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Abstract: The Taklamakan Desert Region (TDR) and the Gobi Desert Region (GDR) in East Asia
significantly impact air quality, human health, and climate through dust aerosols. Utilizing the
MERRA-2 dataset’s long-term dust aerosol optical depth (DAOD) at 550 nm from 2000 to 2022, we
systematically monitored the spatiotemporal dynamics of DAOD. Our analysis covered annual,
seasonal, and monthly scales, employing geographical detector analyses to investigate the impact of
eight factors on DAOD distribution. Over the 23-year period, the interannual variability in DAOD
across East Asia was not pronounced, but a discernible decreasing trend was observed, averaging an
annual decrease of−0.0002. The TDR had higher DAOD values (0.337) than the GDR (0.103). The TDR
showed an average annual increase of 0.004, while the GDR exhibited an average annual decrease of
−0.0003. The spatial distribution displayed significant seasonal variations, with peak values in spring,
although the peak months varied between the TDR and GDR. The driving factor analysis revealed
that relative humidity and soil moisture significantly impacted the DAOD spatial distribution in East
Asia, which were identified as common driving factors for both the region and the major dust sources.
Complex mechanisms influenced the variation in DAOD, with interactions between variables having
a greater impact than individual effects. The geodetector-derived interaction q-value identified the
collective impact of soil temperature and relative humidity (0.896) as having the highest impact
on the spatial and temporal DAOD distribution. The overall spatial pattern exhibited a nonlinear
enhancement trend, with the TDR and GDR showing bilinear enhancement patterns. These findings
contribute to a better understanding of the factors influencing DAOD, offering a theoretical basis for
atmospheric pollution control in East Asia.

Keywords: East Asia; dust aerosol optical depth; spatiotemporal changes; driving factors

1. Introduction

Among aerosol particles, dust aerosols are significant contributors and represent the
largest source of aerosols globally, accounting for approximately 40–50% of the total aerosol
content [1–5]. Research indicates that around 2 billion tons of dust are released into the
atmosphere annually [6–12]. Emissions of dust pose significant threats to ecology, the
environment, and human well-being over short periods of time. As suspended aerosols in
the air, sand and dust also exert a notable influence on climate change. Not only do dust
particles alter the Earth’s radiation balance through the absorption and scattering of short-
and long-wave radiation, but the absorption and scattering of solar radiation during dust
events can impact air temperatures, leading to adverse effects on human health, ecosystems,
and even causing economic and human losses [13–16].

Remote Sens. 2024, 16, 318. https://doi.org/10.3390/rs16020318 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16020318
https://doi.org/10.3390/rs16020318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7850-1062
https://orcid.org/0000-0001-7069-1044
https://orcid.org/0000-0003-3875-0459
https://doi.org/10.3390/rs16020318
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16020318?type=check_update&version=1


Remote Sens. 2024, 16, 318 2 of 22

Global aerosol concentrations exhibit a significant increase during the spring and
summer seasons, coinciding with frequent occurrences of dust storms. As a result, dust
and mineral dust aerosol particles are the primary contributors to the observed aerosol
augmentation. The East Asian dust source is the second largest source of dust in the world
after the Sahara Desert. The dust source areas in East Asia cover approximately 5% of the
total global desert area, and the dust emissions account for about 10–25% of the global
total [15,16]. These areas play a crucial role as a significant component of the Earth’s dust
source–sink system and have important implications in biogeochemical cycles. Due to
its large dust emissions and wide-ranging impacts, East Asia has become a key region
for studying global changes and regional feedback. Influenced by cold fronts, the annual
springtime dust emissions in East Asia are estimated to be around 230–800 Tg, accounting
for approximately 50% of the total global atmospheric dust content [17]. Some studies
have even indicated that from 2001 to 2020, the dominant aerosol type in East Asia was
dust aerosol, accounting for more than 80% of the total aerosol content [1]. Approximately
30% of emitted dust aerosols settle back in desert regions, while the remaining 70% are
transported beyond the source areas. These aerosols can be uplifted to the planetary
boundary layer and subsequently carried to various regions, including China [18], the
Korean Peninsula [19], Japan [20], and even over long distances across the Pacific Ocean
to North America [21], Canada [22], and even the Arctic [23]. The transportation of dust
aerosols in the troposphere can persist for several days to even up to two weeks, posing a
significant threat to air quality in the regions along the transport pathways.

In order to accurately assess the impact of dust aerosols on climate and the ecological
environment, it is essential to quantify the spatiotemporal distribution of dust aerosols.
Currently, aerosols in East Asia have attracted widespread attention and become a focal
point in climate research. Kang et al. [24] studied the spatiotemporal distribution of three
major absorbing aerosols in East Asia from 2005 to 2016 based on OMI satellite data in order
to further understand the distribution characteristics of absorbing aerosols over East Asia.
Proestakis et al. [25] analyzed the multi-year average distribution, seasonal variation, and
evolutionary trends of dust aerosols in East Asia, as well as the columnar mass flux of dust.
Gui et al. [26] utilized CALIPSO data to observe the horizontal and vertical distribution of
dust aerosols in East Asia from 2007 to 2019 and the results revealed that the long-range
transport of various aerosols, including dust, polluted dust, and smoke, made significant
contributions to the aerosol burden in East Asia. Aerosol optical depth (AOD) is a crucial
optical parameter that serves as an indicator of air pollution levels [27]. Monitoring the
spatial and temporal variations in AOD in the atmosphere is essential for assessing the
environmental impact of air pollution. In addition, to study the main determinants of dust
aerosols in the region, it is necessary to identify the main influencing factors. Many scholars
have conducted research on the factors influencing the spatial distribution of AOD [28–33].
The findings consistently suggest that the spatial pattern of AOD is the result of complex
interactions among various factors [33]. Li et al. [30] examined the importance of various
factors affecting AOD in Xinjiang using the random forest model. The results revealed that
the AOD in Xinjiang is influenced by a combination of natural and human factors, with
natural gas (NG) being the most significant factor (14.65%), followed by precipitation (P)
(13.65%). Zhou et al. [1] monitored the spatiotemporal dynamics of the AOD in Central
Asia from 2001 to 2020 and investigated the impact of six environmental factors on the
AOD distribution using a geographic detector, along with an analysis of land use/cover
changes (LUCCs) during different periods. Liu et al. [31] investigated the impact of soil
moisture on dust aerosols in Central Asia and concluded that an exponential decrease in
aerosol emissions from dust sources was observed with increasing soil moisture under
different wind speed conditions.

Remote sensing has outstanding advantages in acquiring AOD data with large-scale
coverage and high temporal resolution, overcoming limitations such as the lack of ground
observations and spatial heterogeneity [34–39]. It provides an efficient method for ob-
taining comprehensive knowledge and theoretical support regarding the distribution and
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concentration of aerosols. Although satellite data can provide real-time information on
aerosol distribution, they are susceptible to limitations such as cloud cover and algorithmic
influences. A reanalysis dataset covers a longer time series and has a higher resolution,
allowing for a more comprehensive analysis. Additionally, it provides multiple types of
aerosol information, thereby better covering a wide range of research areas. The MERRA-2
dataset provides continuous global aerosol data. Numerous validation studies at both
global and regional scales have reported a good agreement between ground-based observa-
tion data from AERONET and MERRA-2 [28,40–42]. The global validation of MERRA-2
AOD with AERONET measurements demonstrated significant spatial consistency between
MERRA-2 and ground-based AOD. The MERRA-2 AOD data are capable of quantita-
tively reproducing the annual and seasonal variations in AOD at both regional and global
scales [28].

In this study, we investigated the spatiotemporal distribution characteristics of the
DAOD in the East Asia region using the long-term (2000–2022) dust aerosol data obtained
from the MERRA-2. The long-term evolution trends of East Asian dust aerosol were
described from monthly, seasonal, and interannual perspectives. To ensure the reliabil-
ity of the reanalysis products, the aerosol data from MERRA-2 were validated against
observations from AERONET. Furthermore, we analyzed the driving factors behind the
long-term DAOD variations in East Asia and two typical dust source regions, considering
meteorological factors, ground conditions, and human activities.

2. Materials and Methods

All calculations, analyses, and mapping for this study were conducted using Python
(version 3.6.12) and the ArcGIS geographic information system (version 10.6, ESRI, Red-
lands, CA, USA). Additionally, Matlab software (version R2018a, MathWorks, Natick, MA,
USA) was employed for mapping and analyzing trend changes.

2.1. Study Area

East Asia is located between 73◦ to 150◦ east longitude and 4◦ to 53◦ north latitude,
covering an area of approximately 11.76 million km2. The region features a high topography
in the west and low topography in the east, with numerous plateaus and mountains in
the western interior and plains and hills along the eastern coast. The rivers in this region
primarily flow from west to east, emptying into the Pacific Ocean. East Asia comprises
five countries: China, Mongolia, Japan, Korea, and North Korea [43]. The Taklamakan
Desert Region (TDR), located in the southern center of Xinjiang, and the Gobi Desert Region
(GDR), which spans between China and Mongolia, are the two most significant sources of
dust in East Asia. Covering an area of approximately 337,000 km2, the TDR is the largest
desert in China. The GDR, on the other hand, is a highland desert that covers the northern
and northwestern regions of China, as well as the southern part of Mongolia, with an
altitude ranging from 910 to 1520 m.

2.2. Dataset
2.2.1. MERRA-2 AOD

MERRA-2 is a new generation of atmospheric reanalysis data that NASA’s Global
Modeling and Assimilation Office (GMAO) released in 2016. The dataset is easily accessible,
covers a long global time series, and has a uniform distribution. It provides assimilated
traditional meteorological observation data from 1980 to the present, encompassing not
only various meteorological fields but also data on dust emission fluxes, column densities,
concentrations, and Aerosol Optical Depth (AOD).

Our research explored the spatial and temporal characteristics of dust aerosol optical
depth (DAOD) in East Asia using monthly data from 2000 to 2022 from the MERRA-2
aerosol diagnostic product tavgM_2d_aer_Nx, which provides information on DAOD at
550 nm. The data were formatted as nc and processed into tif for computation. Missing
values were replace with NaN.



Remote Sens. 2024, 16, 318 4 of 22

2.2.2. Ground-Based Observation AOD

AERONET (Aerosol Robotic Network) is a global ground-based aerosol observation
network established by NASA and CNRS. The network provides data for download at
three different quality levels for various wavelengths of the Aerosol Optical Depth (AOD):
Level 1.0 (without cloud mask and quality check), Level 1.5 (with completed cloud mask),
and Level 2.0 (with completed cloud mask and quality check). AERONET’s ground-based
aerosol observation data are considered a reliable source for validating satellite aerosol
products and conducting research [27,44].

We validated the accuracy of the MERRA-2 DAOD dataset by obtaining all available
data for the four sites (AOE_Baotou, Beijing, Dalanzadgad, and QOMS_CAS) over the
study period (2000–2022) and processing them as monthly averages; missing data varied
across the four sites, and data records containing missing data were not used. The locations
of the sites are shown in Figure 1.

Figure 1. Location of the study area. (The red dots represent the locations of the AERONET sites utilized).

2.2.3. Data on Influencing Factors

Studying the trends of influencing factors on dust aerosols in East Asia is crucial for
gaining insights into their sources and trends. In this section, we selected eight influencing
factors that have the potential to affect changes in the Dust Aerosol Optical Depth (DAOD)
from three perspectives: meteorological factors, ground conditions, and human activities.
These factors include 10 m wind speed, temperature, precipitation, relative humidity, NDVI,
soil temperature, soil moisture, and population density.

Meteorological data during the study period as well as ground conditions (soil tem-
perature and soil moisture) were obtained from the 5th-generation atmospheric reanalysis
(ERA5) dataset of the European Center for Medium-Range Weather Forecasts (ECMWF) [45].
The data were formatted as nc and processed into tif for computation. The missing values
were replaced with NaN. Details on the data used to study the influencing factors are given
in Table 1.

By utilizing multivariate data with long time series and employing linear regression
analysis methods, we analyzed the changes in the distribution of DAOD due to these
influencing factors and their respective trends.
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Table 1. Factors influencing DAOD and their data sources.

Driving Factor Variable Unit Spatial
Resolution

Temporal
Resolution

Data
Source

Meteorological
factors

10 m wind
speed m/s 0.1◦ Monthly EAR5

Temperature ◦C 0.1◦ Monthly EAR5
Precipitation mm 0.1◦ Monthly EAR5

Relative
Humidity % 0.1◦ Monthly EAR5

Ground
conditions

NDVI / 1 km 16 days MODIS
Soil

temperature
◦C 0.1◦ Monthly EAR5

Soil moisture m3/m3 0.1◦ Monthly EAR5

Human activities Population
density Person/km2 1 km Monthly WorldPop

2.3. Methodology
2.3.1. Linear Trend Analysis

Simple linear regression analysis utilizes the least squares method to model the tem-
poral variation pattern of a variable on an image-by-image basis, thereby capturing its
variation characteristics over a given time period [46–49]. This technique is commonly
employed for trend analyses of aerosol data, as it can effectively fit the variation of variables
over the entire time series. To reflect the trends of and spatial differences in dust aerosols
and their influencing factors in East Asia from 2000 to 2022, a one-dimensional linear
regression analysis of the annual mean dust aerosol levels based on the image element
scale was conducted using the slope of the trend of the image element DAOD or DAOD
influencing factor.

s = ∑n
i=1(yi − ȳ)(xi − x̄)

∑n
i=1(xi − x̄)2 (1)

where i = 1, 2, . . . n is the length of the study year and n is 23; y is the DAOD or the impact
factor of DAOD; xi is the year; and s is the slope. If s is positive, it means that the physical
quantity represented by this image element had an increasing trend during 2000–2022, and
vice versa.

2.3.2. Pearson’s r

The correlation coefficient, denoted as Pearson’s r, indicates the strength of the cor-
relation between two variables. In a set of variables x and y with a sample size of n,
the correlation coefficient measures the linear relationship between the two variables by
calculating the ratio of their covariance to the product of their variances. The formula for
calculating the correlation coefficient is as follows:

r = ∑n
i=1[(xi − x̄)(yi − ȳ)]√

∑n
i=1(xi − x̄)2 ·∑n

i=1(yi − ȳ)2
(2)

where r denotes the Pearson correlation coefficient of the two elements, and xi and yi
represent the mean values of x and y in the study years, respectively.

2.3.3. Grey Relational Analysis

Grey relational analysis (GRA) is a kind of analysis method based on grey system
theory that uses grey correlation to describe the strength, magnitude, and order of rela-
tionships between factors based on sample data for each factor [50–52]. Grey correlation
analysis can address the issues of nonlinear relationships and small sample sizes, which are
not addressed by Pearson’s correlation coefficient. Furthermore, it considers the influences
of multiple factors. Hence, it is an effective analysis tool that can be applied in the study of
the relationship between dust aerosols and influencing factors.
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Let Xi(k) (i = 1, 2, . . ., h) denote h driving factors and Y(k) denote DAOD, a time series
for k = 1, 2, . . ., n. The following formula was used to calculate the average correlation
coefficients of each driving factor with respect to DAOD [53].

Gi(k) =
Di(k)min + Di(k)max

Di(k) + bDi(k)max
(3)

The following formula defines four variables: Di(k) = |Y(k)− Xi(k)|, which represents
the absolute difference between Y and Xi at the kth point; Di(k)min, which describes the
minimum difference between the two poles; Di(k)max, which denotes the maximum
difference between the two poles; and b, which is the resolution coefficient and can be
assigned any value ranging between 0 and 1, but is typically set to 0.5.

The grey correlation between each driving factor and DAOD is:

Pi =
1
n ∑n

k=1 Gi(k) (4)

2.3.4. Geographical Detector

The geographic detector is a statistical model used for analyzing spatial data and
exploring the driving forces of variables [54]. The geographic detector model includes
four detectors: risk, factor, ecological, and interaction detectors [1]. In this study, factor
detection and interaction detection using geodetectors were used to analyze the drivers of
dust aerosol distribution and their interactions in East Asia. The factor detectors measure
the magnitude of the drivers by calculating the spatial similarity between the drivers and
the variables being detected, which are expressed as q-values, in the range [0, 1]:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (5)

where σ2 is the variance of independent variable Y and N is the number of sample points.
Furthermore, Nh denotes the number and variance of the samples (pixels) in layer h. L
represents the number of categories obtained after discretizing the factors during the data
preprocessing stage. The superposition of X and Y variables forms L layers in Y, which are
represented as h = 1, 2, . . ., L.

The significant advantage of interaction detection is its ability to analyze the combined
effects of two factors on the dependent variable Y in terms of explanatory power. These
interactions can be categorized into five types, as shown in Table 2.

Table 2. Interactions between explanatory variables.

Criterion Interaction Relation

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear weakening
Min(q(X1), q(X1)) < q(X1∩X1) < Max(q(X1), q(X1)) One-factor nonlinear weakening

q(X1∩X1) > Max(q(X1), q(X1)) Two-factor enhancement
q(X1∩X1) = q(X1) + q(X1) Independent
q(X1∩X1) > q(X1) + q(X1) Nonlinear enhancement

3. Results and Discussions
3.1. MERRA-2 AOD Data Accuracy Validation

When verifying the accuracy of satellite AOD data using AERONET ground-based
observation data, it is important to consider wavelength matching and the spatial and
temporal scales of the two datasets to improve the reliability of the comparison. Typically,
the AOD at 550 nm is selected for study. However, due to the lack of data in the 550 nm
band at AERONET sites, wavelength interpolation is necessary. According to Ångström’s
theory, aerosol optical depth and wavelength satisfy the Ångström relationship:
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α = − ln τ(λ1)− ln τ(λ2)

ln λ1 − ln λ2
(6)

where α represents the Angstrom wavelength index and λ represents the wavelength. Since
some of the AERONET sites are missing 500 nm data, the AOD at 550 nm was obtained by
interpolating the data from sites with wavelengths of 440 nm and 675 nm. Additionally,
to account for the differences in time and space between the site and satellite image, a
validation evaluation was conducted by comparing the average value of the satellite data
within a 3 × 3 pixel area surrounding the site location with the site data.

The accuracy of the MERRA-2 DAOD dataset was verified using available monthly
AERONET observations from four stations (AOE_Baotou, Beijing, Dalanzadgad, and
QOMS_CAS) for the years 2000–2022. The results are shown in Figure 2. The slope of
the linear fit equation for the data of all four stations was less than 1, indicating that the
AOD values of the MERRA-2 DAOD were lower than those of the ground stations. This
result is consistent with a previous study [28]. This difference is attributed to the fact that
dust aerosol is one of the aerosols, and the proportion of the AOD accounted for by the
DAOD is different at different stations. The DAOD showed lower values compared to
the AERONET AOD at all sites except for Dalanzadgad, but similar values were shown
at Dalanzadgad. This is believed to be due to the location of the observation site and the
influence of dominant aerosols. Dalanzadgad is located at the source of dust particles, and
most of the AOD is dust, but it is believed that the other three regions have a lot of other
pollutants in addition to dust aerosol.

Figure 2. Verification of MERRA-2 DAOD and AERONET AOD accuracy: (a) AOE_Baotou, (b) Bei-
jing, (c) Dalanzadgad, (d) QOMS_CAS. (The red dashed lines represent the 1:1 reference, while the
black solid lines correspond to the obtained fitted line).

From Figure 2, it can be seen that the MERRA-2 DAOD data from the four stations
show a significant positive correlation with the AERONET site data at 550 nm. The overall
trends of the two were consistent, with small standard errors and an R2 greater than 0.6.
These results indicate that the precision of the MERRA-2 DAOD data is reliable and can be
used for analyzing the spatial and temporal distribution of dust aerosols.
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3.2. Spatiotemporal Dynamic Characteristics of DAOD and Changing Trends
3.2.1. Interannual Distribution and Variation of DAOD

The spatial distribution of the dust aerosol optical depth (DAOD) in different years in
East Asia is shown in Figure 3. Since 2000, the overall spatial pattern of the average DAOD
in East Asia exhibited a decreasing trend from northwest to southeast, with the TDR and
GDR being the two areas with the highest DAOD values. The annual mean DAOD in East
Asia varied between 0 and 0.6, with an annual mean DAOD in the GDR of around 0.2–0.3,
while the annual mean DAOD in the TDR was the highest, reaching 0.3–0.6. The DAOD
in different years also showed different spatial distributions. The DAOD in East Asia was
higher in 2007, 2009, 2018, 2020, and 2022, while it was lower in 2000, 2005, 2012, and 2016.
The remaining years, such as 2000–2004 and 2013–2015, showed a basically flat trend.

Figure 3. Annual mean distribution of dust extinction AOD in East Asia; (a–w) represent the years
2000 to 2022, respectively.
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Figure 4a displays the spatial distribution of the multi-year average DAOD in East Asia
from 2000 to 2022. The annual trend of DAOD from 2000 to 2022 in East Asia was classified
based on a pixel trend analysis, which divided the pixels into six levels: slightly increasing,
moderately increasing, heavily increasing for pixels with positive slopes and slightly
decreasing, moderately decreasing, heavily decreasing for pixels with negative slopes. The
results can be seen in Figure 4b. Owing to the considerable geographic variability of dust
aerosols and their unstable physical and chemical characteristics, there were noticeable
spatial disparities in the DAOD variation across East Asia during the study period. Dust
particles in the TDR had the highest contribution to the DAOD at 0.337, followed by the
GDR at 0.103. The substantial amount of TDR dust particles implies their significant role in
shaping the variation in DAOD. The multi-year analysis of the DAOD trends in East Asia
revealed that 95.6% of the total area showed a declining trend, while only 4.4% displayed an
escalating trend. Apart from the TDR and its adjacent areas where a significant increase in
the DAOD was apparent, the other regions exhibited a decline in DAOD, especially in the
southern area with a significant decreasing trend. The GDR, as another significant source of
dust in East Asia, had an overall slight decline. As a general trend, the DAOD variation in
East Asia followed a significant increase–moderate decrease–moderate decrease–significant
decrease pattern from the northwest to the southeast.

Figure 4. Spatial distribution of (a) multi–year average and (b) trends in East Asia from 2000 to 2022.

Figure 5 displays the interannual variation trend of dust aerosols in East Asia, as
well as their typical sources, such as the TDR and GDR, during the period from 2000 to
2022. It can be observed from Figure 5 that the DAOD values of different regions exhibited
varying trends and fluctuations in different years. Overall, the DAOD in East Asia showed
a decreasing trend from 2000 to 2022, with an average annual reduction rate of −0.0002
(p < 0.01). The DAOD of the two major dust sources in East Asia exhibited different trends,
consistent with the conclusions obtained from Figure 4. In the two major dust sources in
East Asia during the research period, the annual average DAOD in the TDR increased, with
an average annual growth rate of 0.004 (p < 0.01), while the GDR experienced a decrease,
with an average annual reduction rate of −0.0003 (p < 0.01). These two trends exhibited
distinct patterns: one trend showed an increase with fluctuations while the other exhibited
a decrease. However, they showed similar patterns of change such as a decreasing DAOD
in 2005, 2012, and 2016 and increasing DAOD in 2006, 2013, and 2018. The overall annual
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trend in changes in DAOD between 2000 and 2022 in East Asia was extremely similar to
the trend in the GDR.

Figure 5. Interannual trends of DAOD in East Asia, TDR, and GDR from 2000 to 2022. (The dotted
lines are obtained by fitting).

3.2.2. Intermonthly Distribution and Changes of DAOD

Figure 6 illustrates the monthly average distribution of the DAOD in East Asia from
2001 to 2022. The spatial pattern revealed a consistent northwest-to-southeast gradient,
with higher values observed in the TDR and GDR. Notably, the DAOD exhibited substantial
variability across different months. The months of April to September exhibited the highest
DAOD values, followed by March and October, while the lowest values occurred during
January, February, November, and December.

Figure 6. Monthly distribution of DAOD in East Asia, 2001–2022; (a–l) represent January to December,
respectively.
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Figure 7 facilitated the determination of the mean variations in DAOD for both the TDR
and GDR over different months and years. Notably, distinct spatial and temporal patterns
emerged in the evolution of the DAOD. In the TDR, a bimodal pattern characterized
the annual DAOD variations. The majority of high DAOD values across different years
occurred predominantly in May, with the highest peak during 2000–2005 observed in
June and during 2011–2015, it was observed in April. In addition to the major peaks in
April–June, minor peaks appeared in September–October. Conversely, the GDR exhibited
a consistent peak in DAOD values during April for each year, while the lowest values
were consistently observed in August, except during 2006–2010 when they appeared in
September. Additionally, the GDR consistently exhibited a minor peak in DAOD during
October, regardless of the specific year. The disparities in the timing of the highest and
lowest monthly DAOD values between the TDR and GDR underscore potential variations
in influencing factors. These findings emphasize the need to consider region-specific factors
when assessing the temporal variability of DAOD [55].

Figure 7. Monthly average variation in the dust AOD during 2000–2005, 2006–2010, 2011–2015,
2016–2022, and 2000–2022 in (a) TDR and (b) GDR.

3.2.3. Interseasonal Distribution and Changes in DAOD

This study adopted the widely recognized seasonal division in meteorology, which
divides a year into four seasons (spring (March to May), summer (June to August), autumn
(September to November), and winter (December to next February)) in order to analyze
the average seasonal distribution of the DAOD for East Asia from 2000 to 2022, as shown
in Figure 8. The average seasonal distribution of dust aerosols in East Asia from 2000 to
2022 showed distinct seasonal characteristics. The areas with high DAOD values in all
four seasons were mainly distributed in the two major dust sources in East Asia: the TDR
and GDR. Among these, the AOD of dust aerosols in the TDR was more than twice that of
the GDR. Secondly, the distribution of the DAOD in East Asia exhibited a clear seasonal
pattern. The TDR has a DAOD greater than 0.5 in spring, which decreased gradually
during summer and autumn, and was the lowest (DAOD < 0.2) in winter. In the GDR, the
DAOD reached approximately 0.3 in spring and declined to around 0.2 during summer and
autumn, and only 0.1 or lower in winter. The seasonal contribution of dust aerosols was
highest in spring (0.114), followed by summer (0.076), autumn (0.055), and winter (0.040).
This is due to the increase in temperature and melting of snow during spring, leading to a
decrease in soil moisture, less precipitation, and windy conditions, which make the loose
soil surface more susceptible to dust generation [1].
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Figure 8. Average seasonal distribution of dust aerosol optical depth in East Asia, 2000–2022; (a–d)
represent spring to winter, respectively.

These results are consistent with those of another study [56], which indicates that
the frequent dust events in spring and summer result in higher overall DAOD values. In
winter, surface dust is less likely to be generated as the snow cover limits the exposure of
the underlying surface, leading to lower overall DAOD values [57]. Consistent with the
spatiotemporal distribution of the average monthly DAOD, the seasonal distribution of
dust aerosols in East Asia also followed a decreasing trend from west to east.

Figure 9 illustrates the seasonal variations in the average DAOD in the TDR and GDR
in 2000–2005, 2006–2010, 2011–2015, 2016–2022, and 2000–2022. In the TDR, except for the
summer of 2000–2005, the DAOD contribution in other years was highest in spring (0.377),
followed by summer (0.360), autumn (0.269), and winter (0.110). On the other hand, in
the GDR, the DAOD contribution decreased from spring to winter except for the winter
of 2006–2010, with mean values of 0.143, 0.092, 0.070, and 0.055 for the different seasons,
respectively. Apart from the distinct seasonal variation characteristics, the mean DAOD in
the TDR was about two to three times higher than that in the GDR.

Figure 9. Average seasonal distribution of dust aerosol optical depth in (a) TDR and (b) GDR,
2000–2022.
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3.3. DAOD Influencing Factors and Their Trends
3.3.1. Meteorological Factors

As depicted in Figure 10, the areas with higher wind speeds were mainly concentrated
in northern China, including the Mongolian region, as well as near the TDR. Additionally,
the Qinghai–Tibet Plateau, situated at a considerable altitude, exhibited high wind speeds.
The spatial distribution of temperature in East Asia showed a distinct pattern, with higher
temperatures observed in the southeast and lower temperatures in the northwest. This
distribution was influenced by both altitude and latitude. Notably, the average annual
temperature was lower in regions like Qinghai Province and Inner Mongolia, which are
located at higher latitudes. Conversely, areas with desert terrain and the southeastern
region, known for their warm and humid climates, exhibited higher temperatures. The
distribution of precipitation displayed significant variability but followed a discernible
pattern, with a decreasing trend from southeast to northwest. The dividing line for pre-
cipitation was around 30◦N, with regions north of this line generally experiencing less
precipitation compared to those in the south. This dividing line aligns with the distribution
of relative humidity.

Figure 10. Distribution of annual average of (a) 10 m surface wind speed, (b) temperature, (c) precipi-
tation, and (d) relative humidity in East Asia from 2000 to 2022.

Examining the trends of the meteorological factors in Figure 11, a consistent pattern
was observed in the distribution of these factors’ changes and the DAOD across East Asia,
as well as in the TDR and GDR. Specifically, the GDR exhibited the highest wind speed
values, while the TDR and East Asia as a whole had the lowest values. This trend aligns
with the distribution of the DAOD, where the GDR exhibited the highest values, followed
by the TDR, and East Asia as a whole had the lowest values. The multi-year trends for wind
speed in the three regions exhibited remarkable similarities, particularly in the occurrence
of high values around 2004, 2009, 2015, and 2018. In general, there was an increasing trend
for wind speed and temperature, while precipitation and relative humidity demonstrated
a decreasing trend in East Asia from 2000 to 2022. Similarly, for the TDR and GDR, wind
speed, precipitation, and relative humidity exhibited a decreasing trend, while temperature
showed an increasing trend.
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Figure 11. Annual average of (a) 10 m surface wind speed, (b) temperature, (c) precipitation, and
(d) relative humidity in East Asia from 2000 to 2022. (The dotted lines are obtained by fitting).

Comparing these trends with Figure 5, it is evident that although there was an overall
decreasing trend in dust aerosol across East Asia, the concurrent decrease in precipitation
and relative humidity, as well as the increase in wind speed and temperature, did not result
in an overall increase in DAOD for East Asia as a whole. Based on the regional results, it is
evident that the TDR and GDR are the primary sources of dust in East Asia. The decreasing
trend in precipitation and relative humidity in the TDR aligns with the increasing trend
of the DAOD, suggesting a consistent pattern. However, the GDR exhibited a declining
trend in both precipitation and relative humidity, while the overall trend in DAOD within
the region also indicated a decrease. These observations indicate that the variation in dust
aerosol concentration is influenced by complex mechanisms beyond solely meteorological
factors. Other factors, such as land surface characteristics and human activities, likely
contribute to the intricate dynamics of dust aerosols in East Asia.

Figure 12 illustrates the multi-year average distribution of selected ground condition
variables in East Asia from 2000 to 2022, with the population density distribution rep-
resenting the human activity factor. NDVI serves as an effective indicator for assessing
the state and changes in vegetation cover within a region. In the case of East Asia, the
NDVI revealed a distinct pattern with generally low values in the northwest and high
values in the southeast. The southeastern region exhibited significantly higher vegetation
cover compared to the northwest. Notably, both the TDR and GDR are situated in areas
characterized by low vegetation cover. This condition favors the transmission of ground
dust and near-surface dust in these regions. The distribution of soil temperature exhibited
similar patterns to that of air temperature, with high values predominantly found in the
desert zone and the warm and humid southeastern region. Conversely, the soil moisture
levels in the arid northwest region and the Qinghai–Tibet Plateau region remained very low.
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Figure 12. Distribution of annual average of (a) NDVI, (b) soil temperature, (c) soil moisture, and
(d) population in East Asia from 2000 to 2022.

3.3.2. Ground Conditions

From 2000 to 2022, the NDVI in East Asia, as well as in the TDR and GDR, demon-
strated a consistent increasing trend, aligning with the findings of other researchers [58].
The NDVI in East Asia as a whole surpassed that of both desert regions, with a score
approximately 0.16 higher than that of the TDR and approximately 0.1 higher than that of
the GDR. The trend for NDVI in East Asia closely resembled that of the GDR, namely fluc-
tuating upward patterns. Notably, the NDVI significantly decreased in 2005 and 2009–2011,
which was followed by substantial increases after 2015. The NDVI in the TDR exhibited
distinct wave-like patterns in 2005, 2010, and 2017. In general, there was an upward trend in
vegetation cover enhancement across East Asia from 2000 to 2022, with an average increase
of approximately 0.016 per decade. The minimum NDVI value of 0.26 was recorded in
2002, while the maximum value of 0.31 was observed in 2021. East Asia as a whole and
the two desert regions exhibited a general trend characterized by significant temperature
fluctuations and slight increases in average annual temperatures.

The soil temperature in the desert regions was notably higher compared to that of East
Asia as a whole. The average annual soil temperature in East Asia as a whole remained
relatively stable at around 6.5 ◦C, while the GDR experienced an average of approximately
7.2 ◦C, and the TDR exhibited the highest average soil temperature of around 13 ◦C. The
results of the linear regression analysis indicated that there was no change in average
soil moisture in East Asia as a whole, as well as in the two desert regions from 2000 to
2022. Additionally, the annual average soil moisture showed minimal variation. Although
there was a fluctuating decreasing trend observed over the years, instances of higher soil
moisture values occurred in 2003, 2016, and other years.

3.3.3. Human Activities

Population density serves as a useful indicator for assessing human activities. China,
being the largest country in East Asia, exerts a dominant influence on the region’s popula-
tion distribution. The Hu Huanyong line demarcates the fundamental pattern of population
density in China, with a higher density in the eastern regions and sparser populations in
the west (Figure 12d). Figure 13d illustrates that the overall population density in East Asia
demonstrated a decreasing trend. This trend may contribute to a reduction in land degrada-
tion resulting from human activities, subsequently leading to a decrease in desertification
and dust aerosol levels [59,60]. Notably, the population densities in the TDR and GDR
displayed an increasing trend. By considering changes in population density, a potential
association between population density and variations in dust aerosols can be observed.
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However, it is important to note that alterations in dust aerosol levels are influenced by
multiple factors, extending beyond changes in population density alone.

Figure 13. Annual average of (a) NDVI, (b) soil temperature, (c) soil moisture, and (d) population in
East Asia from 2000 to 2022. (The dotted lines are obtained by fitting).

3.4. DAOD Driver Analysis
3.4.1. Single-Factor Effect Analysis

The results from Table 3 reveal varying outcomes among different correlation analysis
methods. The DAOD exhibited a strong negative correlation (correlation coefficient > 0.5)
with relative humidity and soil moisture. Conversely, the correlation coefficients between
DAOD and wind speed, temperature, NDVI, and soil temperature were relatively weak
(ranging from 0.3 to 0.4). Additionally, the correlation between population density and
DAOD was the lowest, with a coefficient of 0.16 (negative correlation). Compared to the
Pearson correlation coefficients, the grey correlation analysis yielded higher correlations.
The q-values, accounting for spatial heterogeneity, were significantly lower, indicating
corrected correlation levels. In descending order, the q-values for the factors were relative
humidity (0.40) > soil moisture (0.31) > temperature (0.28) > soil temperature (0.21) > NDVI
(0.18) > precipitation (0.14) > wind speed (0.065) > population density (0.008). Relative
humidity, soil moisture, and temperature were the primary driving factors for the DAOD in
East Asia. The other factors had smaller impacts, with wind speed and population density
having minimal effects (q-values < 0.1).

The dominant driving factors for the TDR and GDR differ greatly. In the TDR, the
DAOD showed high correlations with various factors, with values above 0.5 for all factors
except NDVI, soil moisture, and population density. Temperature, precipitation, and soil
temperature had Pearson’s r values above 0.7, indicating significant linear relationships.
Wind speed also showed a relatively high correlation. The limited impact of wind speed
changes on dust aerosol concentration variations may stem from the time delay associated
with aerosol dispersion after wind fluctuations [61]. However, the grey relational analysis
yielded lower correlations, particularly for wind speed, temperature, and soil temperature,
which exhibited pronounced temporal correlations. Relative humidity had the highest
q-value of 0.88 in the TDR, indicating its dominant influence on the DAOD. The order
of explanatory power for the remaining variables was as follows: precipitation (0.72) >
temperature (0.70) > wind speed (0.60) > soil moisture (0.48) > soil temperature (0.39) >
population density (0.30) > NDVI (0.26). Relative humidity, precipitation, temperature, and
wind speed were the main driving factors influencing the DAOD in the TDR. In the GDR,
the ranking of the q-values of the environmental factors are as follows: soil temperature
(0.75) > temperature (0.72) > relative humidity (0.43) > NDVI (0.28) > soil moisture (0.25)
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> precipitation (0.16) > population density (0.15) > wind speed (0.14). This indicates that
soil temperature, temperature, and relative humidity significantly contribute to DAOD
variations in the GDR. In conclusion, relative humidity is a common driving factor for the
DAOD in East Asia and the two major dust sources. Relative humidity’s impact on dust
aerosols is intricate. While wind speed is typically viewed as the primary driver for DAOD,
studies show that humidity also plays a significant role [62,63].

Table 3. Results of Pearson correlation coefficient, grey correlation, and factor detection analyses in
East Asia, TDR, and GDR.

Region

Results

Variable 10 m Wind
Speed Temperature Precipitation Relative

Humidity NDVI Soil Tem-
perature

Soil
Moisture

Population
Density

East Asia
Pearson’s r 0.33 0.40 −0.48 −0.61 −0.40 0.38 −0.58 −0.16

GRA 0.65 0.68 0.71 0.63 0.65 0.70 0.60 0.63
q-value 0.065 0.28 0.14 0.40 0.18 0.21 0.31 0.008

TDR
Pearson’s r 0.67 0.80 −0.89 −0.78 −0.45 0.81 −0.47 −0.36

GRA 0.71 0.67 0.64 0.64 0.63 0.65 0.62 0.55
q-value 0.60 0.70 0.72 0.88 0.26 0.39 0.48 0.30

GDR
Pearson’s r 0.30 0.79 −0.27 −0.69 −0.37 0.87 −0.44 −0.26

GRA 0.67 0.75 0.70 0.65 0.71 0.77 0.68 0.70
q-value 0.14 0.72 0.16 0.43 0.28 0.75 0.25 0.15

3.4.2. Two-Factor Interaction Analysis

The results of the interaction of each variable in East Asia, the TDR, and the GDR are
shown in Figure 14.

The interaction analysis examined the influence of two environmental factors on the
DAOD and found that the interaction between any two variables had a greater impact on
the DAOD than the individual effects of a single variable. Among the various interacting
variables in East Asia, temperature and precipitation, temperature and relative humidity,
temperature and NDVI, temperature and soil moisture, soil temperature and precipitation,
soil temperature and relative humidity, soil temperature and NDVI, and soil temperature
and soil moisture showed significant synergistic effects. The interaction between soil
temperature and relative humidity had the highest impact with a q-value of 0.896, indicating
that the combined effect of soil temperature and relative humidity had the greatest influence
on the spatial and temporal distribution of DAOD in East Asia as a whole.

For the TDR and GDR, most variables exhibited strong interactions with each other,
particularly in the TDR. In the TDR, except for NDVI, soil temperature, soil moisture, and
population density, which had relatively smaller interaction q-values, the interactions be-
tween the other variables consistently produced q-values above 0.7. While wind speed and
population density exhibited nonlinear enhancements, the remaining variable pairs demon-
strated bilinear synergistic effects. The strongest synergy was observed between relative
humidity and population density (0.987). In the GDR, NDVI interacted with precipitation
and relative humidity, with q-values above 0.7. Temperature and soil temperature showed
bilinear synergistic effects with other variables, while NDVI, precipitation, and relative
humidity displayed nonlinear enhancements. The interaction between soil temperature
and precipitation had the highest q-value of 0.908.

In general, the DAOD in East Asia and the two major dust sources was influenced by
interactive effects of different driving factors. The overall spatial distribution of the DAOD
in East Asia exhibited a predominant pattern of nonlinear enhancement in interactions,
while the DAOD spatial distributions in the TDR and GDR were characterized by bilinear
synergistic interactions.
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Figure 14. Heat map of the interaction q-values: influence of two environmental factors combined.
(* stands for nonlinear enhancement and ** for bilinear enhancement).

4. Conclusions

This study compared and validated the DAOD at 550 nm from the MERRA-2 dataset.
The results indicate a strong correlation between the MERRA-2 DAOD dataset and monthly
average AERONET AOD data. The R2 for the four selected stations in East Asia ranged
from 0.62 to 0.81, with an RMSE ranging from 0.013 to 0.07. Therefore, the average monthly
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DAOD data from MERRA-2 demonstrates reliable accuracy and can be used for analyzing
the spatial and temporal distribution of dust aerosols in East Asia.

The spatial distribution of the DAOD in East Asia exhibited significant seasonal
variations, with the mean values in the four seasons following the order of spring (0.114) >
summer (0.076) > autumn (0.055) > winter (0.040). The highest DAOD values were observed
in spring. However, the peak months for dust aerosols differed between the two major dust
sources in East Asia, the TDR and GDR. Specifically, for the TDR, the high values of dust
aerosols in different years mostly occurred in May. As for the GDR, the high values of dust
aerosols in different years all appeared in April.

There are different driving factors of DAOD in different regions. Relative humidity
and soil moisture greatly impacted the spatial distribution of the DAOD in East Asia. For
the TDR, factors such as relative humidity, precipitation, temperature, and wind speed
played a key role, while for the GDR, soil temperature, temperature, and relative humidity
were significant drivers. East Asia as a whole and the two dust sources were influenced
by relative humidity. The results of the interaction analysis indicated that the interaction
between any two variables had a greater impact on dust aerosols than the individual
effect of a single variable. The geodetector analysis of the interaction q-value revealed that
the overall interaction pattern of the DAOD spatial distribution in East Asia is primarily
characterized by a nonlinear enhancement. The combined impact of soil temperature and
relative humidity (0.896) emerged as the most influential factor on the spatiotemporal
distribution of DAOD. In the TDR and GDR, the interaction pattern of the DAOD spatial
distribution was predominantly characterized by a bilinear enhancement. The TDR’s
DAOD was influenced by the interaction between relative humidity and population density
(0.987), while in the GDR, the interaction between soil temperature and precipitation was a
significant driver (0.908). This study analyzed the spatiotemporal variations, trends, and
influencing factors of DAOD in East Asia and its two major dust sources from 2000 to 2022.
The findings of this research contribute to a better understanding of the factors influencing
DAOD, which can provide a theoretical basis for atmospheric pollution control in East Asia.
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