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Abstract: Traditional methods for assessing the stability of rubble mound breakwaters (RMBs) often
rely on 2.5D data, which may fall short in capturing intricate changes in the armor units, such as
tilting and lateral shifts. Achieving a detailed analysis of RMB geometry typically requires fully 3D
methods, but these often hinge on expensive acquisition technologies like terrestrial laser scanning
(TLS) or airborne light detection and ranging (LiDAR). This article introduces an innovative approach
to evaluate the structural stability of RMBs by integrating UAV-based photogrammetry and the
random sample consensus (RANSAC) algorithm. The RANSAC algorithm proves to be an efficient
and scalable tool for extracting primitives from point clouds (PCs), effectively addressing challenges
presented by outliers and data noise in photogrammetric PCs. Photogrammetric PCs of the RMB,
generated using Structure-from-Motion and MultiView Stereo (SfM-MVS) from both pre- and post-
storm flights, were subjected to the RANSAC algorithm for plane extraction and segmentation.
Subsequently, a spatial proximity criterion was employed to match cuboids between the two time
periods. The methodology was validated on the detached breakwater of Cabedelo do Douro in Porto,
Portugal, with a specific focus on potential rotations or tilting of Antifer cubes within the protective
layer. The results, assessing the effects of the Leslie storm in 2018, demonstrate the potential of our
approach in identifying and quantifying structural changes in RMBs.

Keywords: drone; RMB; groins; in-field inspection; photogrammetry; SfM-MVS; random sample consensus

1. Introduction

The protection of coastal zones and harbors from wave damage is crucial to prevent
severe economic and ecological consequences. One of the most commonly employed
structures for this purpose are the rubble-mound breakwaters (RMBs). These structures
are built using various materials and can be adapted to diverse underwater topographies,
designed to withstand different wave conditions [1]. However, these protective structures
are susceptible to damage and require repairs throughout their lifespan [2]. Therefore,
understanding the performance of rubble-mound armor in terms of hydraulic stability is
essential for designing new structures and upgrading existing ones, particularly in light of
climate change effects such as sea level rise and increased wave storminess [3,4].

Detecting local defects in coastal defense structures, like displacements, breakage, or
removals of concrete armor units (CAUs), is crucial to prevent potential threats to the safety
of breakwaters. Damages observed in these structures can lead to sliding, settlement, or
toppling, causing the displacement, breakage, or removal of CAUs. Additionally, scouring
at dike foundations may occur and result in severe damages under extreme wave forces
from storms. Identifying local shifts in the elements of these structures would be beneficial
for studying their performance and mitigating damages caused by potential defects [5].
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Techniques for assessing and measuring lab-scale physical models, with a focus on
examining the behavior of RMBs under wave action, have advanced significantly in re-
cent years. Laboratory investigations exploring this subject employ a range of scanning
devices, including structured light scanners, infrared scanners, and laser scanners, along
with conventional profilers [6]. Some studies have also integrated devices with addi-
tional depth measurement capabilities, such as time-of-flight (ToF) and RGB-D cameras
(e.g., Kinect) [7–10], providing the advantage of collecting information from the submerged
portions of RMB models. Image-based methodologies are also increasingly utilized [11],
with a specific subset of studies concentrating on photogrammetric reconstruction [12,13]
to achieve a detailed three-dimensional representation of the slopes.

However, unlike laboratory testing of physical models, the field of on-site monitoring
of RMBs still has ample room for further advancement in both research and the develop-
ment of assessment methodologies. Currently, the evaluation of the current maintenance
conditions in RMBs and groins typically relies heavily on visual inspections to assess
structural damage. Whether conducted during routine monitoring campaigns or post-
storm assessments, these inspections provide essential insights for improving breakwater
design and maintenance, ensuring their long-term effectiveness. Nevertheless, developing
standardized and more efficient methodologies for the in-field evaluation of RMB damage
remains a challenging task due to the significant variability in construction from site to site,
as well as associated costs and safety considerations.

1.1. SfM-MVS Photogrammetry in RMB Inspection

Terrestrial photogrammetry [14] and terrestrial laser scanning (TLS) [5] have proven
to be efficient techniques for examining changes in small dikes or RMBs using point clouds
(PCs) derived from different epochs. Nevertheless, the advent of uncrewed aerial vehicles
(UAVs) has revolutionized coastal monitoring, offering a cost-effective, flexible, and high-
resolution approach to data collection across large areas [15]. While UAVs can be equipped
with various sensors, such as UAV-borne LIDAR, affordable and lightweight RGB cameras
have become the standard for remote sensing and photogrammetric research. In this context,
the photogrammetric applications of these tools in the field are diverse, encompassing
tasks such as investigating near-shore hydrodynamics [16], mapping and quantifying
volumetric changes on beaches [17], and inspecting offshore civil infrastructures [18].
The integration of UAVs into such tasks not only establishes a robust toolkit for detailed
photogrammetric reconstructions and analyses but also introduces real-time monitoring
capabilities, particularly crucial after severe events [19]. UAV-based photogrammetry
has also proven to be a useful reverse engineering technique, providing data on actual
morphologies that can be translated into numerical analyses in different applications (e.g.,
flooding risk assessment [20], slope stability analysis [21], erosion and accretion studies [22],
etc.). However, it is important to acknowledge that the use of UAV-based photogrammetry
in water-related studies is not without challenges. Addressing concerns such as limitations
in flight time, payload capacity considerations, legal issues, drone security, and varying
data acquisition conditions remains critical in some applications [15].

Specific applications of UAV-based surveys in rubble mound groins can be found
in previous research, such as in the work of Henriques et al., 2017 [23], which generated
photogrammetric orthomosaics and PCs to obtain data about the most exterior protection
layer of breakwaters. Gonçalves et al. 2022a and 2022b [24,25] expanded the photogram-
metric workflow by incorporating UAV-based real-time kinematic (RTK) data to accurately
map the geometry of rubble mound groins. They also conducted an accuracy assessment
using independent techniques (i.e., GNSS and TLS). These previous studies demonstrate
the potential of UAV-based photogrammetry in monitoring the structural integrity by
generating three-dimensional (3D) geometric reconstructions of RMBs, achieving accu-
racies in some cases better than 3 cm of error in checkpoints. In this regard, UAV-based
photogrammetry has proven to be a highly suitable technique to obtain detailed and pre-
cise 3D reconstructions, particularly advantageous when dealing with large, complex,
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and potentially hazardous structures like these. However, to the best of our knowledge,
there is still insufficient research on multi-temporal monitoring of RMBs using UAV-based
photogrammetry. More specifically, there is a clear shortage of studies exploring possible
methods of automatic change detection.

1.2. Change Detection Analysis in RMBs

Change detection poses a critical challenge in various remote sensing applications.
Historically, studies within this domain have relied on 2D information from remote sensing
images to address large-scale issues, such as forest monitoring or urban sprawl. Previous
research has dedicated significant efforts to developing new methods for detecting changes
from images, starting with traditional/classical pixel-based methods that primarily focus
on spectral values [26]. More recently, methods in geographic object-based image analysis
(GEOBIA) have emerged [27,28], introducing innovative segmentation and classification
techniques that consider spatial context along with spectral, topographical, textural, and
morphological properties. The emergence of new detectors and feature descriptors has
gone beyond the limitations of traditional top-view 2D pixel/object-based analyses [29,30],
playing a pivotal role in applications like security and surveillance, infrastructure monitor-
ing, or precision agriculture [31]. However, as image resolution advances to finer levels,
several challenges arise when employing 2D image-based methods. Issues like spectral vari-
ability and perspective distortion become prominent. In response to these challenges, the
incorporation of 3D data in finer-scale studies introduces a different modality for analysis,
enabling highly detailed geometric analysis [32].

Among the common techniques used to identify changes from 3D datasets acquired at
different time intervals, cross-sectional assessment or the simple comparison of digital sur-
face models (DSM), also known as the DEM of Difference (DoD) method [33], are frequently
employed. However, these techniques still predominantly rely on 2.5D information as
they primarily operate within a 2D spatial framework, despite considering the elevation or
height of objects [34]. In contrast, the damage progression along a sloping coastal structure
like a rubble-mound breakwater (RMB) is fundamentally a 3D process. It is crucial to
recognize that objects may undergo vertical shifts, rotations, or tilting, emphasizing the
need for approaches that can capture and analyze changes in the full 3D spatial context.

On the other hand, methods lacking full 3D spatial information often struggle to
differentiate individual armor units, reducing possibilities for subsequent analysis. While
the simpler DoD approach can be useful for estimating erosion volume in the breakwater, a
more detailed assessment can be carried out at the individual block level. This approach
yields more precise statistics and provides a more reliable count of the displaced armor
units [6].

Earlier investigations aimed to refine methods for estimating poses of individual
blocks, though there is a relative absence of applications on dense PCs obtained directly
from on-site photogrammetric surveys. In a study conducted by Puente et al. in 2014 [5],
changes in RMBs were examined using TLS PCs from different time periods. To estimate
the rigid body transformation parameters, they employed K-means clustering to identify
planar segments representing the faces of the cuboids. Bueno Esposito et al., in 2015 [35],
presented an approach for reconstructing wave-dissipating blocks from incomplete PCs
of RMBs captured by airborne LiDAR. Their method used segmentation based on normal
vectors and prior knowledge about the properties of the cuboids to refine the segmentation
and define the boundaries of individual armor units. Xu et al., in 2022 [36], presented a
deep-learning-based approach for block pose identification that could even identify CAUs
with complex shapes, such as tetrapods or clinger blocks. However, this method entails
the need for extensive training datasets to feed the convolutional neural network and
substantial computational resources, which may present implementation difficulties and
necessitate site-specific fine-tuning.

Although not specifically applied to RMBs, Shen et al., in 2018 [37], presented a
methodology to extract individual brick poses from a laser scan PC of a cluttered pile of
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cuboid bricks. Their proposed workflow includes connected component analysis, principal
component analysis, and a voting scheme to reconstruct bricks individually. Shen, Wang,
and Puente in 2020 [38] proposed a method for detecting changes in masonry walls using
TLS PCs with a regular distribution of bricks, a case study analogous to cube-armored
breakwaters with a regular placement pattern. They utilized the TLS intensity attribute
to differentiate between materials of mortar and bricks, followed by a 3D connected
components algorithm to extract and label individual bricks.

1.3. The RANSAC Approach

While there are multiple valid strategies in the statistics field for determining block
pose through surface extraction, several of the reviewed solutions may suffer from practical
limitations, such as computational intensity, implementation complexity, and sensitivity
to data noise [39]. For instance, the M-estimator, L-estimator, R-estimator [40], and Least
Median of Squares (LMedS) [41] methods approached regression with outliers as a min-
imization problem, akin to the least square method that minimizes the sum of squared
error values. However, they employed nonlinear and intricate loss functions instead of the
square of the error. LMedS aimed to minimize the median of the error values, requiring a
numerical optimization algorithm to solve such nonlinear minimization problems. The 3D
Hough [42] method transforms spatial data (e.g., 3D points corresponding to a plane) from
the 3D data space into a parameter space (e.g., normal vector components and distance from
the origin). The most prevalent point in the parameter space is identified as its estimation,
demanding a significant amount of memory to represent the parameter space. As stated
before, deep learning methods, such as convolutional neural networks (CNNs) for 3D pose
estimation [43], have also gained popularity. However, they may face challenges such
as high computational resource requirements, the need for large training datasets, and
complexity in adapting to different scenarios.

In contrast to the aforementioned methods, the random sample consensus (RANSAC)
algorithm [44] simplifies the process into two steps: generating a hypothesis from random
samples and verifying it against the data. This approach eliminates the need for complex
optimization algorithms and large memory allocations. In that sense, RANSAC can ro-
bustly work in a wide range of applications and with several sources of data (e.g., TLS,
photogrammetry), even if these data include more than 50% of outliers [45]. Besides its
enhanced computational efficiency, RANSAC presents another important advantage in
its scalability concerning the size of the input PC and the number and size of the shapes
within the data.

This algorithm has already been validated in other applications, such as the automatic
extraction of building elements (e.g., roof planes and walls) [46,47], structural planes of
rocky slopes [48], water-level planes [49], etc. In these studies, the application of RANSAC
has demonstrated efficient performance, even in photogrammetric PCs, which are typically
noisier than those obtained through TLS or LiDAR.

This article introduces a novel methodology for monitoring the structural stability
of wave-dissipating cuboids of RMBs using UAV-based photogrammetric surveys and
RANSAC-based segmentation. To assess the practicality and performance of this approach,
we conduct a case study application on a detached breakwater that has experienced dam-
age due to a severe maritime storm. This case study aims to evaluate the effectiveness
of the proposed RANSAC-based approach in comparison to traditional methods such
as the Difference of Digital Surface Models (or DoD), particularly in the context of de-
tecting and quantifying changes like tilting in individual armor units. The methodology
enables the generation of quantitative insights into the extent of damage and the overall
structural integrity of the RMB, facilitating the conduction of a zonal stability analysis for
this breakwater.
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2. Materials and Methods
2.1. Study Site

Located at the mouth of the Douro River in Porto, Portugal, the Cabedelo do Douro
area (41◦08′N, 8◦40′W) has a detached breakwater designed for shore protection due to the
significant wave energy in this coastal zone. The RMB plays a crucial role in shielding the
Douro River estuary from the Atlantic waves. Its strategic location reinstates the protective
function of the sand spit, ensuring the safety of ships and boats navigating through the
area [50].

The RMB was constructed with a curved shape, spanning approximately 450 m in the
southeast to northwest direction, and its concavity faces the land (Figure 1). The relatively
low crest elevation, standing at +6.0 m above mean sea level (AMSL), minimizes its visual
impact on the landscape. The structure comprises a rockfill core, overlaid by secondary
layers of granite blocks, featuring filter functions and an outer protective layer. This
protective layer consists of high-density concrete grooved cuboids (Antifer type) weighing
8 kN, initially arranged in a regular placement pattern.
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Figure 1. Location of the structure within the mouth of Douro River (a), and (b) detailed view of
the RMB.

2.2. Field Campaigns

Two flight campaigns were conducted on 12 September and 27 November 2018, with
the aim of capturing potential displacements of the armor units. While the interval between
the dates may appear short for detecting significant displacements, this period allows
for the analysis of the impact of Hurricane Leslie (13–14 October 2018) on the structure.
The hurricane, also known as Leslie storm in Spain and Portugal once in the extratropical
category, was the most powerful cyclone to reach the Iberian Peninsula since 1842 and one
of the longest-lasting Atlantic hurricanes over time. In this sense, the test field provides
an excellent environment for validating the methods and detecting potential movements
in CAUs.

The aerial images were captured using a UAV Phantom 4 Pro v.2 equipped with a
built-in camera (Table 1). All flights were planned using Pix4DCapture (Pix4D, Lausanne,
Switzerland) v.4.2.0 following a grid pattern along the breakwater and the adjacent coast,
capturing overlapping images (Table 2). The flight speed was set to an intermediate value
in the Pix4D app, which, after calculations, resulted in approximately 2.3 m/s.
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Table 1. Specifications of UAV Phantom 4 Pro quadcopter.

Weight 1388 g
Max Wind Speed Resistance 10 m/s
Max Flight Time Approx. 30 min
GNSS Positioning GPS/GLONASS
Hover Accuracy Range Vertical: 0.5 m (GPS positioning)

Horizontal: 1.5 m (GPS positioning)
Camera resolution 20 megapixels
Sensor size 1-inch CMOS

Table 2. Flight planning parameters.

Altitude for Mapping Mission 30 m
Frontlap 80%
Sidelap 60%
Ground Sample Distance <1 cm
Speed of Flight 2.3 m/s
Mission Area 2.33 ha

The required level of detail is commonly associated with the concept of ground
sampling distance (GSD), which represents the real-world size of an element represented
by a single pixel. The GSD can be calculated based on the focal length (f ), shooting distance
(d), and pixel size (p), as shown in Equation (1) [51]. According to that equation and the
camera specifications, the flight altitude was set at 30 m above the ground level to obtain
images with GSD values less than 1 cm.

GSD =
d
f
·p (1)

The field operations involving the marking and measurement of ground control points
(GCPs) and checkpoints (CPs) were carried out on the same day, immediately preceding
each flight. The points were marked on the ground using paint. For the georeferencing
of each point, three readings were recorded, and an average was calculated. This pro-
cess was conducted in real-time kinematic (RTK) mode using double-frequency GNSS
equipment with centimetric precision (Leica GNSS Smart Rover 1200). Differential correc-
tions were obtained from the Portuguese DGT’s ReNEP reference stations. Topologically,
the scene’s geometry is a linear acquisition, and such image distribution tends to pro-
duce the bending or “dome” effect in photogrammetry. To mitigate this effect, a total of
48 points, forming 7 groups/rows distributed along the central corridor, were selected and
measured as illustrated in Figure 2. Subsequently, 8 of these points were chosen as CPs to
validate accuracies.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

Table 1. Specifications of UAV Phantom 4 Pro quadcopter. 

Weight 1388 g 

Max Wind Speed Resistance 10 m/s 

Max Flight Time Approx. 30 min 

GNSS Positioning GPS/GLONASS 

Hover Accuracy Range Vertical: 0.5 m (GPS positioning) 

 Horizontal: 1.5 m (GPS positioning) 

Camera resolution 20 megapixels 

Sensor size 1-inch CMOS 

Table 2. Flight planning parameters. 

Altitude for Mapping Mission 30 m 

Frontlap 80% 

Sidelap 60% 

Ground Sample Distance <1 cm 

Speed of Flight 2.3 m/s 

Mission Area 2.33 ha 

The required level of detail is commonly associated with the concept of ground sam-

pling distance (GSD), which represents the real-world size of an element represented by 

a single pixel. The GSD can be calculated based on the focal length (f), shooting distance 

(d), and pixel size (p), as shown in Equation (1) [51]. According to that equation and the 

camera specifications, the flight altitude was set at 30 m above the ground level to obtain 

images with GSD values less than 1 cm. 

GSD =
𝑑

𝑓
∙ 𝑝  (1) 

The field operations involving the marking and measurement of ground control points 

(GCPs) and checkpoints (CPs) were carried out on the same day, immediately preceding each 

flight. The points were marked on the ground using paint. For the georeferencing of each 

point, three readings were recorded, and an average was calculated. This process was con-

ducted in real-time kinematic (RTK) mode using double-frequency GNSS equipment with 

centimetric precision (Leica GNSS Smart Rover 1200). Differential corrections were obtained 

from the Portuguese DGT’s ReNEP reference stations. Topologically, the scene’s geometry is 

a linear acquisition, and such image distribution tends to produce the bending or “dome” ef-

fect in photogrammetry. To mitigate this effect, a total of 48 points, forming 7 groups/rows 

distributed along the central corridor, were selected and measured as illustrated in Figure 2. 

Subsequently, 8 of these points were chosen as CPs to validate accuracies. 

 

Figure 2. Ground control. (a) GNSS receiver and distribution of the GCPs and checkpoints along (b) 

rows and (c) the whole RMB. 

Figure 2. Ground control. (a) GNSS receiver and distribution of the GCPs and checkpoints along
(b) rows and (c) the whole RMB.



Remote Sens. 2024, 16, 331 7 of 18

2.3. Flowchart of the Process

The methodological flow of this study, depicted in Figure 3, is based on the con-
ventional Structure-from-Motion and MultiView Stereo (SfM-MVS) photogrammetric
pipeline. Subsequently, RANSAC is employed for plane extraction, as detailed in the
following sections.
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2.4. Photogrammetric Reconstruction

SfM-MVS photogrammetry is recognized as a pivotal technique for reconstructing
3D scenes from a set of overlapping 2D images [52,53]. Image processing based on these
algorithms involves a series of steps, collectively referred to as the photogrammetric work-
flow, which facilitates the generation of dense PCs. The core of the photogrammetric
workflow lies in the SfM reconstruction (see Figure 3), commencing with (i) key feature
extraction, where distinctive (key) points are identified in the input images. These features
are extracted by the software, using techniques like Scale-Invariant Feature Transform
(SIFT) or Speeded-Up Robust Features (SURF) and serve as the foundation for subsequent
stages. Following feature extraction, (ii) a feature matching process is undertaken to es-
tablish correspondences between key points across different images. The matched points
(namely, tie points) extracted from the images enable the determination of the initial camera
positions and matched points in 3D space. These initial estimates are then refined using
(iii) bundle adjustment, which iteratively adjusts the camera poses to minimize inconsisten-
cies and enhance the overall accuracy of the reconstruction. By incorporating GCPs into
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bundle adjustment, external calibration sources are introduced, aligning the reconstruction
with real-world coordinates. This alignment compensates for distortions from factors
like lens aberrations and sensor imprecisions, thereby enhancing the overall reliability of
the reconstruction.

Another component of the workflow is (iv) Multi-View Stereo (MVS), where the
initial sparse PCs undergo further refinement and densification to generate a dense PC.
Multi-view stereo algorithms, such as Semi-Global Matching (SGM) or PatchMatch Stereo,
leverage the geometry and photometric information across multiple views to produce
detailed and high-density PCs representing the scene geometry.

To process the aerial datasets of the RMB, we implemented the photogrammetric
pipeline using Metashape software (Agisoft, St. Petersburg, Russia) v2.0.2 within a cloud-
based infrastructure configured with 64vCPU, @2.3 GHz, 488 GB RAM, 4x Nvidia Tesla
M60/32 GB. This setup ensures the computational power necessary for the efficient process-
ing of the aerial datasets. Table 3 outlines the key photogrammetric processing parameters
employed in Metashape.

Table 3. Photogrammetric processing parameters.

Image Alignment Method Adaptive camera model
Alignment Accuracy High (original image size)
Key Point Limit 50,000
Tie Point Limit 10,000
Depth Maps Quality High
Filtering Mode Aggressive

2.5. RANSAC-Based Segmentation

The RANSAC method is a robust algorithm commonly employed for model fitting
and segmentation in PCs, enabling their partitioning into simple shapes such as planes,
spheres, cylinders, cones, tori, etc. The algorithm operates by iteratively selecting a random
subset of points from the input data and fitting a model to these points. The model is then
evaluated by counting the number of inliers, which are points that align with the model
within a certain threshold [45].

The objective was to use this algorithm to extract planar patches representing the
upper faces of the Antifer cuboids of the RMB. Therefore, parameters corresponding to
the mathematical model and termination conditions were defined before the iteration
process, depending on the characteristics of the PCs. The regularity of the cuboids played
an important role, allowing the fine-tuning of parameters based on the results until a
certain level of correctness and completeness was achieved. These parameters include
the minimum number of points required to form a plane and other thresholds for inlier
selection, such as the maximum distance to the plane, the maximum angular deviation of
the plane’s normal, etc.

A consensus solution was obtained as the best result after k iterations, approximately
determined as a function of the desired probability, according to the following equation [54]:

k =
log(1 − z)

log(1 − wn)
(2)

where z represents the minimal probability of success in finding at least one proper set of
observations, w denotes the percentage probability of observations allowed to be incorrect,
and n is the minimal number of points necessary for computing the model.

Once the best model has been identified (i.e., the one with the largest number of
inliers), the corresponding consensus planes were extracted by selecting all the inliers
consistent with the models. This process was executed on the two photogrammetric PCs
using the RANSAC Shape Detection algorithm implemented in CloudCompare software
(GNU GPL), v.2,13, with the same parameters, resulting in two segmented PCs.
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2.6. RMB Change Analysis

The RANSAC algorithm functions as a surface extraction process, identifying planar
segments representing the upper faces of each CAU one by one. The results are then ex-
ported as separate entities, with the detected planes having associated attributes, including
coordinates defining their centers {Cx, Cy, Cz} and normal vectors {Nx, Ny, Nz}. However,
at this stage, there is no direct plane-to-plane correspondence between the cuboids of PC#1
and their counterparts in PC#2. To establish this correspondence, we employed the criterion
of proximity, utilizing a GIS tool called “spatial join”. This tool assigns each entity with all
attributes of the corresponding one in the layer being joined that is closest to it.

By comparing the resulting planes between the two datasets, it becomes possible to
quantify the angular deviations or tilting that occurred over time at the individual cuboid
level. These deviations were then analyzed in-depth to evaluate the structural changes or
shifting within the breakwater.

3. Results and Discussion
3.1. Photogrammetric Reconstruction

The workflow outlined in Section 2.3 was applied to the two datasets obtained in their
respective flight campaigns. All processing steps, as described in the preceding sections,
were executed in ETRS89 (European Terrestrial Reference System 1989) with rectangular
coordinates PTTM06 (Portugal Transverse Mercator 2006), EPSG: 3763. The orthometric
height is referenced to the geoid model for mainland Portugal, GeodPT08 [55].

Both image orientation and the subsequent densification of the PC were performed
within the automated pipeline of Metashape, selecting the “high” quality setting controls.
With this option, the software operates with the original size of the photos, allowing
for more detailed and accurate geometry, albeit at the cost of longer processing times.
Table 4 summarizes the key characteristics of the photogrammetric processing for both
time periods.

Although the flight planning files used in both flights were not exactly identical, the
number of images and flight altitude remained reasonably consistent. This consistency
is crucial when comparing data across multiple time periods, and whenever possible,
equivalent parameters should be maintained, ideally by using the same waypoint file. This
approach ensures that image resolutions, and consequently the resolutions of derived PCs,
remain relatively uniform. Furthermore, employing the same technique for generating
PCs and equivalent GCPs for georeferencing contributes to positional consistency in the
resulting photogrammetric products. When PC sources are different, preprocessing steps
are often required before applying any change detection algorithm [56]. In contrast, in this
case, intermediate co-registration processes can be skipped, making PC data from different
time periods directly comparable.

Table 4. Summary of photogrammetric processing results.

Flight #1 Flight #2
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As a reference for further comparison with the proposed RANSAC-based method, we
also generated the DoD map (Figure 4) by deriving the differences between the two DEMs,
each with resolutions better than 3.5 cm/pix, as shown in Table 4. The DoD provides a
straightforward representation of surface elevation changes, making it rather easy to detect
and visualize areas experiencing severe alterations. However, even in these cases, obtaining
a precise interpretation of the number of shifted blocks is challenging using this approach.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 19 
 

 

remain relatively uniform. Furthermore, employing the same technique for generating 

PCs and equivalent GCPs for georeferencing contributes to positional consistency in the 

resulting photogrammetric products. When PC sources are different, preprocessing steps 

are often required before applying any change detection algorithm [56]. In contrast, in this 

case, intermediate co-registration processes can be skipped, making PC data from differ-

ent time periods directly comparable. 

As a reference for further comparison with the proposed RANSAC-based method, 

we also generated the DoD map (Figure 4) by deriving the differences between the two 

DEMs, each with resolutions better than 3.5 cm/pix, as shown in Table 4. The DoD pro-

vides a straightforward representation of surface elevation changes, making it rather easy 

to detect and visualize areas experiencing severe alterations. However, even in these 

cases, obtaining a precise interpretation of the number of shifted blocks is challenging 

using this approach. 

 

Figure 4. Global DoD. The detail view illustrates the NW head of the RMB showing some accreted 

and eroded areas that hint at the displacement of some CAUs. 

3.2. RANSAC-Based Analysis 

3.2.1. PC Segmentation 

The PC segmentation process was implemented following the methodology de-

scribed above to fit planes to the PC data (Figure 5). While applying the RANSAC algo-

rithm, the largest planes in the original PC (Figure 5a), corresponding to the top concrete 

platform of the RMB, were also detected, as illustrated by the pink, orange, and green 

patches in Figure 5b. These planes were subsequently removed from the classified data, 

retaining only the planes representing the CAUs. 

Additional challenges associated with the use of RANSAC are depicted in Figure 

5c,d. In some instances, planes were fitted across the surfaces of multiple cuboids due to 

their proximity or similar elevations. This phenomenon is predominantly observed in the 

upper zone of the RMB, where the CAUs were initially placed level, and due to the stabil-

ity of these areas, they remain mostly level. Moreover, the narrow gaps between neigh-

boring armor units often go unsampled, consolidating several wave-dissipating block 

poses into a singular representation, as highlighted by previous studies utilizing alterna-

tive methodologies [57,58]. Conversely, there are cases wherein finding a suitable plane 

representing specific cuboids proves challenging. This occurs predominantly at the lower 

Figure 4. Global DoD. The detail view illustrates the NW head of the RMB showing some accreted
and eroded areas that hint at the displacement of some CAUs.

3.2. RANSAC-Based Analysis
3.2.1. PC Segmentation

The PC segmentation process was implemented following the methodology described
above to fit planes to the PC data (Figure 5). While applying the RANSAC algorithm, the
largest planes in the original PC (Figure 5a), corresponding to the top concrete platform
of the RMB, were also detected, as illustrated by the pink, orange, and green patches in
Figure 5b. These planes were subsequently removed from the classified data, retaining only
the planes representing the CAUs.

Additional challenges associated with the use of RANSAC are depicted in Figure 5c,d.
In some instances, planes were fitted across the surfaces of multiple cuboids due to their
proximity or similar elevations. This phenomenon is predominantly observed in the
upper zone of the RMB, where the CAUs were initially placed level, and due to the
stability of these areas, they remain mostly level. Moreover, the narrow gaps between
neighboring armor units often go unsampled, consolidating several wave-dissipating
block poses into a singular representation, as highlighted by previous studies utilizing
alternative methodologies [57,58]. Conversely, there are cases wherein finding a suitable
plane representing specific cuboids proves challenging. This occurs predominantly at the
lower levels of the RMB, where the PC exhibits lower quality and increased noise due to
degraded texture of the cuboids in these areas and the presence of water, algae, etc.
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Figure 5. RANSAC segmentation: (a) RAW point cloud; (b,c) point cloud segmented into planes,
and (d) examples of how some parameter settings produce issues affecting the precision of the
segmentation. The colors of planes are assigned arbitrarily for differentiation purposes.

The process of determining appropriate fitting parameters has been carried out it-
eratively, involving trials with gradual refinement until reasonably satisfactory results
were achieved in terms of meaningful interpretation and comprehensiveness. The best
outcomes, based on these criteria, were obtained with a minimum support points per plane
of 200 and a maximum distance to the fitting plane of 0.005 m. The maximum allowable
deviation in the normal direction of the plane from the estimated normal was set to 5◦. The
overlooking probability value was set to 0.0001, aiming to work with a low probability of
missing outliers during the RANSAC plane fitting process.

To evaluate the accuracy of the RANSAC results, we chose a representative sampling
area in the southeast quadrant of the RMB, encompassing approximately 1037 CAUs, which
accounts for roughly a quarter of the total number of armor units. To prevent the inclusion
of flooded areas, cuboids situated at elevations lower than 0 m AMSL were excluded from
the sampling. As illustrated in Figure 6, a manual sampling of this zone was performed to
verify the correct classification of planes in both time periods.

Items classified as True Positives (TP) correspond to actual cuboids correctly modeled
by a plane. False Positives (FP) refer to detected planes that do not precisely correspond
to the top face of an individual wave-dissipating block. A significant portion of items
falling into this category consists of planes fitted to the lateral faces of some cuboids. False
Negatives represent actual CAUs that were not detected as planes by the RANSAC fitting,
so they were manually added to account for their number. A single plane fitting two (or
more) cuboids has been considered in terms of counting as two (or more) FNs. Lastly,
the concept of True Negative (TN) is somewhat more abstract and includes non-cuboids
correctly classified as such. As shown in Figure 6, this class includes manually added
elements like large rocks within inter-block spaces, which the algorithm correctly identified
as non-cuboids.

Table 5 shows the confusion matrix containing TP, TN, FP, and FN values. These
values are components of the confusion matrix which defines actual and predicted classes.
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Table 5. Confusion matrix.

Predicted Class

A
ct

ua
lc

la
ss

True positives False negatives Positive
PC#1 932 PC#1 41 PC#1 973
PC#2 882 PC#2 68 PC#2 950

1814 109 1923
False positives True negatives Negative

PC#1 51 PC#1 12 PC#1 63
PC#2 66 PC#2 21 PC#2 87

117 33 150

Positive Negative
PC#1 983 PC#1 53
PC#2 948 PC#2 89

1931 142

Sensitivity, specificity, precision, negative predictive value, and accuracy can be easily
derived from the confusion matrix values, with the formulas mentioned in Table 6:

Table 6. Performance indicators based on the TP, FP, TN, and FN parameters [59].

Sensitivity = TP
TP+FN (3)

Speci f icity = TN
TN+FP (4)

Precision = TP
TP+FP (5)

Accuracy = TP+TN
N (6)

Sensitivity, representing the percentage of positive cases, is 94%, while specificity,
the percentage of negative cases, is 22% in our experiment. Precision achieved 94%, and
accuracy, indicating the percentage of correctly identified cases, is 89%.

While these results are promising, there is potential for improvement in the method,
especially in reducing FPs associated with detecting lateral faces on the CAUs. Moreover,
the count of FNs is relatively high, mainly due to planes fitted to multiple Antifer blocks
simultaneously. Conducting lower altitude flights with higher PC resolution could poten-
tially enhance the detection of discontinuities between cuboids and improve sensitivity to
detect outliers based on the distance to the planes.
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3.2.2. RMB Stability Assessment

The maximum consensus planes obtained by applying the RANSAC algorithm to
each of the dense PCs were cross-referenced through a proximity-based criterion. Through
this spatial join or alignment process, a total of 3697 pairs of corresponding planes were
identified across the entire surface of the breakwater.

While the correlation method used here is advantageous due to its inherent simplicity,
it is not without its drawbacks. The effectiveness of this method relies significantly on the
precision of the RANSAC algorithm in detecting and segmenting planes. Any inaccuracies
in the segmentation of either PC, such as FPs or FNs, directly impact the subsequent
plane matching phase. Essentially, an orphan plane, which exists in one dataset without a
counterpart in the other, may be matched with the nearest available plane. This could result
in semantic inconsistencies and distort subsequent analyses, although it does provide the
advantage of generating a comprehensive and continuous dataset. To address these issues,
the spatial join tool introduces a distance field within the outcome, representing the spatial
closeness of linked geometries. This enables the definition of a specific tolerance threshold
to prevent these inconsistencies.

The normal vectors of the fitted planes for each corresponding pair of block faces
can be acquired to estimate the tilt angle within a single block. Figure 7 illustrates the
overall inclination values obtained for each cuboid in the RMB, categorized based on
their magnitudes.
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In the graphics presented in Figure 8, a more detailed breakdown of these inclinations,
considering both magnitude and inclination direction, is provided. Analysis of these
figures allows us to deduce that the most significant instabilities of the blocks occur in
the predominant southwest (SW) direction, aligning with the most exposed flank of the
breakwater. Some tilting of the cuboids is also noticeable in the northeast (NE) body of
the RMB, although the movements detected here are generally much smaller. In terms of
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magnitude, it is observed that 61.1% of the wave-dissipating blocks undergo rotations of
zero or less than 1◦, and 91.7% experience movements of less than 2◦ based on data derived
from the RANSAC method. However, it is worth noting that rotations of certain CAUs can,
in specific cases, exceed 50◦.
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Figure 8. Overall tilt analysis of the identified cuboids: (a) magnitude and (b) direction of rotations.

In Figure 9, an illustrative region displaying relatively stable blocks within the south-
west (SW) body is presented. Evaluating displacements or rotations solely through a visual
examination of orthophotos from two different time periods poses a significant challenge.
Factors like variations in imaging texture due to cuboid shading, the presence of biofilm,
algae, etc., add complexity to the visual comparison of the orthophotos. Nonetheless,
careful observation may suggest some rotation in the lower-right cuboid of the image.
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Figure 9. Comparison of DoD vs. RANSAC-based methods. Orthophotos corresponding to
(a) the first flight (pre-storm) and (b) the second flight (post-storm), (c) DSM subtraction (DoD), and
(d) tilting results measured with the RANSAC-based approach.

In the case of DoD, discerning any form of displacement or rotation is challenging,
especially for cuboids with significant displacements. Unlike cuboids with noticeable
movements, it is difficult to infer any changes in the elevations of rotated CAUs, as these
elevations may remain relatively stable despite the rotation. Some elevation fluctuations are
observable within inter-block spaces, potentially attributed to the movement of small stones
in the underlayer or artifacts in the DSMs caused by occluded regions. The DoD represents
elevation changes on a cell-by-cell basis, typically along a predefined direction, often the
Z-axis (vertical direction). While the simplicity of the DoD method is advantageous, it does
have limitations in intricate contexts, such as overhangs and nearly vertical slopes, where
vertical differences may not provide comprehensive insights. Similar findings have been
reported in previous studies [60]. Consequently, the precision of interpreting elevation
differences along the edges of each CAU is not entirely accurate when using a traditional
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2.5D method for change detection like DoD. As illustrated in Figure 9d, the RANSAC-based
plane-fitting method demonstrates increased sensitivity, showcasing its effectiveness even
in more stable regions of the RMB model.

Operating at the level of individual cuboids, the proposed methodology allows for
a more detailed analysis of the structure. The graphs in Figure 10 present both a global
analysis (Figure 10a) and a zonal breakdown of cuboid counts against their detected
inclinations. The zonal analysis divides the total count of CAUs into five principal zones
characterizing the RMB. The crest of the detached breakwater, referred to as RMB top,
spans its entire length and includes three rows of wave-dissipating blocks on each side of
the central platform. Due to the substantial number of blocks within this area, it exhibits a
relatively low occurrence of CAU inclinations, as illustrated in Figure 10b. In the breakwater
heads (Figure 10c,d), a limited number of units exhibit relatively high shifts, primarily
found in the northwest (NW) head. Furthermore, the southwest (SW) body zone shows
significantly higher CAU inclinations than the inner breakwater region (Figure 10e,f), which
is consistent with its exposure to wave action. Beyond this simplified examination, the
results underscore the potential of these methods to provide quantitative assessments of
the extent of damage.Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 19 
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4. Conclusions and Future Remarks

The evaluation of structural changes and tilting in coastal structures, particularly
breakwaters, is crucial for ensuring their long-term stability. The integration of aerial
imagery, photogrammetric reconstruction, and RANSAC-based segmentation provides an
intriguing tool for the continuous monitoring and assessment of breakwater stability.
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While DoD remains a prevalent method for analyzing multi-temporal changes due to
its simplicity, it has limitations. DEMs inherently lack complete 3D spatial information and
may struggle to differentiate individual armor units, leading to reduced accuracy in change
detection. This limitation becomes particularly evident in scenarios involving vertical
shifts, rotations, or tilting of individual cuboids. The results of this study demonstrate that
the proposed approach based on RANSAC is more effective than DEM-based methods in
detecting even subtle tilting. This approach provides a detailed and localized understand-
ing of the structural integrity of the breakwater. By enhancing the ability to detect and
comprehend structural changes in the RMB over time, it contributes to improved coastal
infrastructure management and resilience.

Further improvement and validation of the methodology should focus on obtaining
unambiguous matches between CAUs in different epochs. It would also be desirable to re-
fine segmentation accuracy, possibly by integrating the RANSAC method with image-based
approaches, such as using detectors and feature extractors for block edges. Additionally,
exploring the adaptability of this approach to more intricate shapes of the armor units by
fitting other geometric primitives presents an interesting avenue for research.
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