrophic waters were significantly lower in 2013 than in 2012, while exhibiting little
inter-annual variation in MODIS/Aqua products between 2012 and 2013. This indicates
a serious issue with the VIIRS calibration in the visible bands. It was primarily related to
the attenuation values at the VIIRS 551 nm band. Vandermeulen et al. (2015) validated the
accuracy of VIIRS products using in situ data from the AERONET-OC sites located in the
Chesapeake Bay and Mississippi River plume, and the results showed a root mean square
difference (RMSD) value of 0.160 mW cm−2m−1sr−1 for the 551 nm band [7]. Brando et al.
(2016) reported spectral comparisons of radiometer data with VIIRS in different tropical
water types off northern Australia based on the standard NIR atmospheric correction
algorithm (available in SeaDAS 8.1 software) [8]. The results showed a high consistency
(RMSD < 0.002 sr−1) for all wavelengths above 530 nm, but the satellite reflectance data
consistently underestimated the in situ spectra in blue bands by 7.5–29%. After several
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years of VIIRS operation, Barnes et al. (2019) validated the VIIRS remote sensing reflectance
products using in situ measurements from 53 cruises in nearshore regions of the Gulf of
Mexico between 2012 and 2017. The results revealed APD values of 37%, 30%, 22%, 23%,
and 43% for the 412 nm, 443 nm, 486 nm, 551 nm, and 671 nm bands, respectively [9].

Using data from fixed platforms is of great advantage because of their high temporal
resolution. The use of high-frequency observations from fixed platforms with small time
intervals (within 1 h) also leads to more accurate validation of the satellite-derived ocean
color products. However, certain distinctly different areas of algal blooms and river plumes
are often under-sampled by these methods. Most prior studies have primarily focused
on validating satellite data products for specific years without considering the long-term
quality and integrity of the products. Moreover, there has been a lack of precision testing
for VIIRS products under extreme observational geometries, such as high solar zenith angle
(SZA) or observation zenith angle (OZA) conditions. Barnes and Hu’s (2016) study delves
into the angular dependence in single-sensor measurements and cross-sensor consistency,
highlighting that VIIRS remote sensing reflectance (Rrs) products experience substantial
impact when the OZA surpasses 40◦ [10]. Therefore, the main objective of this study is
to evaluate the long-term accuracy of VIIRS Rrs products, specifically under high SZA
or OZA conditions. To achieve this goal, a comprehensive dataset covering open ocean
waters, estuaries, river plumes, algal blooms, and coastal areas was utilized for assess-
ment, with in situ data collected from fixed observation platforms and ship measurements.
This holistic approach aims to provide insights into the extended accuracy and precision
of VIIRS products over an extended period and in challenging observational scenarios.
Furthermore, new models were developed to enhance the accuracy of VIIRS ocean color
products. The incorporation of a neural network model was explored to establish an atmo-
spheric correction model tailored for VIIRS data under high SZA observation conditions.
This effort is crucial for improving the precision of VIIRS products in such observation
environments. By addressing the limitations of previous research and incorporating inno-
vative modeling techniques, this study contributes to a more robust understanding of the
long-term performance and accuracy of VIIRS Rrs products, particularly in the context of
high SZA observations.

2. Data and Methods
2.1. In Situ Data

The in situ measurements of remote sensing reflectance (Rrs) are the primary data
used to evaluate the VIIRS products’ accuracy. These data were obtained from a database
created by Valente et al. who previously utilized this database to validate the OC-CCI
(ESA Ocean Color Climate Change Initiative) ocean color products [11–13]. It includes a
vast number of measurements made during the period from 1997 to 2021, comprising six
commonly used data sources for ocean color validation (MOBY, BOUSSOLE, AERONET-
OC, SeaBASS, NOMAD, and MERMAID) and four data sources for ocean color applications
(AWI, COASTCOLOUR, TPSS, and TARA). Any duplicate data within these data sources
were screened out; thus, priority was given to the NOMAD dataset, followed by the
data from the individual projects (MOBY, BOUSSOLE, AERONET-OC, AMT, HOT, and
GeP&CO) and other sources (SeaBASS, MERMAID, and ICES). This approach was chosen
due to its global popularity and wider utility in ocean color work. The compiled in situ
Rrs spectra were normalized to a single sun-viewing geometry (sun at zenith and nadir
viewing) and corrected for the bidirectional effects (Morel et al., 2002) [14]. Furthermore,
Valente et al. applied homogenization, quality control, and merging methods to all the data.
Minimal changes were made to the original data, other than averaging the observations
that were closely collected in time and space, eliminating some points after quality control,
and converting these data to a standard format [11–13].

During the operational time period of VIIRS, we obtained the remote sensing re-
flectance from OC-CCI in situ data covering the period from 1 January 2012 to 27 September
2021 (insitudb_rrs_satbands6_V3, https://doi.pangaea.de/10.1594/PANGAEA.941318, ac-
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cessed on 1 October 2023). This dataset includes approximately 32,198 in situ measurements
of Rrs spectra (values are generally available at 412 nm, 443 nm, 486 nm, 551 nm, and
671 nm), of which approximately 30,000 measurements were collected on fixed platforms
such as AERONET-OC and BOUSSOLE and the remaining 2000 measurements on mobile
platforms like NOMAD and others. Due to clouds, sun glints, straylight, and other factors,
the number of matchups between in situ and satellite Rrs data was significantly lower than
the total number of measurements. The distribution of the sampling locations is shown
in Figure 1, where much of these data come from Case 2 waters and a small portion from
open oceanic waters (Case 1).
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Figure 1. Distribution of sampling locations of the OC-CCI Rrs measurements from 2012 to 2021 (red
dots represent Case 2 waters, and blue dots represent Case 1 waters).

2.2. Satellite Data

The VIIRS Level 2 products were generated by the NASA OBPG (http://oceancolor.
gsfc.nasa.gov, accessed on 2 October 2023) using SeaDAS 8.1 software (with the standard
iterative NIR atmospheric correction algorithm) and were obtained from the sampling
locations of OC-CCI in situ data. These data were processed using the latest processing
scheme (version 2022.0), which includes updates on VIIRS instrument calibration for the
radiometric degradation issues based on the on-board (solar/lunar) measurements. The
wavelengths of the VIIRS sensor slightly differed from those of the OC-CCI in situ dataset,
and hence all comparisons were made using the reference VIIRS wavelengths (412, 443,
486, 551, and 671 nm).

For the matchup comparison, the data processing excluded the individual pixels
meeting any of the following conditions: land, cloud, failure in atmospheric correction, stray
light, bad navigation quality, high and moderate glint, and negative Rayleigh-corrected
radiance. In addition, pixels with negative values at any of the wavelengths of the water-
leaving radiance spectra were also excluded from spatial averaging. A SZA threshold was
fixed to 90 degrees to evaluate the accuracy of satellite products under different SZAs and
to obtain the corresponding products.

2.3. K-Means Clustering Analysis

Due to the extensive volume of in situ data used, we conducted K-Means clustering
analysis on all the employed in situ data to enhance the clarity of the dataset structure. K-
Means clustering analysis is a commonly used unsupervised learning algorithm designed
to partition observation points in a dataset into different groups, ensuring that points within
the same group are similar while those in different groups exhibit significant differences.
K-Means clustering performs well when the structure of the dataset is evident [15]. The
algorithm involves the following steps: 1. Randomly select K initial centroids, which
represent the centers of K groups in the dataset. 2. Allocate each observation point to the
group represented by the nearest centroid. 3. Calculate the new centroid for each group,
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representing the average of all observation points in that group. 4. Repeat the assignment
and update steps until the centroids no longer undergo significant changes or the specified
number of iterations is reached. We utilized an empirical approach to establish the optimal
number of clusters for K-Means clustering. Initially, we explored a broader range of cluster
numbers and refined the final count by closely examining the clustering results. This
adjustment was guided by an analysis of the rate of decrease in the within-cluster sum of
squares across different cluster numbers. Our decision-making process was informed by
the actual performance of the data, ensuring that the determined number of clusters was
well-suited for our dataset.

2.4. Neural Network Atmospheric Correction Model

In addressing the challenge of diminished accuracy in VIIRS products under extensive
observational geometric conditions, this study employs a neural network atmospheric
correction model to process VIIRS Level 1 data [16,17]. The utilized neural network atmo-
spheric correction model is built upon the framework established by Li et al., which was
originally designed for processing GOCI (Geostationary Ocean Color Imager) and MODIS
(Moderate Resolution Imaging Spectroradiometer) satellite data.

The neural network training dataset for this model is curated from VIIRS Level 1 data
spanning the years 2016 to 2017. To ensure the representativeness of the established training
dataset across diverse seasons, multiple satellite images with a cloud cover of less than
60% are meticulously chosen for each month. The data undergo filtering based on criteria
that include parameters such as the mean, variance, and coefficient of variation, ensuring
the high quality of the selected remote sensing reflectance products. This filtering process
guarantees consistency in spatial and temporal dimensions, and detailed information can
be referenced in the literature by Li et al. (2020) [18].

Following the extraction of a high-quality dataset featuring remote sensing reflectance
with small SZAs, this dataset is utilized to correlate remote sensing reflectance with larger
SZAs and Rayleigh-corrected radiance at the same location and time window, thereby
constituting the training dataset. Then, the full training dataset was separated into a
model training dataset and a model testing dataset based on a randomly selection with
percentages of 70% and 30%, respectively. Upon inputting the model training dataset into
the neural network, the study establishes a tailored neural network atmospheric correction
model (NN-V) designed specifically for VIIRS data under extensive observational geometric
conditions. The constructed neural network model consists of a single layer, comprising
an input layer, an intermediate layer, and an output layer. The input data encompass
Rayleigh-corrected radiance in various bands of VIIRS visible light, SZA, satellite zenith
angles, and relative azimuth angles. The output layer provides remote sensing reflectance
for each band of VIIRS visible light.

2.5. Temporal and Spatial Matching Scheme and Statistical Parameters

To validate the satellite products, we considered the significant differences/variations
in the time matching window, pixel box size, and coefficient of variation (CV). For example,
the time matching window can be ±3 h or ±5 h, the pixel box can be 3 × 3 or 5 × 5, and
the coefficient of variation can be 0.15, 0.2, and 0.4. Studies by Mélin et al. (2007) and
Barnes et al. (2015) have indicated that the statistical errors remain relatively consistent
across different time matching windows and coefficients of variation [10,19]. In this study,
the spatial and temporal matching of in situ and satellite data was successfully done by
averaging all pixels in the 3 × 3 window centered on the observation point with a time
window of ±3 h [20,21]. Additionally, the following conditions were applied:

(1) The percentage of valid pixels in the 3 × 3 window was checked. If it exceeded 50%,
the data were used and otherwise discarded.

(2) The mean and standard deviation (SD) of all validation pixels were calculated. Any
pixel falling outside the range of the mean ± 1.5 SD was removed.
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(3) For the remaining pixels, the CV, calculated as SD/mean, was used to ensure spatial
consistency. If the CV exceeded 0.15, the data were discarded.

For pixels meeting the aforementioned criteria, we conducted a comparison analysis
between the in situ and satellite-derived remote sensing reflectance products. This ap-
proach excluded the data affected by unexpected changes in natural and environmental
conditions as well as artifacts in the satellite-derived products resulting from the critical
sensor characteristics using the filtering procedures as previously outlined in this section.

Statistical evaluation of the VIIRS Rrs product accuracy is based on global metrics
such as the square of the Pearson product–moment correlation coefficient (R2), adjusted R2

(R2
adj), APD, relative percentage difference (RPD), and RMSD. These metrics are defined

below [22,23],

R2 =
(∑(xi − x)(yi − y))2

∑(xi − x)2∑(yi − y)2 (1)

R2
adj = 1 −

(
1 − R2) ∗ (N − 1)

(N − 2)
(2)

RMSD =

√
∑N

i=1(yi − xi)2

N
(3)

APD = 100% ∗ 1
N

N

∑
i=1

|yi − xi|
xi

(4)

RPD = 100% ∗ 1
N

N

∑
i=1

yi−xi
xi

(5)

where xi, yi, and N represent the in situ values, retrieved Level 2 products, and the number
of samples, respectively. The adjusted R2

adj is proficient in presenting R2 values that have
been corrected to mitigate inflation caused by variations in sample size. APD quantifies the
systematic error. RPD is a primary metric used to assess the accuracy and bias in satellite-
derived products. RMSD takes into account the mean and variance of the error distribution
to define the random error. Using these multiple statistical metrics is an effective approach
to evaluating the satellite products’ accuracy.

3. Results

This section presents the in situ spectral characteristics of different waters, overall
accuracy and its variation with observation geometry, impacts of observation geometry,
and long-term accuracy variation in the water color products.

3.1. In Situ Spectral Characteristics

A total of 8312 satellite spectral data were matched with in situ data. Figure 2 displays
the spectral plots of the results from the clustering analysis based on the OC-CCI in situ
dataset. The data can be broadly divided into four categories: (a) turbid continental shelf
waters, (b) clear continental shelf waters, (c) turbid coastal waters, and (d) clear open ocean
waters. These four water types account for 24%, 54%, 12%, and 10%, respectively. The
overall range of remote sensing reflectance at 551 nm for these water types is from 0.0009
to 0.027 sr−1.
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3.2. Overall Assessments

Figure 3 presents the VIIRS remote sensing reflectance (Rrs) products for each band
versus the OC-CCI in situ data. The scatter points for each band are closely aligned with
the 1:1 line, demonstrating a good correlation between the retrieved and measured Rrs
data over a period of 13 years and indicating high accuracy of the VIIRS Rrs products in
various water types. Table 1 summarizes the overall statistical results. The accuracy of the
Rrs at 486 nm is generally higher compared to other bands, with an APD of 17.9% and an
RPD of −2.45%. Across all VIIRS bands, there is a noticeable underestimation of Rrs values,
as indicated by the negative RPD values.

Table 1. Statistical results for the VIIRS remote sensing reflectance products versus the OC-CCI
validation data.

Bands N R2 RMSD
(sr−1) APD (%) RPD (%) Slope

412 nm 8312 0.680 0.0019 46.4 −15.00 0.87
443 nm 8312 0.695 0.0018 30.4 −15.41 0.94
486 nm 8312 0.760 0.0018 17.9 −2.45 0.97
551 nm 8312 0.660 0.0031 26.3 −13.60 1.02
671 nm 8312 0.501 0.0010 49.7 −18.24 1.14
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3.3. Annual Variation in Product Accuracy

After assessing the overall accuracy of VIIRS Rrs products, we further investigated
the accuracy of annual products at 486 nm from 2012 to 2021 (Figures 4 and 5). Notably,
when the Rrs values at 486 nm exceed 0.01 sr−1, the validation data points are significantly
scattered and deviate from in situ measured data. This indicates that the inversion accuracy
of VIIRS Rrs products is higher in clear water bodies (typically with Rrs(486) less than
0.01 sr−1) compared to coastal waters (typically with Rrs(486) greater than 0.01 sr−1).
Moreover, we observed a declining trend in the accuracy of VIIRS Rrs products over
the years. The accuracy remains stable in clear waters but deteriorates in water bodies
with Rrs(486) greater than 0.01 sr−1 (typically coastal turbid and eutrophic waters), as
evidenced by the wide scatter points and increased deviation in the annual products.
Figure 5 illustrates the temporal variation of the APD for Rrs(486) nm. The red line in the
figure represents the linear regression line with a slope of 0.005, indicating an increase
above zero. This also suggests a decline in product accuracy over time. Table 2 presents the
statistical parameters of the accuracy assessment of VIIRS-Rrs(486) products on a yearly
basis. Although the number of measured data used for this evaluation impacts the final
statistical parameters, the measured data exceeded 300 for all years except 2021. Using
similar amounts of measured data (such as 2014 (465 data points) and 2020 (439 data
points)), we found that the R2

adj and APD values were 0.744 and 16.46% and 0.607 and
20.03%, respectively. Compared to 2014, there has been a significant 21.6% decrease in the
APD and an 18.4% decrease in R2 in 2020. Upon calculation, the annual change in slope for
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R2 is −0.02, and for APD, it is 0.38. These figures point to a noticeable decline in product
accuracy. Additionally, Table 2 presents the APD for Rrs(486) when greater than or less
than 0.01 sr−1, suggesting that the decline in product accuracy is primarily attributed to
turbid water bodies.
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Table 2. Statistical results for the VIIRS Rrs(486) products of 486 nm versus the OC-CCI in situ data
in different years (2012~2020).

Years N R2
adj RMSD (sr−1) APD (%) RPD (%) Rrs < 0.01 sr−1

APD (%)
Rrs > 0.01 sr−1

APD (%)

2012 1388 0.840 0.0013 16.43 3.25 16.09 21.10
2013 354 0.822 0.0021 20.01 −6.20 18.48 24.35
2014 465 0.863 0.0015 16.46 −2.26 16.39 17.56
2015 1015 0.786 0.0014 15.52 −0.32 14.65 20.51
2016 1650 0.826 0.0013 14.49 0.49 13.85 21.22
2017 1472 0.730 0.0020 20.67 −10.36 18.89 49.41
2018 610 0.748 0.0022 19.50 0.70 18.24 26.76
2019 889 0.746 0.0019 19.07 −3.02 18.13 26.83
2020 439 0.779 0.0014 20.03 −1.80 19.49 23.04

3.4. Variation of Product Accuracy with Observation Geometry

The accuracy of VIIRS Rrs products was assessed for different SZAs and OZAs. To
better utilize statistical metrics to evaluate VIIRS Rrs products at different SZAs, we
standardized the data. For instance, in the SZA range from 40◦ to 50◦, the actual matched
data size was 1644, but we randomly selected 790 data points to match the minimum
available data size in the SZA range greater than 70◦. Figure 6 presents the evaluation
results, where, except for the 551 nm band, data points are notably concentrated on the 1:1
line under typical SZAs (30◦ to 60◦), while under higher SZAs (>70◦), data points exhibit a
distinct scattering pattern across all bands. Table 3’s statistical metrics clearly indicate that
under normal/smaller SZAs, there is no clear trend in product accuracy with changing
SZAs, and errors and deviations are small. However, there is a significant decline in product
accuracy, which is consistent with the findings of previous studies [24,25]. Figure 7 and
Table 4 present the evaluation results for VIIRS Rrs products under different OZAs. Similar
to SZAs, there is no clear trend in product accuracy with changing OZAs when the OZA
is less than 60◦. However, at OZAs greater than 60◦, data points are more dispersed, and
APD is significantly larger, indicating a noticeable decline in product accuracy.
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black line in the graph represents the 1:1 line).

Table 3. Statistical results for the VIIRS Rrs products versus OC-CCI in situ Rrs data under differ-
ent SZAs.

SZA N R2 RMSD
(sr−1) APD (%) RPD (%) Slope

30◦ > SZA > 0◦ 790 0.795 0.0026 34.96 −17.51 0.86
40◦ > SZA > 30◦ 790 0.771 0.0019 33.84 −12.39 0.92
50◦ > SZA > 40◦ 790 0.836 0.0012 29.27 −6.26 0.97
60◦ > SZA > 50 ◦ 790 0.873 0.0012 23.07 −1.67 0.95
70◦ > SZA > 60◦ 790 0.830 0.0014 33.99 −14.07 0.84

SZA > 70◦ 790 0.876 0.0020 48.69 −38.59 0.79
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Figure 7. Evaluation of the VIIRS Rrs products using OC-CCI in situ data under different OZAs. (The
black line in the graph represents the 1:1 line). (a) OZA ranges from 0◦ to 20◦. (b) OZA ranges from
20◦ to 40◦. (c) OZA ranges from 40◦ to 60◦. (d) OZA ranges from 60◦ to 70◦.

Table 4. Statistical results of the VIIRS Rrs products versus OC-CCI in situ Rrs data under differ-
ent OZAs.

OZA N R2 RMSD
(sr−1) APD (%) RPD (%) Slope

20◦ > OZA > 0◦ 970 0.732 0.0019 38.48 −19.45 0.96
40◦ > OZA > 20◦ 970 0.843 0.0015 34.18 −5.39 0.93
60◦ > OZA > 40◦ 970 0.717 0.0018 38.85 −3.75 0.82
70◦ > OZA > 60◦ 970 0.790 0.0018 43.42 −21.29 0.74

3.5. Enhanced VIIRS Product Accuracy through Neural Network Atmospheric Correction Model

Based on the VIIRS dataset generated in Section 2.3, a neural network model, NN-V,
tailored for VIIRS products, was developed. The training efficacy of the NN-V model was
initially assessed using a model testing dataset. The results are illustrated in Figure 8. It is
evident that the NN-V model performs well in the retrieval of various VIIRS bands, with
calculated R2 exceeding 0.91 in the visible light spectrum.

Subsequently, the inversion performance of the NN-V model was evaluated using field
measurements from the OC-CCI in situ dataset spanning from 2019 to 2020. The results,
depicted in Figure 9, demonstrate the high accuracy of the NN-V model, showcasing
excellent performance across different spectral bands. Table 5 presents detailed statistical
parameters for each individual spectral band. In the cases of 443 nm, 486 nm, 551 nm,
and 671 nm, the inversion accuracy of the NN-V model surpasses that of the near-infrared
atmospheric correction model. For instance, the NN-V inversion of the 443 nm remote
sensing reflectance demonstrates an APD of 27.90%, compared to NASA’s released VIIRS
product with an APD of 30.4%. The smaller RMSD further underscores the robustness of
the NN-V algorithm. The relatively larger error observed at 412 nm may be attributed to
the systematic bias present in the products of this spectral band used in the training data.
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Table 5. Summary of validation results for NN-V inversion on VIIRS products.

Bands N R2 RMSD
(sr−1) APD (%) RPD (%) Slope

412 nm 680 0.543 0.0022 49.51 −21.00 0.77
443 nm 680 0.701 0.0019 27.90 10.64 0.84
486 nm 680 0.831 0.0016 18.81 4.62 1.01
551 nm 680 0.797 0.0017 18.55 −1.23 0.99
671 nm 680 0.611 0.0006 41.91 3.65 0.69

After validation using both field measurements and satellite data, the utility of the NN-
V model was confirmed. Subsequently, it was applied to process satellite data with complex
observation geometries, as illustrated in Figure 10. The overall statistical parameters are
also presented in Figure 10, demonstrating the NN-V model’s capability to effectively
handle satellite data with large observation geometries, resulting in overall low deviations
in the inversion outcomes.
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The results obtained through the NN-V model show promising capabilities in handling
satellite data with high SZAs exceeding 70 degrees or OZAs greater than 60 degrees but
less than 70◦. For instance, when the SZA is greater than 70◦, the RMSD, APD, and RPD
are 0.0020, 48.69%, and −38.59%, respectively, for conventional processing, whereas for
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the NN-V model, these values are 0.0018, 33.10%, and −5.27%. This indicates a significant
enhancement in its performance. This highlights the robustness of the NN-V model in
addressing challenging observation geometries and its potential for accurate retrievals
under extreme conditions.

After confirming the effectiveness of the NN-V model in handling satellite data with
complex observation geometries, the model was ultimately applied to process a large
volume of VIIRS Level 1 data, allowing for the generation of long-term products and pro-
viding a means to assess the model’s stability. Figures 11 and 12 illustrate the comparison
between monthly chlorophyll-a concentration products obtained through OC3V inver-
sion of remotely sensed reflectance using the NN-V model and those released by NASA

(Chl = 10̂(a0 +
4
∑

i=1
ai(log10(max(Rrs(443), Rrs(486))/Rrs(551))))). It is evident that

during the peak SZAs in the autumn and winter seasons (October and January), the NN-V
model significantly improves the availability of valid data, particularly in the winter. Due
to the limitations of traditional atmospheric correction models under large SZAs during the
winter, the NN-V model produces 20 times more valid data compared to NASA’s released
products. Additionally, as seen in Figure 12, it can be observed that in regions with valid
data coverage, the products released by NASA are generally consistent with the results
from NN-V inversion.
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Figure 11. Comparison of monthly chlorophyll-a concentration products derived from NN-V inver-
sion and NASA’s released data. (a) The chlorophyll-a concentration product released by NASA for
October 2020. (b) same as (a) but for the result by NN-V. (c) The chlorophyll-a concentration product
released by NASA for January 2021. (d) same as (c) but for the result by NN-V.
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4. Discussion
4.1. Overall Performance Assessment and Annual Variation

A comparison of our results with previous work revealed a discrepancy in the accuracy
of VIIRS products. This difference may stem from significant variations in the number
of data used for accuracy assessments. In this study, we utilized a substantial amount
of data, approximately 8312 matched pairs, whereas the previous study only had a few
tens of matched data. Moreover, our analysis utilized data from both fixed platforms
(AERONET-OC) and cruise measurements, in contrast to the limited data (only from fixed
platforms) used in earlier studies. Our results demonstrate that the accuracy of the Rrs(486)
is higher than that of the previous studies, with an APD of 17.9% (compared to 19% by
Barnes et al. (2019) [9] and 20.1% by Hlaing et al. (2013) [4]). However, the Rrs products at
other bands have a relatively lower accuracy (for instance, APD(551 nm) is 26.3% compared
to 21% reported by Barnes et al. (2019), 9.4% by Hlaing et al. (2013), and 10.6% by Ahmed
et al. (2014)) [4,9,26]. The 412 nm and 671 nm bands exhibit higher APD values. The error
in the 412 nm band is attributed to the long-standing bias with the VIIRS measurements,
and the error in the 671 nm band is influenced by extremely low values of Rrs data. Overall,
we employed a larger number of matched data, encompassing information from various
data sources. The evaluation results exhibit slight differences in different spectral bands
compared to other studies (As shown in Table 6.). This outcome addresses the disparities
observed in past satellite product accuracy assessments, which were often attributed to the
limited size of matched data in previous studies. Our analysis showed the RPD values of
all bands within 20%, which indicates that NASA’s multiple calibration efforts (in the years
2012, 2013, 2014, 2018, and 2022) have effectively minimized the systematic biases with the
VIIRS products. The observed high APD values for each band measurement emphasize the
necessity of improving the atmospheric correction algorithm for retrieving more accurate
Rrs values from VIIRS data. As for the annual variations, the APD values were consistently
below 17% during the period from 2012 to 2016 (except for 2013) and remained around 20%
for the period from 2017 to 2021. Similarly, the R2 value consistently exceeded 0.82 over the
years from 2012 to 2016 (except for 2015), and it declined to below 0.78 over the years from
2017 to 2021. This suggests a gradual decline in the accuracy of VIIRS products due to their
prolonged operation over the years.

Table 6. Summary of APD in VIIRS product validation results.

Citation N 412 nm 443 nm 486 nm 551 nm 671 nm

Ahmed et al. (2013) [26] 29 39.4% 20.8% 12.6% 10.6% 18.2%
Hlaing et al. (2013) [4] 16 54.8% 23.4% 20.1% 9.4% 23.9%
Barnes et al. (2019) [9] 55 27.0% 23.0% 19.0% 21.0% 37.0%
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4.2. Impact of Observation Geometry

From the analysis of VIIRS Rrs products under varying SZAs, it is evident that the
product accuracy is strongly dependent upon solar geometry. To process the data with
larger SZAs requires a novel atmospheric correction that will improve the accuracy of Rrs
retrievals from VIIRS data. Further, our analysis revealed a similar situation in the VIIRS
Rrs product accuracy at larger OZAs. Under high SZAs and OZAs, the accuracy reduction
in satellite Rrs retrievals can be attributed to several factors. In such conditions, the solar
energy is substantially weak, leading to reduced illumination on the ocean surface. At
larger SZAs, the optical pathlength of sunlight is much longer through the atmosphere,
meaning that the light intensity decreases and Rayleigh scattering becomes more effective
at removing the shorter wavelengths, and dust particles from the lower atmosphere play
a crucial role in attenuating solar irradiance and hence determining aerosol scattering
and absorption processes. The bidirectional reflectance factor of larger SZAs and OZAs
is more amplified. Additionally, there is a pronounced effect of the Earth’s curvature on
the TOA radiance. As a consequence, upwelling radiance from the water body decreases
substantially, which induces strong biases on remote sensing reflectance retrieved by a
conventional atmospheric correction algorithm (Li et al. 2019) [27].

4.3. Usage Scope of Neural Network Atmospheric Correction Model

This paper, based on the multiple daily observations of the VIIRS satellite in high-
latitude maritime areas, establishes a neural network training dataset. Using this dataset,
the NN-V atmospheric correction model is developed, specifically tailored for observation
conditions with high SZAs. As a result, it exhibits a significant advantage when processing
high-latitude maritime areas, such as the Arctic and Antarctic oceans. However, construct-
ing the training dataset involves linking satellite observations from different times within a
day, and the presence of highly dynamic nearshore turbid waters introduces anomalies in
the training dataset. Consequently, these specific data are excluded during the construction
of the neural network training dataset. Therefore, the model is primarily suitable for waters
with a relatively low level of turbidity. In the training dataset, the SZA ranges from 0 to
86◦, making the model applicable only for processing satellite data within this specific
SZA range.

5. Conclusions

The evaluation and analysis of the 10-year VIIRS Rrs products have demonstrated a
high level of accuracy across various water types, despite the system being operational
beyond its design lifetime of 5 to 7 years. The higher performance of VIIRS is achieved
because of NASA’s on-orbit calibration/characterization activities and regular lunar obser-
vations related to wavelength-dependent gain degradation in different bands. However,
our study evaluating the long-term VIIRS Rrs products has shown a declining trend in
product accuracy. For example, the product accuracy in specific spectral bands, such as
the 412 nm and 671 nm bands, is considerably low, with a long-term bias in the 412 nm
band. Moreover, there is a declining trend in the annual accuracy of VIIRS Rrs products,
particularly in coastal or eutrophic waters, where the spread of the matchup pairs has been
more pronounced in recent years. Our analysis indicated that, in observation environments
with high SZAs (greater than 70◦), the accuracy of VIIRS Rrs products has declined by
nearly 50% compared to typical SZA observation conditions. In response to the challenge
of declining accuracy in VIIRS products under large observation geometries, we developed
the neural network atmospheric correction model (NN-V). This model, constructed based
on carefully curated VIIRS products, exhibits exceptional performance when handling
VIIRS data in conditions of extensive observation geometries. Particularly during the
winter season in high-latitude marine regions, the NN-V model demonstrates a remarkable
enhancement in ocean color product coverage, achieving an increase of nearly 20 times
compared to traditional methods. In conclusion, the VIIRS sensor has proven capable of
working as a successor to MODIS and providing crucial earth science data products beyond
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its design lifetime. The high product accuracy in most spectral bands shows the success of
NASA’s calibration efforts. Nevertheless, our study emphasizes the importance of continu-
ous monitoring, further efforts on improving the atmospheric correction algorithms, and
careful consideration of different environmental and geometry conditions (such as SZAs
and water types) to ensure the long-term data quality and integrity of VIIRS products.
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