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Abstract: Due to the complex interaction of urban and mountainous floods, assessing flood suscepti-
bility in mountainous urban areas presents a challenging task in environmental research and risk
analysis. Data-driven machine learning methods can evaluate flood susceptibility in mountainous
urban areas lacking essential hydrological data, utilizing remote sensing data and limited historical
inundation records. In this study, two ensemble learning algorithms, Random Forest (RF) and XG-
Boost, were adopted to assess the flood susceptibility of Kunming, a typical mountainous urban area
prone to severe flood disasters. A flood inventory was created using flood observations from 2018
to 2022. The spatial database included 10 explanatory factors, encompassing climatic, geomorphic,
and anthropogenic factors. Artificial Neural Network (ANN) and Support Vector Machine (SVM)
were selected for model comparison. To minimize the influence of expert opinions on model training,
this study employed a strategy of uniformly random sampling in historically non-flooded areas for
negative sample selection. The results demonstrated that (1) ensemble learning algorithms offer
higher accuracy than other machine learning methods, with RF achieving the highest accuracy,
evidenced by an area under the curve (AUC) of 0.87, followed by XGBoost at 0.84, surpassing both
ANN (0.83) and SVM (0.82); (2) the interpretability of ensemble learning highlighted the differences
in the potential distribution of the training data’s positive and negative samples. Feature importance
in ensemble learning can be utilized to minimize human bias in the collection of flooded-site sam-
ples, more targeted flood susceptibility maps of the study area’s road network were obtained; and
(3) ensemble learning algorithms exhibited greater stability and robustness in datasets with varied
negative samples, as evidenced by their performance in F1-Score, Kappa, and AUC metrics. This
paper further substantiates the superiority of ensemble learning in flood susceptibility assessment
tasks from the perspectives of accuracy, interpretability, and robustness, enhances the understanding
of the impact of negative samples on such assessments, and optimizes the specific process for urban
flood susceptibility assessment using data-driven methods.

Keywords: flood susceptibility; ensemble learning; random sampling strategies; mountainous urban
areas; Artificial Neural Network (ANN); Support Vector Machine (SVM)

1. Introduction

Under the background of rapid urbanization, urban flooding has become a significant
challenge globally [1]. The acceleration of urbanization has led to substantial changes in
land use, with farmlands and natural areas being converted into residential and industrial
spaces. This shift increases urban surface impermeability, consequently decreasing natural
rainwater infiltration and groundwater replenishment [2,3]. Additionally, climate change
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has intensified the frequency and severity of extreme weather events like heavy rainfall,
further escalating the risks of urban flooding. Urban floods not only threaten urban
infrastructure and the safety of residents but also can lead to substantial economic and
social consequences [4,5]. Particularly, mountainous urban areas are at a higher risk of
flooding due to their complex surface structures, dense populations, and intense flash flood
processes [6,7]. Hence, it is vital to perform flood susceptibility assessments in these areas

Classical flood susceptibility assessments often use physically-based hydrological and
hydraulic models for generalized simulations of flood inundation under varying rainfall
scenarios, necessitating basic geographical data like digital elevation models (DEMs) and
land use types [8,9]. DEMs are instrumental in reflecting the gravitational potential en-
ergy of floods, thereby determining their flow direction [10]. Land use categories provide
insights into hydrological characteristics, such as infiltration and roughness at the water–
soil interface, influencing the dynamics of flood movement [11]. With the advancement
of computer capabilities and parallel computing technologies, it is now possible to use
distributed hydrological and hydraulic models for precise calculations of flood movements
in mountainous urban areas at a watershed scale [12–14]. These models, however, show
varying degrees of accuracy in mountainous terrains compared to plains [15], and spe-
cialized models have been developed for watershed-scale mountainous urban areas to
better represent the complex causes of flood disasters in these regions [16,17]. Nonetheless,
the stringent data requirements for numerical modeling and the challenge of collecting
initial and boundary conditions for each study scenario present significant hurdles. High-
resolution data are particularly essential in areas that require detailed analysis, such as
urban roads and river embankments [17]. Furthermore, the calibration and validation of
these models post-construction demand substantial human and financial resources.

In the context of these challenges, data-driven machine learning methods have become
a viable alternative for assessing flood susceptibility [18,19]. These approaches can identify
and build latent mappings between geographical features and flood susceptibility, utilizing
only remote sensing data and limited historical flood records. Characterized by their
goal-oriented nature, ease of data collection, low operational costs, and minimal need for
model calibration, machine learning methods are particularly suitable for areas lacking
essential hydrological data [20–22]. Globally, their application in various regions and scales
has been experimentally validated, showing promising results [23–25]. Research in this
field typically falls into two distinct categories: model optimization, which compares the
performance of different machine learning algorithms on the same dataset [26,27], and
strategy improvement, aimed at enhancing model performance through diverse learning
strategies within the algorithms [28,29]. However, discussions on accuracy tend to focus on
a limited set of globally selected sample points, overlooking the crucial aspect of how to
appropriately select and construct targeted sample datasets for comprehensive analysis.

Specifically, using machine learning methods for flood susceptibility assessment is
fundamentally a binary classification task [30]. Researchers need to construct a sample
set for model training, which includes positive samples (labeled 1) and negative samples
(labeled 0), corresponding to flooded and non-flooded sites, respectively. Flooded sites can
be selected from historical flooding events, and researchers typically provide a detailed
introduction of the flooded-sites database in their papers. However, the description of
the selection of non-flooded sites is often insufficient, only mentioning the extraction of a
corresponding number of negative samples [29,31,32]. Some studies also explain that their
selection of non-flooded sites comes from areas with higher flood prevention standards,
such as locations with higher elevations and areas with high drainage capacity [26]. Funda-
mentally, this process involves the incorporation of expert opinions, which can accelerate
model convergence and enhance classification accuracy [33,34].

However, these processes introduce two new issues. The first being that expert
opinions could potentially distort the true mechanisms of regional flood susceptibility.
For instance, an area’s high drainage capacity may be due to its inherent susceptibility to
flooding, as dense drainage systems are seldom constructed in regions without a history of



Remote Sens. 2024, 16, 320 3 of 18

flooding events. Therefore, high drainage capacity should not be simplistically equated
with a lack of flood occurrence. The second issue is that while using expert opinions
might improve model convergence and accuracy, the resulting flood susceptibility maps
of the study area may align too closely with these opinions. This is evident when experts
emphasize elevation, for instance, where it becomes a dominant factor in the model, leading
to flood susceptibility maps that closely resemble the area’s DEM [35]. Similarly, when
drainage capacity is emphasized, it dominates, resulting in maps closely aligned with
the distribution of drainage capacity [36]. This leads to ambiguity in flood susceptibility
assessments for the same area.

Therefore, this paper suggests that a more impartial method for selecting non-flooded
sites would be to randomly select points uniformly distributed in historically non-flooded
areas. The advantage of random selection is that it reduces the influence of subjective
human judgment on model training. However, a drawback is that random selection might
lead to reduced accuracy due to incomplete historical inundation data, potentially resulting
in the identification of false non-flooded sites. This necessitates a higher requirement for
the robustness of machine learning algorithms in this task.

Ensemble algorithms like Random Forest (RF) and XGBoost have become increasingly
popular in machine learning, attributed to their robustness and resistance to noise [37,38].
These algorithms improve prediction accuracy by combining the outputs of several weak
decision models. This approach reduces the risk of overfitting the data with a single algo-
rithm. Combining various algorithms’ results also diminishes the instability in prediction
outcomes due to data variability. This leads to enhanced generalization capabilities and
adaptability to new data [39,40]. Additionally, ensemble algorithms typically consist of mul-
tiple decision trees, each selecting features at split nodes to reduce impurity or maximize
information gain. This iterative, performance-optimized feature selection process enables
the algorithms to quantify each feature’s contribution to model performance [41]. Feature
importance provides an intuitive understanding of the model’s decision-making process,
enhancing the model’s interpretability and elucidating how it makes predictions based on
different features. When negative samples are randomly and uniformly sampled, feature
importance effectively reflects the distribution patterns of positive samples, deepening
the understanding of flood susceptibility and providing insights for further optimizing
the training dataset [42]. Previous studies have compared ensemble learning with tradi-
tional machine learning algorithms in flood susceptibility assessment from an accuracy
perspective. However, the advantages of ensemble algorithms in terms of interpretability
and robustness warrant further elucidation.

This paper selected Kunming, a city in Yunnan Province, China, characterized by both
urban and flash flooding, as a primary study subject. A flood inventory was created based on
flood observations surveyed from 2018 to 2022. The spatial database incorporated 10 explanatory
factors, encompassing climatic, geomorphic, and anthropogenic factors. Random uniformly
distributed sampling was used to extract non-flooded sites, constructing a flood susceptibility
assessment dataset. The flood susceptibility assessment employed two ensemble learning
algorithms: XGBoost and Random Forest (RF). By comparing with traditional machine learning
algorithms, such as SVM and ANN, this study demonstrated the superiority of ensemble
learning’s interpretability in understanding the potential distribution of samples, while ensuring
accuracy advantages. The analysis of feature importance guided the spatial distribution of
negative samples, updating non-flooded sites in the training dataset and resulting in more
targeted flood inundation maps of the road network. Ultimately, the paper discusses the impact
of varying proportions of negative samples on machine learning models, demonstrating the
robustness advantage of ensemble learning algorithms.

2. Materials and Methods Description
2.1. Study Area

Kunming is situated on the southwestern border of China. Its geographic coordinates
are 24.72–25.17◦ north latitude and 102.61–103.02◦ east longitude, as shown in Figure 1.
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With a typical elevation of around 2000 m, Kunming is considered a typical mountain city.
As the provincial capital of Yunnan, Kunming functions as the center of political, economic,
and cultural activity in the region. Kunming has suffered from floods for a long time.
Located at the core of the north-south central Yunnan Lake group, Kunming lies in the
Kunming Basin, which is shaped like a pot with varying slopes. The region is surrounded
by mountains on three sides, causing uneven rainfall distribution in time and space. The
river channels are numerous, with high and low rivers interlacing. The main city is located
in proximity to Dian Lake, with the city’s ground level lying a mere 3 m above the standard
water level of the lake. Several river channels are sustained by the water level of Dian Lake,
consequently impeding drainage. As a result, the flood and drainage systems are highly
vulnerable, and inadequate drainage during the flood season often leads to significant
instances of inundation.
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Figure 1. Study area and flooded sites.

2.2. Explanatory Factors

This study identifies three primary categories of factors that explain potential flood
risk: climate factors, geomorphic factors, and anthropogenic factors. The feature vector
comprises 10 potential indicators [43,44]. These indicators cover both the inherent charac-
teristics of the site and the characteristics influenced by its surroundings. They also include
factors that characterize the susceptibility to flooding in urban areas and the characteristics
of mountainous urban areas [45]. These geographic data are organized and managed
by ArcGIS.

2.2.1. Climatic Factors

The degree of flood risk is determined by climatic factors, such as annual maximum
cumulative rainfall (AP) and daily maximum rainfall (FP), which are critical factors [32].
AP and FP respectively indicate the intensity and frequency of heavy rainfall events at a
given location. For this study, rainfall data was obtained from the CHIRPS precipitation
dataset, created by the US Geological Survey Earth Resources Observation and Science
Center, which has a spatial resolution of 0.05◦. Only rainfall data from the flood season
between 2017 and 2022 was selected to match other data sources. EV data was obtained
from the Kunming Natural Resources and Planning Bureau.
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2.2.2. Geomorphic Factors

The geomorphic factors that we consider are elevation (EV), flow length (FL), topo-
graphic wetness index (TWI), slope (SL), and the distance to the river (DRI). FL represents
the maximum horizontal projection length of the distance between a point on the ground
and its flow source (or endpoint) along the direction of water flow. The calculation for flow
direction uses the D8 algorithm. FL can accurately describe the distance to the watershed
in mountainous urban areas [46]. TWI quantitatively represents the terrain’s control on
the spatial distribution of soil moisture and is a commonly used terrain attribute [47,48].
The formula for calculating TWI is shown in Equation (1). SL shows the rate of elevation
change of each pixel in the digital elevation model (DEM), which represents the maximum
slope at a pixel of the DEM. DRI represents the vertical distance to the nearest river. This is
important in characterizing the point of overflow caused by the water surface uplift of the
river [49].

TWI = ln
(

SCA
tan(β)

)
, (1)

where specific catchment area (SCA) is the upslope contributing area and β is the slope
angle.

2.2.3. Anthropogenic Factors

The anthropogenic factors in this study are drainage density (DD), the distance to the
road (DRO), and normalized difference built-up index (NDBI). DD is the length of drainage
pipes per unit area and can indicate the density of the drainage pipe network [50,51]. The
calculation method is shown in Equation (2) [52,53].

DD =
1
S∑I

i=1 Li, (2)

where S is the search radius, I is the number of pipelines, and L is the length of pipelines.
DRO represents the vertical distance of the road network and uses the same calculation

method as DRI. NDBI is an index that distinguishes urban and rural areas based on remote
sensing reflectance waves [54]. The remote sensing band data utilized in this study was
sourced from Landsat8. The calculation result is derived from Formula (3).

NDBI =
MIR − NIR
MIR + NIR

, (3)

where MIR represents the pixel value in the mid-infrared band and NIR represents the
pixel value in the near-infrared band.

The specific indicator data information are shown in Table 1. The spatial distributions
of the explanatory factors are shown in Figure 2.

Table 1. Indicators data information.

Indicators Data Source Format

Climatic
AP CHIRPS 5 km × 5 km Raster
FP CHIRPS 5 km × 5 km Raster

Geomorphic

EV Kunming Natural Resources and
Planning Bureau. 20 m × 20 m Raster

FL From DEM 20 m × 20 m Raster
TWI From DEM 20 m × 20 m Raster
SL From DEM 20 m × 20 m Raster

DRI Kunming Flood Control and Drought
Relief Headquarters Office

GIS Polyline
Shape

Anthropogenic
DRO Kunming Natural Resources and

Planning Bureau. GIS Polyline Shape

DD Kunming Flood Control and Drought
Relief Headquarters Office GIS Polyline Shape

NDBI Landsat 8 satellite 30 m × 30 m Raster
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2.3. Flooded and Non-Flooded-Sites

The Kunming Flood Control and Drought Relief Headquarters Office has set up an
urban flood control command along with an information “One Map” command system.
The project has gathered the locations of 340 flooding incidents spanning from 2018 until
the end of 2022, which are illustrated in Figure 1. Non-flooded-sites would be randomly
select points uniformly distributed in historically non-flooded areas.
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2.4. Method Describe
2.4.1. Random Forest (RF)

RF is a bagging ensemble learning algorithm that performs well in both classification
and regression domains [55]. It consists of multiple decision trees, utilizing the advantages
of decision tree algorithms such as the adaptive ability to feature missing values and
model robustness, while also addressing the limitations of decision tree algorithms such
as sensitivity to noise and overfitting. RF is obtained by combining decision trees with
random sampling methods. It trains decision trees on a randomly selected set of data
features and generates multiple decision trees. The final result is the combination of the
results of multiple decision trees, which is usually achieved through a simple majority
voting or averaging method. One advantage of RF is that it can handle the correlation
between features easily without any special treatment. It can also adapt well to various data
distributions. Additionally, the RF algorithm has strong interpretability. It can calculate
the importance of each feature to each decision tree, which can determine the importance
of that feature to the data. In practical applications, the hyperparameter tuning of the RF
algorithm is relatively simple and easy to operate.

2.4.2. XGBoost

XGBoost is a boosting ensemble learning algorithm proposed by Tianqi Chen in
2016 [56], which has been widely used in data mining and Kaggle competitions. It is a
variant of Gradient Boosting Trees (GBM) that builds on the strengths of the gradient
boosting algorithm while making improvements to increase computational efficiency and
accuracy. The XGBoost algorithm incorporates many new features based on decision tree
algorithms, such as automatically adjusting the order in which decision trees are generated
to reduce errors. It also uses regularization techniques to avoid overfitting and improve
the model’s generalization ability. There are many adjustable parameters in the XGBoost
algorithm, including the learning rate, tree depth, and regularization parameters, so some
tuning experience is necessary. The XGBoost algorithm has high computational efficiency
because it uses distributed computing technology, allowing for rapid calculation on large
datasets. In addition, the XGBoost algorithm supports missing value handling, so there is
no need for special treatment of missing values.

2.4.3. Support Vector Machine (SVM)

The fundamental concept of SVM is to find an optimal decision boundary in the data
space, which separates the two classes of data as much as possible while ensuring the
maximum distance between the decision boundary and the data points of the two classes.
This method is commonly employed to define environmental risks [57,58]. These data
points are called support vectors because they have a significant impact on constructing the
decision boundary. SVM maps low-dimensional data to high-dimensional space by means
of kernel functions, making linearly inseparable data linearly separable in high-dimensional
space. However, the drawbacks of SVM cannot be ignored, and one of the drawbacks is
that there are high requirements for data selection and preprocessing, which need to be
normalized. In addition, when training SVM models on large-scale datasets, the training
time and storage space of the model will become very large.

2.4.4. Artificial Neural Network (ANN)

The basic idea of the ANN is to use the backpropagation algorithm to adjust the
weights to achieve learning of the training data [59]. ANN consists of an input layer, a
hidden layer, and an output layer, each of which is a collection of neurons. The input
layer receives raw data, the hidden layer performs feature extraction and abstraction, and
the output layer produces the predicted results. Each neuron has several weights that
determine how the neuron processes the data.

During the training process, ANN first inputs the training data into the network, then
obtains the predicted results through the forward propagation algorithm. Subsequently,



Remote Sens. 2024, 16, 320 8 of 18

the backpropagation algorithm is used to calculate the error and adjust the weights to make
the predicted results closer to the true results. This process is repeated until the network’s
predicted results are satisfactory.

Overall, the ANN is an effective machine learning model that can be used to solve
complex classification and regression problems. However, it also has some limitations. If
the distribution of the training data is uneven, the network’s generalization ability will be
greatly reduced.

2.5. Evaluation Metrics

This article primarily employs metrics such as accuracy, precision, recall, F1-Score,
and Kappa score to evaluate and compare the performance of models. These parameters
comprehensively reflect the real performance of the confusion matrix under different
training data compositions. The specific calculation formulas are shown in (4)–(8):

Acc = TP+TN
TP+FP+TN+FN , (4)

Pre = TP
TP+FP , (5)

Rec = TP
TP+FN , (6)

F1 =
(2 × Pre × Rec)
(Pre + Rec)

, (7)

Kappa =
p0 − pe

1 − pe
, (8)

where TP denotes true positive, TN denotes true negative, FP denotes false positive, FN
denotes false negative, p0 denotes the proportion of units in which the judges agreed, and
pe denotes the proportion of units for which agreement is expected by chance [60]. In
this classification, a flooded site is defined as a positive sample, and a non-flooded site is
defined as a negative sample.

The ROC curve (receiver operating characteristic curve) is a commonly used method
for evaluating the performance of classification models. It serves to describe the perfor-
mance of a classifier under varying thresholds. In the case of binary classification problems,
the ROC curve is typically plotted with the TPR (true positive rate) on the vertical axis
and the FPR (false positive rate) on the horizontal axis. TPR represents the proportion
of true positive samples that are correctly predicted as positive by the classifier, while
FPR represents the proportion of true negative samples that are incorrectly predicted as
positive by the classifier. The AUC (area under the curve) of the ROC curve is a measure
of its performance, and its values range from 0.5 to 1. A value of 0.5 indicates that the
performance of the classifier is similar to random guessing, while a value of 1 indicates
perfect performance. Generally, a larger AUC indicates better classifier performance [61].

2.6. Experimental Design and Model Implementation

This article illustrates the advantages of ensemble learning algorithms in this task by
creating two distinct types of flood susceptibility maps, controlling the distribution range
of non-flooded sites. Firstly, in conjunction with the explanatory factors mentioned above
and flooded sites, random safety sites were generated across the entire study area as model
input. This process resulted in a flood susceptibility map for the entire research area while
recording the feature importance of the ensemble learning models. Secondly, an analysis
of the feature importance generated in the previous step was conducted to reduce the
distribution disparities between non-flooded sites and flooded sites, specifically focusing
on the road network to create a unique flood susceptibility map. The flow diagram of the
flood susceptibility assessment steps is presented in Figure 3.
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All the models were implemented using the scikit-learn package in Python. RF use
packaged the Gini algorithm with 100 estimators. According to XGBoost, the number of
estimators was also set as 100, with a subsample of 6, max depth of 6, and a learning rate
of 0.1. RBF kernel was selected in SVM for its high convergence speed. The Backpropaga-
tion algorithm was adopted in ANN training with a learning rate of 0.1. More detailed
information can be found in the manual of scikit-learn.

The non-flooded sites were randomly selected. The ratio of flooded sites to non-
flooded sites was set to 1:1. A 5-fold cross-validation technique was adopted in this study.
The flooding observation and corresponding explanatory factor datasets were equally
divided into five subsets, or “folds”. The models were then trained and tested ten times.
In each iteration, one fold was used for testing, and the remaining four folds were used
for training. By adopting the 5-fold method, the models used all the available data and
provided a comprehensive evaluation.
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3. Results
3.1. Model Comparison

The performance of the ensemble learning and comparative models are shown in
Table 2. RF shows the highest performance in all models, with Acc of 0.81, Pre of 0.80, Rec
of 0.81, and Kappa of 0.89. XGBoost followed closely with Acc of 0.80, Pre of 0.78, Rec of
0.81, and Kappa of 0.88. The two ensemble learning models demonstrated comparable
performance, with RF slightly outperforming the other.

Table 2. The performance of the ensemble learning and comparative models.

RF XGBoost SVM ANN

Acc 0.81 0.80 0.78 0.76
Pre 0.80 0.78 0.82 0.69
Rec 0.81 0.81 0.76 0.81
F1 0.80 0.79 0.78 0.73

Kappa 0.89 0.88 0.85 0.85

The indices of the comparative models were lower than those of the ensemble learning
models generally. Although SVM has the highest Pre of 0.82, it also has the lowest Rec of
0.76. This indicates that SVM tends to underestimate susceptibility. The other indices of
ANN and SVM are all lower than these of the two ensemble learning models. These results
suggest that ensemble learning algorithms have an advantage over the comparative models.

Using the test set, ROC curves were generated for the aforementioned models to
intuitively demonstrate the performance superiority among them [62], as shown in Figure 4.
The ROC curves corroborate the results in Table 2, where RF almost completely envelops
the ROC curves of the other models, achieving an AUC of 0.87. SVM has the smallest area
enveloped by its ROC curve, with an AUC of only 0.82. The ROC curves of XGBoost and
ANN intertwine with each other, with AUC values of 0.84 and 0.83, respectively.
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3.2. Feature Importance

RF and XGBoost can evaluate the importance of explanatory factors. The evaluation
results of factor importance are shown in Figure 5. The evaluation results of RF and
XGBoost are similar with the same rank. DRO, TWI, and EV are among the top three most
important features. In RF, the feature importance of DRO is 0.27, TWI is 0.18, and DD is 0.11.
In XGBoost, the feature importance of DRO is 0.44, TWI is 0.14, and DD is 0.08. Compared
to XGBoost, the feature importance in RF is more balanced, with a significantly smaller
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variance. XGBoost places more emphasis on the importance of DRO in differentiating
samples while neglecting the importance of other factors. The results indicate that the road
and adjacent areas of mountainous urban areas are more susceptible to flood, which is an
important flood channel during extreme precipitations due to its varying slope.
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3.3. Flood Susceptibility Map

The flood susceptibility maps produced by the ensemble learning and comparative
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As shown in Figure 6, all four flood risk maps illustrate the flood risk in the urban
areas on the northwestern side of the study area, which is located adjacent to Dian Lake.
The road networks and their adjacent areas are highly susceptible to flood.

The number of flooded sites located in each susceptibility zone was also calculated
(Table 3), as well as the pixel numbers of each flood susceptibility zone (Table 4). The
ensemble learning algorithms RF and XGBoost demonstrate better performance in flood
susceptibility mapping. In a total of 340 flood points, it is found in Table 3 that 254 (74.7%)
and 285 (83.8%) of flooded sites are located on the highest susceptibility zones in the maps
generated by RF and XGBoost, respectively, while only 217 (63.8%) are located on the
highest susceptibility zone in the SVM.

Table 3. Number of flooded sites located on each susceptibility zone.

RF XGBoost SVM BPNN

Number Proportion Number Proportion Number Proportion Number Proportion

Highest 254 74.7% 285 83.8% 217 63.8% 260 76.5%
High 51 15.0% 18 5.3% 70 20.6% 44 12.9%

Moderate 19 5.6% 9 2.6% 28 8.2% 15 4.4%
Low 11 3.2% 9 2.6% 16 4.7% 12 3.5%

Lowest 2 0.6% 16 4.7% 6 1.8% 6 1.8%

Table 4. Pixel numbers of each flood susceptibility.

RF XGBoost SVM BPNN

Highest 118,350 214,492 172,260 197,711
High 149,583 82,366 187,810 162,711

Moderate 243,332 79,758 216,815 175,000
Low 348,563 124,056 325,784 247,556

Lowest 580,254 939,410 537,413 657,104

It is noteworthy that ANN also shows high accuracy in identifying the flooded site,
with 260 (76.5%) in the highest susceptibility zone. From Table 4, we can find ANN
has the largest high and highest susceptibility zone area. The pixel number of high and
highest susceptibility area of ANN is significantly larger than those of RF and XGBoost.
Considering the low Pre (0.69) and high Rec (0.81) in Table 2, ANN may overestimate the
high flood susceptibility area.

In comparison to other methods, the flood risk map of RF balances multiple possible
factors that could cause flooding, while emphasizing the importance of roads and terrain.
RF, XGB, and ANN have a certain delineation of block roads in the main urban areas, which
is consistent with previous studies on the unique runoff mechanism and the change in flow
accumulation caused by buildings in urban areas [64,65].

3.4. Flood Susceptibility in Road Network

It is observed that DRO is the most critical factor for both ensemble learning ap-
proaches. This predominance is attributed to two main reasons. Firstly, the roads in
mountainous urban areas serve as vital flood discharge channels when mountain floods
are channeled into urban areas. Furthermore, the flood inventory, developed by the local
government with a focus on public facilities, includes numerous flooded sites collected by
local traffic management departments. Consequently, the flooded sites in the dataset are
naturally distributed around roads. The feature importance of ensemble learning allows
for the inference of this inherent distribution, showcasing the role of factor selection in
ensemble learning.

Therefore, the assessment of flood susceptibility in the road network is further con-
ducted through the utilization of two ensemble learning models. This choice is driven by
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the significance of the road network and the availability of a substantial dataset. As the
road network consists solely of linear features, the sampling area is defined to include the
road network and its adjacent buffer zone (80 m). The sampling of non-flooded sites is
exclusively sourced from within this region. The training and testing processes of two
ensemble learning algorithms are similar to the above section. ROC curves of both models
are shown in Figure 7. The results show that RF and XGBoost also show high accuracy
with AUC values of 0.78 and 0.76.
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The results are slightly lower than these of the total region. The underlying reason for
this is that, when sampling non-flooded sites within the road area, the DRO factor becomes
ineffective, resulting in a reduction in the model’s input dimensions and an increase in the
model’s discriminatory complexity. Despite the decrease in model precision, this trade-
off is deemed worthwhile. It allows for a targeted analysis of the sampling distribution
range concerning flooded sites, thus enhancing the discriminatory capacity of the flood
susceptibility map for the road network.

The feature importance obtained is shown in Figure 8. Both models emphasized the
importance of TWI, EV, and DD, which indicates that the topography and drainage capacity
are important for flood susceptibility of road network.
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The flood susceptibility of the road network is shown in Figure 9 and Table 5. The
results show that RF and XGBoost successfully identified the flood susceptibility areas
of the road network. Approximately 83.8% of flooded sites are located on the highest
susceptibility areas of RF, and 87.3% are located on these of XGBoost. Ensemble learning
algorithms also show advantages in assessing the flood susceptibility of the road network.
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Table 5. Model evaluation results at actual flooded sites (on the road).

RF XGBoost

Number Proportion Number Proportion

Highest 264 83.8% 275 87.3%
High 31 9.8% 17 5.4%

Moderate 10 3.2% 4 1.3%
Low 6 1.9% 7 2.2%

Lowest 4 1.3% 12 3.8%

4. Discussion

The selection of non-flooded sites is essential for assessing flood susceptibility using
machine learning methods. There is no flood inventory that can collect all flooded sites in
history. Although our flood inventory comes from a comprehensive government survey,
there is no guarantee that no flooded sites have been missed. When selecting non-flood
sites, there is inevitably a mix of unrecorded flooded sites. Therefore, the robustness of
the machine learning approach is very important. On the other hand, machine learning
requires more samples for model training to obtain higher accuracy. However, more non-
flooded sites will cause an imbalance of flooded sites and non-flooded sites. Therefore,
an experiment was conducted to test both the best ratios of non-flooded sites and the
model robustness.

The number of non-flood samples was increased, and its effect on the F1-Score, Kappa,
and AUC, which can be employed to assess the performance of imbalanced datasets, was
evaluated. As shown in Figure 10, the three indicators of SVM rapidly decrease with
an increase in the number of negative samples, indicating that SVM’s performance is
sensitive to the number of negative samples. ANN’s overall performance was slightly
lower than RF and XGBoost, but exhibited stronger instability compared to the ensemble
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learning algorithm, fluctuating significantly. This reflects ANN’s sensitivity to noise. RF
and XGBoost exhibited the best overall performance, with all three indicators higher than
SVM and ANN. RF and XGBoost each have their advantages. For F1-Score, XGBoost
performed better than RF; for AUC, RF performed better than XGBoost; when the number
of safe sites was less than 1500, RF’s Kappa value was higher, and when the number of safe
sites was greater than 1500, XGBoost’s Kappa value was higher.
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The results indicate that adding more non-flooded samples cannot improve but tend to
reduce the model performance. The balance of flooded and non-flooded sites is important
for a machine learning approach. The two ensemble learning models show high robustness
when more non-flooded samples and noise include.

5. Conclusions

In this study, two ensemble learning algorithms, RF and XGBoost, were employed to
assess the flood susceptibility of a mountainous urban area. ANN and SVM were chosen
for model comparison. Negative samples in the dataset were obtained through random
uniform sampling, and the sampling range was optimized based on feature importance.
The main conclusions of this study are as follows:

(1) Both ensemble learning models, RF and XGBoost, demonstrate high accuracy in
assessing flood susceptibility in mountainous urban areas. RF exhibits the best per-
formance among all models, achieving an Acc of 0.81, Pre of 0.80, Rec of 0.81, and
Kappa score of 0.89. XGBoost closely follows, with an accuracy of 0.80, precision of
0.78, recall of 0.81, and a Kappa score of 0.88. Their performances are significantly
superior to those of ANN and SVM.

(2) The selection of negative samples significantly impacts the assessment of flood sus-
ceptibility. Using different negative samples yields flood susceptibility maps with
varying features. The feature importance in ensemble learning algorithms reveals
the differences in the potential distribution of positive and negative samples in the
training data. Feature importance in ensemble learning can be utilized to minimize
human bias in the collection of flooded-site samples.

(3) The strategy of randomly sampling negative samples demands greater robustness
from machine learning algorithms. Ensemble learning algorithms are reliable and
robust in handling the uncertainty of negative samples. With an increase in the
number of negative samples, ensemble learning demonstrates strong generalization
and noise resistance capabilities.

In summary, this paper adopted a strategy of random sampling for non-flooded
sites and further elucidated the advantages of ensemble learning in flood susceptibility
assessment in terms of accuracy, interpretability, and robustness.
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