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Abstract: Forest stock volume is the main factor to evaluate forest carbon sink level. At present, the
combination of multi-source remote sensing and non-parametric models has been widely used in FSV
estimation. However, the biodiversity of natural forests is complex, and the response of the spatial
information of remote sensing images to FSV is significantly reduced, which seriously affects the
accuracy of FSV estimation. To address this challenge, this paper takes China’s Baishanzu Forest Park
with representative characteristics of natural forests as the research object, integrates the forest survey
data, SRTM data, and Landsat 8 images of Baishanzu Forest Park, constructs a time series dataset
based on survey time, and establishes an FSV estimation model based on the CNN-LSTM-Attention
algorithm. The model uses the convolutional neural network to extract the spatial features of remote
sensing images, uses the LSTM to capture the time-varying characteristics of FSV, captures the feature
variables with a high response to FSV through the attention mechanism, and finally completes the
prediction of FSV. The experimental results show that some features (e.g., texture, elevation, etc.) of
the dataset based on multi-source data feature variables are more effective in FSV estimation than
spectral features. Compared with the existing models such as MLR and RF, the proposed model
achieved higher accuracy in the study area (R2 = 0.8463, rMSE = 26.73 m3/ha, MAE = 16.47 m3/ha).

Keywords: forest stock volume; remote sensing (RS); Pearson correlation analysis; convolutional
neural network (CNN); LSTM; attention mechanism

1. Introduction

Forest stock volume (FSV) refers to the total amount of trunk growing in a certain
area of forest, which is closely related to the aboveground biomass (AGB) and carbon
storage of forest [1]. Through the change in FSV over a period of time, the dynamic change
trend of forest carbon storage can be calculated, and then the carbon sink capacity of the
forest ecosystem can be obtained [2]. As an important index to measure regional forest
resources, forest quality, and forest carbon sequestration capacity [3–6], forest carbon sink
can provide an important basis for the proposal and implementation of forest management
and management policies. Therefore, the study of FSV is of great significance in the global
carbon cycle. The traditional FSV estimation methods mainly include a standard wood
method, volume table method, etc., which require field sampling to obtain tree parameters,
and then calculate the volume, which requires a lot of manpower, material resources, and
time, and can only realize the FSV estimation of a small area [7]. With the development of
remote sensing technology, the FSV estimation model based on remote sensing data has
become one of the current hot research directions, and has played an important role in
forest resources and quality assessment [8–10], mainly including the FSV estimation model
based on multi-spectral remote sensing data [11,12] and laser radar data [13].
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As a passive remote sensing technology, optical remote sensing mainly extracts vegeta-
tion parameters and identifies forest types through the spectral information obtained by the
reflection of solar radiation on ground objects. Based on various parameters (e.g., canopy
height and canopy density) that can be used to describe the characteristics of vegetation
canopy, FSV is retrieved [14]. When using optical remote sensing data to estimate FSV, the
relationship between remote sensing data and forest parameters is first established, and
then the inversion of forest volume is further carried out [15–18]. According to the area
difference of the study area, optical remote sensing data sources with different resolutions
can be selected for FSV estimation. Low-resolution optical remote sensing images (e.g.,
MODIS, ASTER, NOAA/AVHRR, etc.) are often used to study FSV estimation in national,
intercontinental, and global large-scale research areas. Moderate-resolution optical remote
sensing images (e.g., Landsat, Sentinel, etc.) have generally increased to 30 m at the reso-
lution scale. At the urban scale, they can effectively extract forest tree species and types
and estimate vegetation coverage. At present, medium-resolution optical remote sensing
images are easy to obtain. High-resolution optical remote sensing images are generally
improved to less than 10 m, and clearer remote sensing information (e.g., texture, vegetation
index, spatial characteristics, and spectral information, etc.) can be observed. Therefore, the
use of high-resolution remote sensing images for FSV inversion can achieve better results.
However, when the resolution is too high, the relationship between spectral characteristics
and forest volume is easily affected by terrain, atmosphere, and other factors, and the
spectral characteristics are saturated. At the same time, the amount of image data required
for large-area FSV estimation is huge, so there are some limitations in use [19–21].

As an active remote sensing technology, Laser radar (LiDAR) is mainly detected by
photoelectric technology, and the distance between the target and the ground object is
measured by calculating the running time of the emitted light to the ground reflection. The
application of LiDAR in a forest resource survey is mainly to obtain the three-dimensional
structural parameters of the forest, accurately measure the tree height and number of
individual trees in the stand, and then obtain the forest structure information closely related
to the FSV, such as the height and DBH of the ground trees [22–24], and then establish the
FSV estimation model by extracting the forest parameters (e.g., canopy fluctuation rate,
density variable, height variation, etc.) [25]. LiDAR can be divided into ground LiDAR,
airborne LiDAR, and spaceborne LiDAR according to different platforms [26,27]. The
research of FSV estimation using LiDAR data mainly uses airborne LiDAR and spaceborne
LiDAR data. Spaceborne LiDAR can conduct an all-weather and all-day earth observation,
and has a strong anti-interference ability, high vertical resolution, and low operating cost,
which make it widely used in forest surveys, environmental monitoring, and land surveys
and measurements [28]. Airborne LiDAR has the characteristics of high flexibility and
high resolution, so it has been widely used in high-precision forest resource surveys and
digital construction [29]. However, at present, there are few spaceborne LiDAR data, the
acquisition cost of airborne LiDAR data is high, and the laser detection signal is greatly
affected by weather and atmospheric conditions, which limits its widespread promotion
and application in the field of forest stock remote sensing estimation [30].

The FSV estimation model based on remote sensing data can be divided into a paramet-
ric model and non-parametric model. The parameter model mainly studies the regression
relationship between FSV and remote sensing characteristic variables and can be mate-
rialized by expression. The parameter model can be divided into linear and nonlinear
parameter models. The regression equation of the linear parameter model is relatively
simple, and the model parameters are easy to estimate. When simulating the nonlinear pa-
rameter model, it can be generally converted into linear model form, but the FSV estimation
performance of this kind of parameter model is poor in a complex forest background. Non-
parametric models include Support Vector Regression (SVR), Decision Trees, K-Nearest
Neighbor (KNN), Random Forest Regression (RFR), and Artificial Neural Networks (ANN),
etc. [31–33]. The non-parametric model does not establish a clear relationship and fitting
equation between FSV and remote sensing feature variables, and can reflect the importance



Remote Sens. 2024, 16, 324 3 of 21

of each feature to FSV estimation and calculate it separately. Finally, the weighted calcula-
tion method is adopted to fit FSV. Therefore, it has great prospect and potential in the field
of remote sensing FSV estimation. Stumpf et al. [34] used TM remote sensing image data
and the KNN model algorithm to invert forest stock, and the accuracy of the KNN model
was higher than that of the linear regression method. Based on Sentinel-1A microwave
remote sensing data, Liu Xuelian et al. [35] established a random forest model to retrieve
forest stock in the Simao District of Puer City, with the Coefficient of Determination (R2)
reaching 0.80, but the accuracy needs to be improved in complex terrain areas. Based
on airborne LiDAR data, Sun Zhongqiu et al. [36] used the RF algorithm to estimate the
forest stock in Daxinggou, Jilin Province, combined with canopy height and canopy density
modeling, with the Coefficient of Determination (R2) of 0.79, and improved the operational
efficiency through variable screening.

In summary, in order to overcome the limitations of obtaining large-scale LiDAR data
and estimating FSV by ground survey methods, this paper conducted a study on FSV
estimation based on deep learning methods.

2. Study Area

This study was carried out in Baishanzu Forest Park, Zhejiang Province, China. The
study area is located at the southern end of Lishui City, Zhejiang Province, China. The
geographical coordinates are 118◦57′49′′–119◦22′9′′E, 27◦32′25′′–27◦58′28′′N, with a total
area of 505 square kilometers. As shown in Figure 1, the altitude is distributed between
300 and 2000 m. The soil types in this area are mainly red soil and yellow soil. Among
them, red soil is mainly distributed below 800 m, and yellow soil is mainly distributed
above 800 m. Its annual average temperature is 12.8 ◦C, annual rainfall is 2341.8 mm, and
annual relative average humidity is 84.0%. It is a typical representative of the subtropical
forest ecosystem. Evergreen broad-leaved forest is a zonal vegetation type in the park. The
main existing forest tree species are coniferous forests such as Cunninghamia lanceolata and
Pinus taiwanensis Hayata, broad-leaved forests such as Oak, coniferous and broad-leaved
mixed forests, and bamboo forests, with a forest coverage of more than 90%.
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Figure 1. Overview of study area.

3. Materials and Methods
3.1. Forest Survey Data

The measured data of FSV used in this study are the second-class survey data of
forest resources in Baishanzu Forest Park in 2016. According to the survey results, the
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forest area of Baishanzu Forest Park is 63,339.84 ha, the living forest stock volume is
5.58 million cubic meters, and the forest coverage rate is 89.45%. Mixed forest is the main
forest type, including coniferous forest such as Cunninghamia lanceolata, Pinus massoniana,
and Pinus taiwanensis, evergreen broad-leaved forest, coniferous and broad-leaved mixed
forest, and bamboo forest. The main tree species and their planting area in the study area
obtained from the survey data are shown in Table 1.

Table 1. The main tree species and planting area in the study area.

Main Dominant Tree Species Area/ha

Pinus taiwanensis 7583.66
Cunninghamia lanceolata 5981.86
Coniferous mixed forest 11,884.33

Theropencedrymion 11,282.87
Hardwood broad-leaved forest 8172.40

Broad-leaved mixed forest 2774.87
Oak 1687.20

Pinus massoniana 238.13
Soft broad-leaved forest 34.73

In this study, a total of 7563 samples were extracted from the second-class survey data.
Each sample point contains the main information of tree species, number of plants, tree
age, average tree height, average DBH, plot area, and stand volume. After excluding some
samples from non-forest areas, a total of 7306 samples were retained. In total, 80% of the
data were randomly selected as the training dataset, 10% as the validation dataset, and 10%
as the test dataset.

3.2. Landsat 8 Data

The Landsat 8 image data were obtained from the U.S. Geological Survey website.
This study used the Landsat 8 remote sensing data at the same time as the sample plot data,
and selected seven bands B1~B7 related to the forest stock volume as the data source. The
description, wavelength range, and resolution of each band are shown in the Table 2. The
above 7 bands were preprocessed by radiometric calibration and FLAASH atmospheric
correction to obtain the surface reflectance of the study area. As the original band factor
characteristics, the relevant vegetation index can also be calculated.

Table 2. Information on each band of Landsat 8 used in the study.

Landsat 8 Bands Description Wavelength Range (µm) Resolution (m)

B1 BLUE 0.435–0.451 30
B2 BLUE 0.452–0.512 30
B3 GREEN 0.533–0.590 30
B4 RED 0.636–0.673 30
B5 NIR 0.851–0.879 30
B6 SWIRI 1.566–1.651 30
B7 SWIRII 2.107–2.294 30

In this study, at least three de-cloud images containing the study area were obtained
every month from October 2016 to April 2017. The imaging time was consistent with
the forest survey time, which could avoid the accuracy error caused by the inconsistency
between the features extracted from the remote sensing image and the actual features due
to the difference in spatial and temporal scales.

3.3. SRTM Data

SRTM (Shuttle Radar Topography Mission) data are a digital terrain elevation model
covering more than 80% of the global land surface, which is jointly measured by NASA
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and NIMA. The SRTM data are divided into data files by latitude and longitude grids,
with 1 arc-second and 3 arc-seconds accuracy, and the resolutions are 30 M and 90 M,
respectively. In order to maintain the same spatial resolution scale as the Landsat 8 data,
this study uses 30 M resolution SRTM data for FSV prediction modeling.

3.4. Characteristic Variable Extraction

Based on Landsat 8 remote sensing image, SRTM global digital elevation data, and
survey data, this study extracted 81 characteristic variables in six categories: spectrum,
vegetation index, texture, PCA, topography, and soil, which were used to estimate and
model FSV in the study area.

3.4.1. Spectrum and Vegetation index Factor

Based on the Landsat 8 surface reflectance data obtained after radiometric calibration
and atmospheric correction preprocessing, seven band reflectance (B1~B7) data, six com-
monly used vegetation indexes, and three Tasseled Cap Trasform (TCT) vegetation indexes
were extracted.

Six of the vegetation indexes are: (1) Ratio vegetation index (RVI): RVI is highly
correlated with the biomass and chlorophyll content of green plants, and can be used to
estimate the biomass of leaf stems. When the vegetation coverage is high, RVI is very
sensitive to vegetation. When the vegetation coverage is less than 50%, this sensitivity
is significantly reduced; (2) Normalized vegetation index (NDVI): NDVI can enhance
the difference between the radiation reflection of vegetation leaves in the near infrared
band and the radiation absorption in the red band, and is positively correlated with the
vegetation coverage, which can reflect the vegetation growth status and has a strong
correlation with the stock amount; (3) Differential vegetation index (DVI): Also known
as the agricultural vegetation index, it is sensitive to soil background changes, can better
identify vegetation and water, and can effectively reflect the change in vegetation cover;
(4) Enhanced vegetation index (EVI): EVI can reduce the influence of atmosphere and soil
on vegetation reflectance at the same time, and can stably reflect the vegetation situation
in the test area. The range of red and near-infrared bands is set narrower, which can
improve the detection ability of sparse vegetation; (5) Perpendicular vegetation index
(PVI): PVI represents the vertical distance between the vegetation pixel and soil brightness
line in the two-dimensional coordinate system of the red band and near infrared band,
which can effectively eliminate the influence of the soil background, but has low sensitivity
to atmosphere; (6) Transformed vegetation index (TVI): Correct the error of NDVI in
different terrain.

TCT transforms the original image projection into the three-dimensional feature space
of three eigenvectors, Brightness, Greenness, and Wetness, by a fixed transformation
matrix. It can reflect the information of vegetation cover, bare soil rock classification, and
water content.

These vegetation indices and tasseled cap transformation characteristics are highly
correlated with vegetation growth status and are widely used in forest growth assessment.
The calculation method is shown in Table 3 [37]. The nine normalized vegetation index
images obtained through band operation are shown in Figure 2.
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Table 3. Vegetation index and calculation formula.

Vegetation Index Computing Formula

RVI RVI = B5
B4

NDVI NDVI = B5 − B4
B5 + B4

DVI DVI = B5 − 0.96916 × B4
EVI EVI = 2.5 × (B5 − B4)

(B5 + 6 × B4 − 7.5 × B2 + 1)

PVI PVI =
√
(0.355 × B5 − 0.149 × B4)2 + (0.355 × B4 − 0.8527 × B5)2

TVI TVI =
√

NDVI + 0.5
BVI BVI = 0.3029 × B2 + 0.2786 × B3 + 0.4733 × B4 + 0.5599 × B5 + 0.508 × B6 − 0.1872 × B7
GVI GVI = −0.2941 × B2 − 0.243 × B3 − 0.5424 × B4 + 0.7276 × B5 + 0.0713 × B6 − 0.1608 × B7
WVI WVI = 0.1511 × B2 + 0.1973 × B3 + 0.3283 × B4 + 0.3407 × B5 − 0.7117 × B6 − 0.4559 × B7
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3.4.2. Principal Component Factor

Principal Component Analysis is a statistical method that filters out important vari-
ables by reducing the dimension of multiple variables after linear transformation. The
transformed variables are called principal components. For remote sensing images, the
single-band image of each band corresponds to an input variable of PCA. For multi-spectral
data, principal component analysis is very useful for extracting effective information. In
this paper, the principal component analysis tool of ENVI 5.3 software is used to screen the
principal components through the characteristic contribution rate. The calculation formula
is as follows:

Ri =
λi

n
∑

i=1
λi

(1)

Among them, Ri is the contribution rate of the i th principal component eigenvalue, λi
is the i th principal component eigenvalue, and n is the total number of eigenvalues.

The principal component feature window shown in Figure 3 is obtained after the
principal component analysis of the Landsat 8 image. It can be seen from the figure that the
image feature information is mainly distributed in the first, second, and third components,
and the noise of the principal component image after the fourth component is larger.
Therefore, this study used the first, second, and third principal component components to
construct the forest stock volume estimation model of Baishanzu Forest Park.
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3.4.3. Texture Transform Factor

In this study, eight kinds of texture features, contrast, correlation, dissimilarity, entropy,
homogeneity, mean, second moment, and variance, were extracted by the gray level co-
occurrence matrix shown as follows:

p(i, j) =
V(i, j)

∑n−1
i=0 ∑n−1

j=0 V(i, j)
(2)

where p(i,j) is the value of column j in row i of the normalized gray level co-occurrence
matrix, and V(i,j) is the value of column j in row i of the moving window, and n is the
number of rows and columns of the gray co-occurrence matrix.

The size of the texture feature calculation window will also affect the extracted features.
If the window setting is too small, the internal texture features will be misdivided. If the
window setting when calculating texture features is too large, the boundary texture features
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will be misdivided. In this study, the size of the moving window is 3 × 3, and the step size
is 1.

The above eight types of texture features were extracted from each band of the prepro-
cessed Landsat 8 remote sensing image in ENVI 5.3 software, and finally 56 texture feature
factors were obtained for FSV modeling analysis.

3.4.4. Topographic and Soil Factors

In this study, two topographic factors, altitude, slope, and aspect, were used to estimate
the FSV in the study area. The elevation and slope data of the study area were derived
from the obtained SRTM elevation data using ARCGIS 10.2 software, as shown in Figure 4.
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In addition to the parameters such as tree height, diameter at breast height, and stand
volume that can directly reflect the amount of stock volume, there are many soil parameters
in the survey data. Different types of soil and soil microbial content will affect the growth
of vegetation, and the soil composition at the same position will not change for a long time.
Some parameters can be extracted as characteristic factors for stock volume estimation.
Based on this, this paper analyzes the survey data in Arcmap10.8, and extracts four soil
parameters: soil texture, soil layer thickness, humus layer thickness, and soil category.
Different soil textures and soil categories are distinguished by different digital codes to
meet the input conditions of the network.

3.5. Variable Selection

Based on the Pearson correlation analysis method, this study examines the correlation
between the characteristic variables, and screens them based on the correlation coefficient
between the characteristic variables. The Pearson formula between the two characteristic
variables is as follows:

r =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(3)

where X and Y are the sample averages of sample X and Y, Xi and Yi are the sample
values, and n is the total number of samples. The greater the absolute value of the cor-
relation coefficient r, the higher the correlation between the dependent variable and the
independent variable.

3.6. CNN-LSTM-Attention FSV Prediction Model

The FSV dataset based on multi-source remote sensing and survey data constructed in
this study has the following characteristics: a large amount of spatial information and a
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time series based on survey time. The convolution kernel pooling operation unique to a
convolutional neural network can extract the feature information of the data well, while
LSTM has a strong memory and has a good effect on serialized data processing. Based on
the advantages of the two neural network models, this study combines the two models to
construct the FSV prediction model.

Using CNN to extract the potential features of FSV modeling variables can reduce the
number of useless feature variables to compress the model training time and improve the
prediction accuracy of FSV. The structure of the convolutional neural network is shown
in Figure 5, including a convolution layer, a pooling layer for dimensionality reduction,
and a fully connected layer. Firstly, all the feature variables extracted by preprocessing
are normalized to ensure that the data scale input into CNN is the same. Then, the first
feature fusion and extraction of variables are performed in the convolution layer through a
3 × 3 convolution kernel. Then, the maximum pooling method is used to extract the data
twice through the pooling layer to reduce the amount of data required for FSV prediction.
At the same time, the ReLU activation function is used after the pooling layer to enhance
the ability of model learning. Finally, the secondary feature fusion and extracted data are
re-formed into a one-dimensional array. The array is used as the input of the fully connected
layer and is connected to the neurons of the upper structure to realize the transformation of
the data dimension, while retaining the useful information of the data. Finally, the output
of the new FSV prediction features is completed.
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The long short-term memory network (LSTM) has great advantages in processing time
series data, and it also has an excellent performance in establishing strong sequential and
multivariate regression models. Adding an attention mechanism to LSTM can make the
output layer of the network have higher discrimination to the output of the hidden layer,
increase the weight of the strong correlation output, and improve the prediction accuracy
of FSV. Therefore, this study constructs a FSV prediction model based on LSTM-Attention.

LSTM has a chain structure, which stores the state of neurons through the gate struc-
ture. The chain structure is shown in Figure 6. Each yellow box represents a neural network
layer, which is composed of weight, bias, and the activation function; each green circle
represents a pointwise operation; the arrows indicate the direction of the vector; the inter-
secting arrows represent the concatenation of vectors; and the bifurcated arrows represent
the copy of the vector. LSTM has three inputs: cell state Ct−1 (blue circle), hidden layer
state of the last moment ht−1 (purple circle), and t time input vector xt (blue circle), and the
output has two: cell state at t time Ct and hidden layer state ht. The information of the cell
state Ct−1 is always transmitted on the line above. The hidden layer state ht at time t and
the input xt will modify Ct appropriately and then pass it to the next moment. Ct−1 will
participate in the calculation of the output ht at time t. The information of the hidden layer
state ht−1 modifies the cell state through the gate structure of LSTM and participates in the
calculation of the output. In general, the information of the cell state has been transmitted
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on the upper line, and the hidden layer state has been transmitted on the lower line. They
interact with each other through the gate structure. In the three-gate structures, the results
of 0~1 are calculated by the activation function σ to affect the proportion of the information
access and abandonment of the previous neuron.
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The gate structure increases the number of network iterations, and the error of the
activation function can still be transmitted in reverse to avoid long-term dependence. At
the same time, the output of the upper layer neurons is accepted by the three-gate structures
of the forgetting gate, input gate, and output gate, and the effective information of the
historical moment is selectively retained.

The forgetting gate calculation formula is as follows:

ft = σ
[
w f (ht−1, xt) + b f

]
(4)

where wf is the forgetting gate weight matrix and bf is the forgetting gate bias.
The input gate calculation formula is as follows:

gt = σ
[
wg(ht−1, xt) + bg

]
(5)

P̃t = tanh
[
wp(ht−1, xt) + bp

]
(6)

Pt = ft · Pt−1 + gt · P̃t (7)

where wg is the input gate weight matrix, bg is the input gate bias, P̃t is the input gate
short-term state vector, wp is the tanh layer weight matrix, bp is the tanh layer bias, and Pt
is the updated neuron state.

The output gate calculation formula is as follows:

yt = σ
[
wy(ht−1, xt) + by

]
(8)

ht = yt · tanh(Pt) (9)
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where yt is the information to be output retained by the activation function σ, wy is the
output gate weight matrix, and by is the output gate bias.

For the FSV prediction model, the variables with a high correlation with FSV are
found in many characteristic variables, and more weights are assigned to high correlation
variables, which can improve the performance of model prediction. Therefore, the atten-
tion mechanism is introduced between the LSTM hidden layer and the output layer in
this study.

Let the output data of the hidden layer be hi, the weight value of the input data be ai,
and the final result calculated by the Attention mechanism be h*. The attention mechanism
calculation formula is as follows:

h∗ =
t

∑
i=1

aihi (10)

The correlation weight ai of hi and h* is calculated by the vector dot product scoring
function. The greater the correlation is, the greater the result value of the scoring function
is. The calculation formula is as follows:

si = f (hi, h∗) = hi · h∗ (11)

After that, the weight value ai is calculated by the weighted average of the Softmax
function, and the sum of the weight values of all hi is 1. The calculation formula is
as follows:

ai = so f tmax(si) (12)

The structure between the hidden layer and the output layer of LSTM with an attention
mechanism is shown in Figure 7.
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Where x0, x1, x2,. . .,xt denotes the input characteristics of FSV; h0, h1, h2,. . .,ht represents
the output value of the LSTM hidden layer; and a0, a1, a2. . .,at represents the attention
weight value of the attention mechanism to the output of the LSTM hidden layer. Calculate
the weight ai of the hidden layer output hi to h* at each time. Then the weighted average

calculation is carried out to obtain V =
t

∑
i=1

aihi and pass it to the softmax layer. The full
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connection calculation is carried out to obtain the output value of the output layer, that is,
the FSV prediction value. The calculation formula is as follows:

y = so f tmax(WvV + bv) (13)

where Wv is the weight matrix and bv is the bias.
Finally, the model input of this study is the normalized data after Pearson correlation

analysis and one-dimensional CNN preprocessing, which is input into the LSTM-Attention
model [38]. The attention mechanism is introduced into the hidden layer to obtain the
weighted average weight coefficient of the hidden layer output, and then the weight
coefficient is multiplied by the output of the LSTM hidden layer to sum, and the result is
input into the output layer of the LSTM for a full connection calculation. Finally, the output
result is inversely normalized to obtain the prediction result of FSV [39]. The workflow of
the entire model is shown in Figure 8.
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3.7. Evaluating Indicator

In this study, all FSV estimation models were implemented in Python, and the training
set and validation set were extracted through ten cross-validations of five replicates to
evaluate the performance of the model and ensure the stability of all FSV estimation model
results. The accuracy measurement of FSV in the test set includes four criteria, including
the coefficient of determination (R2), mean square error (MSE), mean absolute error (MAE),
and root mean square error (rMSE) between the observed and predicted FSV values. The
formula is as follows:

R2 =

n
∑

i=1

(
Ŷi − Y

)2

n
∑

i=1

(
Ŷi − Y

)2
(14)

MAE =
1
n

n

∑
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1
n

n

∑
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2 (16)

rMSE =

√
1
n
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∑
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where n is the sample size, Yi is the true value of the FSV of the i th sample, y is the mean
value of the true value of the FSV of all samples, and ŷi is the FSV prediction value of the
model for the ith sample.

The value of the coefficient of determination (R2) is between 0 and 1, which can reflect
the correlation between the survey data of the forest stock volume and the predicted value
of the model. The closer to 1, the higher the inversion accuracy. The average absolute
error (MAE) is obtained by taking the mean of the absolute error, and its value is a natural
number greater than or equal to 0, which can reflect the overall prediction error. The root
mean square error (MSE) is opened to obtain the root mean square error (rMSE). The root
mean square error is consistent with the dimension of the predicted value, which can reflect
the degree of deviation between the predicted value and the true value. The smaller the
value, the better the quality of the model and the higher the prediction accuracy.

4. Results and Analysis

All models and variable screening methods in this study are based on Python language
and built with Tensorflow framework. The operating system is 64-bit Windows11, and
the hardware configuration includes AMD Ryzen 7 5800 H 3.20 GHz (Advanced Micro
Devices, Santa Clara, CA, USA), NVIDIA GeForce RTX 3060 (NVIDIA, Santa Clara, CA,
USA), and 16.0 GB RAM.

4.1. Correlation Analysis and Variable Screening of Characteristic Variables

After preprocessing the remote sensing image data, this study uses the feature vari-
ables extracted from the LansSat8 image and SRTM data as potential predictors related to
FSV. Through the Pearson correlation coefficient test in SPSS 22 software, the correlation
analysis and screening of modeling factors were carried out for the obtained characteristic
variables. The Pearson correlation coefficient can be used to describe the correlation be-
tween the characteristic variables and the ground real FSV data. In this study, the Pearson
correlation coefficients between the survey FSV and all the extracted feature variables
were calculated.

Among all 81 characteristic variables, 69 characteristic variables were significantly
correlated with the stock volume when the confidence level (bilateral) was 0.01, and
5 feature variables were significantly correlated with FSV when the confidence level (bilat-
eral) was 0.05. They are the B1 band of spectral features, the B5 difference feature of texture
features, the homogeneity feature of B6 and B7 bands, and the third component of principal
component features. Seven feature variables were not significantly correlated, namely, the
B6 and B7 bands of spectral features, the correlation features of B1, B5, B6, and B7 bands of
texture features, and the difference features of B2 bands.

In order to analyze the contribution of different feature variable types to stock esti-
mation among the 69 retained feature variables, 6 different species feature variables were
combined into 7 different datasets, as shown in Table 4, which are: (1) datasets including
the vegetation index feature, texture feature, principal component feature, topographic
feature, and second-class survey feature as independent variables; (2) datasets containing
spectral features, texture features, principal component features, topographic features, and
second-class survey features as independent variables; (3) datasets containing spectral
features, vegetation index features, principal component features, topographic features,
and second-class survey features as independent variables; (4) datasets containing spectral
features, vegetation index features, texture features, terrain features, and second-class
survey features as independent variables; (5) datasets containing spectral features, veg-
etation index features, texture features, principal component features, and second-class
survey features as independent variables; (6) datasets containing spectral features, veg-
etation index features, texture features, principal component features, and topographic
features as independent variables; (7) contains datasets that retain all feature variables as
independent variables.
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Table 4. Datasets and their characteristic factors.

Variable Sets Types of Characteristic Variables

DataSet1 Vegetation index, Texture, PCA, Topography, Soil
DataSet2 Spectrum, Texture, PCA, Topography, Soil
DataSet3 Spectrum, Vegetation index, PCA, Topography, Soil
DataSet4 Spectrum, Vegetation index, Texture, Topography, Soil
DataSet5 Spectrum, Vegetation index, Texture, PCA, Soil
DataSet6 Spectrum, Vegetation index, Texture, PCA, topography
DataSet7 Spectrum, Vegetation index, Texture, PCA, Topography, Soil

4.2. Evaluation of Contribution Degree of Characteristic Variables

The CNN-LSTM-Attention model is used to test the above six datasets, respectively.
The estimated accumulation of each dataset on the model is shown in Table 5 and Figure 9.

Table 5. The evaluation indexes of each dataset.

Variable Sets R2 MAE MSE RMSE

Dataset1 0.6481 25.2271 1625.2519 40.3144
Dataset2 0.6208 25.5053 1751.4848 41.8507
Dataset3 0.7311 22.0368 1241.9801 35.2417
Dataset4 0.8299 17.4181 785.5955 28.0284
Dataset5 0.7633 21.5353 1093.2510 33.0643
Dataset6 0.8519 16.7629 683.8263 26.1501
Dataset7 0.8544 15.0753 672.3985 25.9306
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According to the test results of different kinds of feature factor combinations shown in
Figure 10, it can be seen that the highest coefficient of determination(R2) of dataset7 with
the most types of characteristic variables is 0.8544; the second is dataset6 that lacks the
information of soil characteristics. The coefficient of determination is 0.8519, and the root
mean square error between the two datasets is only within 0.3 m3/ha, which may be due
to the fact that the soil in the study area is generally not very different, which weakens the
influence of the soil environment on vegetation growth. Among all kinds of characteristic
variables, the original spectral characteristics of remote sensing images and the vegetation
index characteristics that can directly reflect the vegetation growth status have the greatest
impact on the estimation of volume. In the dataset lacking spectral characteristics and
vegetation index characteristics, the root mean square error of the model is larger than that
of other datasets, reaching 40.3144 m3/ha and 41.8507 m3/ha, respectively. The coefficient
of determination(R2) decreased to 0.6481 and 0.6208. It can be seen that spectral data is the
characteristic factor that can directly reflect the growth status of ground vegetation, and
has a high contribution in the characteristic variables of volume estimation.

4.3. Comparison of FSV Prediction Results of Different Models

Based on the dataset composed of feature variables selected in the previous section,
MLR, RF, LSTM, and CNN-LSTM-Attention models were used to predict the FSV of
Baishanzu Forest Park. The overall FSV prediction results of the four models of MLR,
RF, BP neural network, and CNN-LSTM-Attention on the test set after training on the
dataset are shown in the Figure 11. The green area indicates the sample with a difference
between the predicted FSV and the actual FSV less than 50 m3/ha. The blue area represents
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the sample with a difference of more than 50 m3/ha between the predicted FSV and the
actual FSV.

Table 6 shows the results of four different models using a combination of feature vari-
ables based on correlation analysis filtered Landsat 8 images, SRTM digital elevation data,
and survey data. The CNN-LSTM-Attention model showed the highest inversion accuracy,
and both rMSE and MAE values were minimized (R2 = 0.8519, rMSE = 26.1501 m3/ha,
MAE = 16.7629 m3/ha). The inversion accuracy of BP model without parameter optimiza-
tion decreases, the Coefficient of Determination (R2) is 0.5518. Compared with the neural
network model, the accuracy of RF and MLR models is greatly decreased, and their Coeffi-
cient of Determination (R2) are less than 0.5, which can not be applied to practical tasks.

Figure 10. Cont.
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Figure 10. MSE of each dataset: (a) Dataset1; (b) Dataset2; (c) Dataset3; (d) Dataset4; (e) Dataset5;
(f) Dataset6; (g) Dataset7.
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Table 6. Evaluation indexes of different models.

Models R2 MAE MSE RMSE

MLR 0.4071 35.9544 2738.3639 52.3293
RF 0.4754 33.1304 2422.7285 49.2212
BP 0.5518 30.6080 2070.1305 45.4986

CNN-LSTM-Attention 0.8519 16.7629 683.8263 26.1501

4.4. FSV Mapping of the Study Area

Based on the four different FSV estimation models, we estimate the FSV for the entire
study area. The results are shown in Table 7. After removing the non-forest samples, the
model estimates that the minimum FSV of the Baishanzu Forest Park is 4.83 m3/ha, and
the maximum is 402.38 m3/ha. The minimum FSV of the actual stand was 6.95 m3/ha,
and the maximum was 414.6 m3/ha. The estimated total amount of FSV is 4,226,019.56 m3.
According to the forest survey data, the total amount of FSV in Baishanzu Forest Park is
5,066,562.23 m3. Therefore, the accuracy of CNN-LSTM-Attention in predicting the FSV in
Baishanzu Forest Park reached 83.41%.

Table 7. FSV mapping results of different models.

Models Minimum
FSV (m3/ha)

Maximum
FSV (m3/ha) Total FSV (m3) Accurate (%)

MLR 9.76 396.85 6,331,850.47 66.74
RF 4.13 359.17 3,017,532.16 71.40
BP 1.27 724.68 5,798,483.77 72.88

CNN-LSTM-Attention 4.83 402.38 5,066,562.23 83.41
Survey data 6.95 414.6 4,226,019.56 1

It can be seen that the CNN-LSTM-Attention model has the highest accuracy for FSV
estimation in the whole study area. So, based on the CNN-LSTM-Attention model, we drew
the FSV of Baishanzu Forest Park, as shown in Figure 12, where (a) is the FSV drawn based
on forest survey data and (b) is the FSV drawn according to the model estimation results.
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By comparing the DEM data of the study area, it can be seen that the high FSV
area in the study area is mainly concentrated in the low altitude area, mainly 600~800 m,
and the vegetation in this range is mainly evergreen broad-leaved forest. As the altitude
increases, the temperature gradually decreases, and the environmental climate is no longer
suitable for the growth of most vegetation, so the FSV gradually decreases. In the area
above the altitude of 1200 m, vegetation is mainly coniferous forest and its distribution is
relatively sparse.

5. Conclusions and Discussion

This paper takes Baishanzu Forest Park in China as the research object, selects Landsat
8 and SRTM as the remote sensing data sources, and takes the spectrum, vegetation index,
texture, PCA, topography, and soil from the two remote sensing data and survey data as
the modeling factors. Firstly, the Pearson correlation analysis method is used to retain the
factors with a high correlation with FSV and discard the low correlation and collinearity
factors. Secondly, seven datasets were constructed based on the retained factors to evaluate
the importance of different types of factors to FSV estimation. Finally, the CNN-LSTM-
Attention model is proposed to estimate the FSV, and the accuracy of prediction results is
compared with the MLR, RF, and BP models widely used at present. The experimental
results show that the CNN-LSTM-Attention model, which combines the advantages of the
CNN layer to extract deep features and LSTM to solve long-term dependence problems, is
superior to other existing models in both prediction accuracy and prediction time.

However, there are still some aspects that need further study and improvement.
Although the proposed method combined with convolution can fuse input features to
make the network use remote sensing variables more effectively, the performance of the
network under different hyperparameters still varies with the increase in the number
of input variables, which indicates that the targeted adjustment of network parameters
according to the type of input characteristic variables can further improve the prediction
accuracy. In addition, the parameters used in this experiment may not be applicable to
other datasets, which indicates that the further study of spectral features expressed by
forest remote sensing images in different regions is needed to improve the robustness of
the network.

With the continuous improvement of computer computing power, the regression
model based on neural network can not only be applied to other problems other than
FSV estimation, but also can be built in small servers such as home servers due to the
lightweight of the model. Therefore, it is necessary for future research to combine more
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machine learning algorithms and innovative machine learning methods. In addition, the
main method to predict FSV by combining multi-source remote sensing data is to combine
active remote sensing data with single optical remote sensing data. However, compared
to optical remote sensing data, active remote sensing data are relatively expensive and
difficult to obtain. As a result, the limitation of this study is that only Landsat and SRTM
passive remote sensing data are combined. In future experiments, more different bands of
heterogeneous remote sensing data can be attempted for image fusion, which may obtain
better FSV prediction results.
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