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Abstract: Remote sensing image object detection is a challenging task in the field of computer vision due
to the complex backgrounds and diverse arrangements of targets in remote sensing images, forming
intricate scenes. To overcome this challenge, existing object detection models adopt rotated target
detection methods. However, these methods often lead to a loss of semantic information during feature
extraction, specifically regarding the insufficient consideration of element correlations. To solve this
problem, this research introduces a novel attention module (EuPea) designed to effectively capture
inter-elemental information in feature maps and generate more powerful feature maps for use in neural
networks. In the EuPea attention mechanism, we integrate distance information and Pearson correlation
coefficient information between elements in the feature map. Experimental results show that using
either type of information individually can improve network performance, but their combination has a
stronger effect, producing an attention-weighted feature map. This improvement effectively enhances
the object detection performance of the model, enabling it to better comprehend information in remote
sensing images. Concurrently, this also improves missed detections and false alarms in object detection.
Experimental results obtained on the DOTA, NWPU VHR-10, and DIOR datasets indicate that, compared
with baseline RCNN models, our approach achieves respective improvements of 1.0%, 2.4%, and 1.8%
in mean average precision (mAP).

Keywords: remote sensing images; object detection; attention mechanism; deep learning

1. Introduction

Remote sensing object detection is a crucial task in the field of computer vision, aimed
at automatically identifying and locating objects of interest in aerial images. This task
becomes particularly challenging when dealing with high-resolution, large-area-coverage,
and multispectral remote sensing images. In recent years, with the continuous advancement
of Convolutional Neural Networks (CNNs), there have been significant improvements in
the performance of object detection. In the domain of aerial object detection, the Region-
Based Convolutional Neural Network (RCNN) series of methods has achieved remarkable
success [1].

However, as these methods have evolved, especially with the emergence of many
two-stage object detection algorithms within the RCNN series, such as Fast RCNN [2]
and Faster RCNN [3], there remain significant challenges in accurately localizing objects,
particularly when dealing with oriented and densely distributed targets. Early oriented
object proposals [4] adopted a rotational region proposal strategy. However, with the
development of the RCNN series, particularly with the prominence of two-stage object
detection algorithms like Fast RCNN and Faster RCNN, the challenge of accurate localiza-
tion of oriented and densely distributed targets has become more prominent. Currently,
in the field of remote sensing object detection, a prevalent strategy involves introducing
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orientation regression methods based on classical object detectors. Noteworthy methods
such as SCRDet [5], CADNet [6], DRN [7], R3 Det [8], ReDet [9], RoI Transformer[10], and
Oriented RCNN [11] have achieved significant performance improvements by predicting
the rotation angles of target bounding boxes.

Despite the significant advancements achieved by these methods in capturing surface-
level information, they tend to overlook the potential semantic information correlations dur-
ing the deep learning process. The performance of convolutional networks is significantly
influenced by the network architecture. Therefore, constructing powerful convolutional
network modules is crucial in improving performance. Modern convolutional networks of-
ten comprise multiple blocks, which include combinations of convolutional layers, pooling
layers, activation functions, and other specific modules. Researchers have devoted efforts to
designing advanced modules to enhance the performance of convolutional networks, such
as Residual Networks [12] and Dense Connections [13]. However, these module designs
typically require domain expertise and considerable tuning. To overcome this challenge,
recent research has focused on building plug-and-play modules that allow the fine-tuning
of convolutional outputs, enabling the network to learn rich semantic features. Among
these, the Squeeze-and-Excitation (SE) module introduced by Hu et al. [14] has been widely
adopted. It explicitly models the dependencies between convolutional feature channels,
thus enhancing the network’s representational capacity. Importantly, the SE module is
flexible with regard to the network architecture and can be seamlessly embedded into
various networks.

While SE modules have enabled significant advances in capturing channel information,
they do not fully account for spatial information. The Convolutional Block Attention Module
(CBAM) [15] extends this by introducing spatial information and adding max-pooling features
to SE networks. However, complex models often come with an increased computational
overhead. To address this while achieving substantial performance gains with a minimal
parameter increase, Wang et al. proposed the Efficient Channel Attention (ECA) module [16].
Furthermore, traditional convolutional layers are limited in their ability to capture long-
range semantic information, as they mainly focus on local details. Hou et al. introduced
the Coordinate Attention (CA) module [17], which encodes both horizontal and vertical
position information into channel attention. This allows the network to attend to a significant
amount of position information without introducing excessive computational costs. On a
different note, inspired by neuroscientific theories, Yang et al. constructed the Self-Importance
Modulation Attention (SimAM) module [18], which is a parameterless attention module.
Unlike existing channel or spatial attention modules, SimAM derives 3D attention weights
directly, without the need for additional parameters. Additionally, Liu et al. proposed the
Normalization-Based Attention Module (NAM) [19], which utilizes the scaling factor of batch
normalization to implement a parameterless attention mechanism.

In addressing the ongoing environmental challenges associated with climate change,
our proposed attention mechanism holds tremendous potential for extending its applica-
tion scope to monitor variations in the high-mountain cryosphere, especially in regions
characterized by diverse and complex backgrounds. It is noteworthy that the study by
DH Shugar and colleagues, published in the journal Science in 2021 [20], underscores the
increasing relevance of our work in light of the growing frequency of natural disasters
linked to climate change.

However, conventional attention modules typically focus on weight relationships
between channels, often overlooking the intrinsic pixel-wise correlations. Taking SimAM
as an example, while it considers pixel-wise correlations, it falls short of fully harnessing
the distance information between elements. This limitation adversely affects the compre-
hensive utilization of element-wise relationships within convolutional neural networks,
ultimately compromising the accuracy of object detection. In response to these challenges,
we introduce the Euclidean–Pearson (EuPea) attention module, specifically designed to
address the issue of element-wise correlations and the influence of pixel distances on these
relationships. Our main contributions are as follows:
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• We propose a parameter-free, plug-and-play attention module for remote sensing
image object detection that evaluates pixel correlations by computing Euclidean
distances and Pearson coefficients between pixels.

• We integrate various attention modules into the Oriented RCNN model and conduct
comparative experiments. The experimental results on the DOTA and NWPU VHR-10
datasets indicate that the proposed attention module achieves the highest mAP.

These innovations are expected to bring significant breakthroughs in the field of
remote sensing object detection, enhancing accuracy while reducing computational costs.

2. Related Work

In this section, we briefly discuss representative works on network architectures and
plug-and-play attention modules.

2.1. Network Architecture

The year 2012 saw a significant breakthrough in the field of deep learning in com-
puter vision, with the introduction of AlexNet [21,22]. It represented a crucial mile-
stone and found application in large-scale image classification tasks. Subsequently, re-
searchers designed deeper convolutional neural networks, including VGG, DenseNet,
and ReNet [12,13,23], further propelling the advancement of deep convolutional neural
networks. Research on ResNet revealed that increasing the depth of neural networks can
significantly enhance their representational capabilities, thereby allowing more complex
visual tasks to be tackled. As the field of object detection gained prominence, representative
two-stage object detection methods such as Fast RCNN and Faster RCNN [2,3] emerged.
These methods introduced innovative techniques, such as Region Proposal Networks
(RPNs), leading to substantial enhancements in object detection performance. However,
traditional object detection algorithms faced challenges when handling rotated objects and
similar unique cases involving object rotation and tilting. This challenge is particularly
pronounced in remote sensing imagery, as these images are often captured under the
influence of factors such as atmospheric conditions, terrain, and the Earth’s curvature,
resulting in objects appearing at varying rotation and tilt angles. To address this issue,
researchers gradually developed rotated object detection algorithms. The Rotation Region
Proposal Network [4,24,25] (RRPN) is the first model designed specifically for the detection
of rotated objects. It builds upon Faster RCNN but introduces a rotation region proposal
network, allowing the generation of inclined region proposals, which is crucial for objects
in remote sensing images. Moreover, aside from RRPN, the research field has witnessed
the emergence of several other rotated object detection networks, which have allowed
significant progress in solving the rotated object detection problem. For example, Rotated
RetinaNet-OBB/HBB is an improvement over RetinaNet [26] that incorporates information
about the orientation angles of rotated objects to more accurately detect and localize them.
RepPoints [27] is a point-based object detection method, and Rotated RepPoints-OBB ex-
tends this concept to adapt to rotated object detection by using points to represent the four
corners of objects, enabling the effective detection of rotated objects. CSL (CoupleNet with
Selective Loss) [28] is a coupled network integrated with selective loss, exhibiting excellent
performance in rotated object detection. It can simultaneously detect horizontally and
vertically oriented objects, making it particularly effective in scenes with complex layouts.
R3Det [8] is a rotated object detection network based on a three-stage detection method,
utilizing cascade detectors to enhance the object detection performance, especially in tasks
requiring the highly precise detection of rotated objects. ReDet [9] is a deep learning model
designed for the detection and localization of rotated objects in remote sensing imagery.
It boasts strong versatility and can adapt to diverse object detection requirements across
different scenarios. Oriented RCNN [11] (Rotated Region-Based Convolutional Neural
Network) is an important approach built upon the RCNN series of algorithms. However,
it focuses specifically on the detection and localization of rotated objects. Unlike tradi-
tional object detection methods, it takes into account the possibility of objects appearing in
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rotated orientations, leading to the more accurate recognition and positioning of rotated
objects. These networks have demonstrated outstanding performance in various applica-
tion domains, offering a diverse array of choices addressing the challenge of rotated object
detection. Their continuous development and improvement are of significant importance
in handling complex scenarios, such as remote sensing imagery with rotated objects.

In this work, Oriented RCNN [11] (Oriented Region-Based Convolutional Neural
Network) is adopted as the baseline model. It is a deep learning model designed for
object detection in remote sensing images, effectively detecting and localizing rotated
objects, including buildings, vehicles, and offset objects, in aerial data. The research in
this field aims to address a broader and more complex set of challenges in remote sensing
object detection.

2.2. Attention Mechanism Module

Chun et al.’s [29] research findings underscore the paramount importance of the human
attention mechanism as a selection mechanism. The human brain exhibits a natural inclination
to prioritize information that is pertinent to the current task while concurrently dampening
signals that are extraneous to the task at hand. Drawing inspiration from this intrinsic human
cognitive trait, a series of noteworthy attention mechanisms have been developed, with the
Squeeze-and-Excitation (SE) mechanism standing out as the most prominent example. The
SE attention mechanism achieves its efficacy by capturing contextual information at a global
scale and learning to assign significance to various channels within a feature representation.
In building upon the SE attention mechanism, numerous refinement techniques have been
proposed. These include augmenting the spatial focus and extending the receptive field to
further enhance model performance. The CBAM [15] module introduces spatial information
and incorporates max-pooling feature extraction on the basis of SEnet; however, this leads
to a significant computational overhead for complex models. In order to achieve notable
performance improvement with a minimal increase in parameters, Wang et al. [16] proposed
the ECA module. Due to the traditional convolutional layers being limited to extracting local
information, Hou et al. [17] introduced the Coordinate Attention (CA) module, encoding
horizontal and vertical positional information into channel attention. This allows the net-
work to focus on a large amount of positional information without introducing excessive
computational complexity. Nevertheless, these methods share a common constraint: they
treat all neurons within the same channel or all neurons within the same spatial location
equivalently. This uniform treatment fails to effectively capture the intricate three-dimensional
weight relationships inherent in the data. To overcome this limitation and to better model
the interplay between elements, Yang et al. [18] introduced the SimAM attention module.
This module draws inspiration from select principles in prominent neuroscience theories.
Notably, the SimAM attention module stands out as a parameter-free attention mechanism,
which ensures that it does not introduce additional computational complexity. However, it
is worth noting that the SimAM module exhibits a potential limitation in that it does not
fully account for differences in the distances between elements. Such disparities in distance
could potentially impact the accurate modeling of correlations. To address this concern, we
have devised a function that incorporates distance-related factors. This innovative approach
allows us to create a new attention module without the need to introduce extra trainable
parameters. Meanwhile, for enhanced interpretability of attention mechanisms, we adopt a
different approach from the CAM method proposed by B. Zhou et al. [30], which involves
cumbersome modifications to the original model structure and retraining. Instead, we utilize
the GradCAM algorithm improved by Selvaraju R R et al. [31] to provide heatmaps, ensuring
the model’s interpretability.

3. Method
3.1. Euclidean–Pearson Attention Mechanism Module

In the realm of deep learning, grasping the interplay between neurons holds paramount
importance for model performance. Distance measurement methods serve as common
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tools to gauge the similarity or correlation between data points. Within neural networks,
assessing the correlation between distinct neurons is a necessity in order to enhance com-
prehension of the model’s internal mechanisms. Consequently, this section introduces two
distinct distance measurement methods aimed at assessing neuron-to-neuron correlation.
Following this, we amalgamate these two approaches to craft a new attention mechanism
called “Euclidean–Pearson Attention”, or simply “EuPea Attention”. This innovative at-
tention mechanism thoroughly captures the extent of the correlation between neurons,
exerting a profound influence on the performance of deep learning models.

3.1.1. Euclidean Distance

The Euclidean distance, often denoted as “d”, is a widely employed method to measure
the distance between two points. In the context of two points, P and Q, residing in an N-
dimensional space, the Euclidean distance is mathematically represented by the following
Equation (1):

d(P, Q) =

√√√√ N

∑
i=1

(Pi − Qi)2 (1)

In this equation, d(P, Q) signifies the Euclidean distance between point P and point Q,
while N stands for the dimensionality of the space. The terms Pi and Qi represent the
respective coordinates of points P and Q along the i-th dimension. The essence of this
formula lies in its step-by-step computation: it first calculates the square of the difference
between corresponding coordinates in each dimension, and then aggregates these squared
differences across all dimensions, and, finally, it computes the square root. This process
yields the Euclidean distance between point P and point Q.

Based on the Euclidean distance formula, we can derive the Euclidean distance be-
tween each pixel and the channel-wise average value within a specific channel. Specifically,
we first calculate the average value for each channel in the input feature map. Subsequently,
we compute the Euclidean distance between each pixel and the average value within its
respective channel. This relationship can be expressed using Equation (2):

Db,c,h,w =

√√√√ h

∑
i=1

(xb,c,i,w − x̄b,c,1,1)2 (2)

Here, Db,c,h,w signifies the Euclidean distance for a specific pixel located at batch b, channel
c, row h, and column w within the input tensor. It is calculated by comparing the pixel’s
value to the average value of all pixels within channel c of the input tensor at batch b.

3.1.2. Pearson Correlation

The Pearson correlation coefficient is a tool used to quantitatively measure the degree
of correlation between two variables, with values ranging between −1 and 1. For two
variables, X and Y, their Pearson correlation is mathematically represented by Equation (3).
This correlation coefficient serves as a measure of the relationship between elements. As
per Equation (4), in the energy function of SimAM, lower energy values imply greater
dissimilarity between neuron t and its neighboring neurons, signifying higher importance.
Consequently, the correlation between elements is defined by the following Equation (5):

ρX,Y =
σXσY

cov(X, Y)
(3)

e∗t =
4(σ̂2 + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
(4)

ρb,c,h,w =
(xb,c,h,w − x̄b,c,1,1)

2

4(
∑h

i=1 ∑w
j=1(xb,c,i,j−x̄b,c,1,1)2

n + ε)

+ 0.5 (5)
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Here, ρb,c,h,w represents the Pearson correlation coefficient of the pixel values in channel c
at batch b, row h, and column w within the input tensor x. n denotes the total number of
pixels, where n = w·h − 1, indicating the count of pixels minus one. ε is a small constant,
typically set to 0.001.

3.1.3. Information Integration

We can assess the correlation between neurons by comparing the outcomes of the
Euclidean distance and the Pearson correlation coefficient. A lower Euclidean distance
signifies greater dissimilarity between two pixels, whereas a higher Pearson correlation
coefficient suggests a stronger correlation between them. This approach aids in identifying
correlated pixels among neurons. Subsequently, we normalize the two sets of information
mentioned above to facilitate their fusion, resulting in new information functions for both
the distance, as expressed in Equation (6), and the Pearson correlation, as denoted in
Equation (7). Normalizing Distance Information:

DN =
D − Dmin

Dmax − Dmin
(6)

Normalizing Pearson Correlation Coefficient:

ρN =
ρ − ρmin

ρmax − ρmin
(7)

In these equations , DN and ρN represent the normalized Euclidean distance and Pearson
correlation coefficient, respectively. Dmin and Pmin denote the minimum values for the
Euclidean distance and Pearson correlation coefficient, while Dmax and Pmax represent their
maximum values. Finally, by combining the normalized distance information and the
normalized Pearson correlation coefficient, a new information function I (Equation (8)) is
derived. This novel information function integrates both distance and Pearson correlation
information, effectively capturing the correlation between elements from these two aspects.

I = DN + ρN (8)

In our experiments, we compared the training of attention mechanisms that exclusively
incorporate either inter-element distance information or Pearson correlation information.
Encouragingly, we found that combining these two types of information significantly im-
proved the accuracy of the results. Distance information reflects the spatial proximity or
separation between elements, while Pearson correlation information signifies the numerical
relationships between elements. The amalgamated information, I, can be regarded as a
comprehensive feature representation in which each element reflects its degree of associ-
ation with others. This integrated information provides a more holistic insight into the
inter-relationships between elements. In Equation (8), I integrates information across both
channel and spatial dimensions. A sigmoid function is applied to confine excessively large
values within I. The primary purpose of employing the sigmoid function is to transform
the amalgamated information I into attention weights, which are subsequently used to
modulate the input features.

In conclusion, after scaling and fine-tuning the fused information I, we derive the
feature weights as described in Equation (9). This process involves computing attention
weights based on the pixel values within each channel of the input tensor x. Subsequently,
these attention weights are applied to the input features, leading to outputs that have
been adjusted with attention. This crucial step helps the model to prioritize important
information within the input features, ultimately contributing to an enhancement in the
model’s performance.

x̃ = sigmoid(I)⊙ x (9)
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The network architecture of the Euclidean–Pearson attention module is illustrated in
Figure 1. Its core purpose is to calculate attention weights for features by amalgamating
both distance and correlation information. This empowers the model to gain a deeper
understanding of the input data, resulting in more precise and focused outputs.

Figure 1. Euclidean–Pearson Attention Module.

3.2. Overall Architecture

We chose Oriented RCNN as the framework and baseline model. In the current stage
of oriented object detection algorithms, Oriented RCNN is capable of generating high-
quality anchor boxes, and its detection speed is relatively fast compared to other detection
algorithms. The network architecture is shown in Figure 2.

Figure 2. Overall architecture.

3.2.1. Feature Extraction Module

The feature extraction module utilizes Resnet-50 [12] and FPN [32] for the extraction
of multi-scale features, facilitating the detection of objects of different sizes. Our module is
placed after the FPN output, and we apply weight adjustments to the resulting features
(see Figure 3).

In the bottom-up phase, the input image undergoes a series of convolutional layers,
yielding low-level semantic feature maps and high-level semantic feature maps (C1, C2,
C3, C4, C5). Moving on to the top-down phase, more robust features are obtained through
feature fusion. Specifically, M4 is derived from the 1 × 1 convolutional output of C5,
while M5 results from upsampling and the addition of the 1 × 1 convolutional output
of C4. Following this progression, M3 and M2 are generated to effectively retain both
high-level and low-level semantic information. P2, P3, P4, and P5 are achieved by applying
3 × 3 convolutions to M2, M3, M4, and M5, respectively. Additionally, P6 is generated
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by applying max pooling to P5. Ultimately, the fused multi-scale features produced
by this module serve as input to the attention module for the purpose of adjusting the
feature weights.

Figure 3. FPN structure diagram.

3.2.2. Oriented RPN

The Oriented Region Proposal Network (RPN) serves as a crucial component in
the detection and localization of rotated objects. It leverages position information and
objectness scores to generate region proposals, accommodating the presence of rotated
objects. The RPN takes adjusted features from P2, P3, P4, P5, and P6 as the input. The
structure of the RPN is depicted in Figure 4.

Figure 4. Region Proposal Network architecture consists of a 3 × 3 convolutional layer and two 1 × 1
convolutional layers, employed for classification and regression purposes.

For each feature layer and scale, we set three different aspect ratios (1:2, 1:1, and 2:1) for
horizontal anchors. These anchors are distributed across five different feature layers (P2, P3,
P4, P5, and P6). The areas of the anchors on each feature layer are (322, 642, 1282, 2562, 5122),
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respectively. Each anchor can be represented by its center coordinates and dimensions,
using a four-dimensional vector a = (ax, ay, aw, ah). Here, ax and ay denote the horizontal
and vertical positions of the anchor’s center, while aw and ah represent its width and height.
The regression branch (bottom branch) outputs six offsets δ = (δx, δy, δw, δh, ∆α, ∆β), mak-
ing a total of 18 dimensions. We decode these offsets using the following formula to obtain
the coordinates and angle information for oriented proposals (x, y, w, h, ∆α, ∆β), as shown
in Equation (10), where (x, y) denotes the center point coordinates of the proposal box and
w and h represent the width and height of the outer bounding box of the proposal. ∆α and
∆β represent the vertex offsets of the proposal box. The top branch is the classification
branch, which outputs scores related to the target’s properties.

∆α = δa · w, ∆β = δβ · h
w = aw · eδw , h = ah · eδh

x = δx · aw + ax, y = δy · ah + ay

(10)

To represent anchor boxes in an oriented fashion, we utilize a novel approach referred
to as “center point offset”, as depicted in Figure 5. The black dot signifies the center
point of the horizontal bounding box, while the oriented bounding box, denoted as o,
encompasses this bounding box. The orange dots denote the four vertices of the oriented
bounding box. Specifically, we employ six parameters to describe the oriented bounding
box (x, y, w, h, ∆α, ∆β). These six parameters enable us to compute the coordinates of
the four vertices of each proposal, designated as v = (v1, v2, v3, v4). In this context, ∆α
represents the offset of v1 relative to the upper midpoint (x, y − h

2 ) of the horizontal box.
Due to symmetry, −∆α signifies the offset of v3 relative to the lower midpoint (x, y+ h

2 ). ∆β
denotes the offset of v2 relative to the right-side midpoint (x + w

2 , y), and −∆β represents
the offset of v4 relative to the left-side midpoint (x − w

2 , y). As a result, the coordinates of
the four vertices can be expressed as follows:

v1 = (x, y − h
2 ) + (∆α, 0)

v2 = (x + w
2 , y) + (0, ∆β)

v3 = (x, y + h
2 ) + (−∆α, 0)

v4 = (x − w
2 , y + (0,−∆β)

(11)

By employing this representation, we achieve the regression of each oriented proposal by
predicting its external rectangle parameters (x, y, w, h) and inferring the center-point offset
parameters (∆α, ∆β).

Figure 5. The representation of center-point offsets.
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During the training process, we employ the following rules for positive and negative
sample assignment:

1. Anchor boxes exhibiting an Intersection over Union (IoU) greater than 0.7 with any
ground-truth box are categorized as positive samples.

2. The anchor box with the highest IoU overlap with a ground-truth box, provided that
its IoU surpasses 0.3, is selected.

3. Anchor boxes with an IoU less than 0.3 are designated as negative samples.
4. Anchor boxes failing to meet the aforementioned criteria are excluded from the

training process.

3.2.3. Region-of-Interest Detection Module

The baseline introduces the Rotated RoIAlign (Rotated Region of Interest Align)
operation to handle RoIs in the context of rotated object detection. Unlike the conventional
RoIAlign method [33], Rotated RoIAlign is specifically tailored to rotated objects, enabling
the more precise alignment of features within the regions of interest. This operation begins
by rotating the RoI to the horizontal orientation based on the target’s rotation angle. It
then partitions the RoI into fixed-size grids and interpolates the features within each grid
to produce an aligned RoI feature representation. This alignment approach takes into
full consideration the target’s shape and rotation, thus mitigating information loss and
enhancing the detection performance.

Next, we will describe the Rotated RoIAlign process based on Figure 6. In the context
of Rotated RoIAlign, proposals generated by the oriented RPN are typically represented
as parallelograms. To simplify the computational processing, these parallelograms are
adjusted to oriented rectangles by elongating the shorter diagonal to match the length of the
longer diagonal. Consequently, we obtain oriented rectangles characterized by parameters
including center coordinates (x, y), width and height (w, h), and a rotation angle θ. The
rotation angle θ typically falls within the range of [−π

2 , π
2 ], indicating the degree of rotation

relative to the horizontal axis.

Figure 6. Rotated Region of Interest Align.

Through the joint optimization of the Rotated Region of Interest Align (Rotated
ROIAlign) operation with the oriented RCNN head, we have achieved end-to-end training.
During the inference stage, we retained 2000 proposals from each FPN level and mitigated
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redundancy using non-maximum suppression (NMS). We applied horizontal NMS with an
IoU threshold of 0.8, merged the remaining proposals, and selected the top 1000 proposals
based on their classification scores as inputs for the second stage. In this second stage,
we utilized strategy-based NMS to further refine the predicted oriented bounding boxes,
thereby enhancing the overall performance.

3.3. Loss Function

To train the Oriented RPN and Oriented RCNN head, we introduce the Cross-Entropy
Loss Lcls for the classification task and the Smooth L1 Loss Lreg for the regression task. The
overall loss function L is defined as follows:

L(pi, ti) =
1
N ∑

i
Lcls(pi, p∗i ) +

1
N ∑

i
p∗i Lreg(ti, t∗i ) (12)

Lcls(pi, p∗i ) = −[p∗i log(pi) + (1 − p∗i ) log(1 − pi)] (13)

Lreg(ti, t∗i ) =

{
0.5(ti − t∗i )

2 if |ti − t∗i | < 1
|ti − t∗i | − 0.5 otherwise

(14)

where N represents the total number of predicted anchors in an image, and i is the index of
each predicted anchor. pi stands for the probability associated with the predicted anchors,
while p∗i corresponds to the ground-truth label, which can take values of 0 (indicating a
negative anchor) or 1 (indicating a positive anchor). Furthermore, ti and t∗i refer to the
predicted bounding box and the ground-truth bounding box, respectively.

4. Experiments

In this section, we will introduce the datasets, evaluation metrics, and experimental
details used in this study.

4.1. Datasets

To evaluate the proposed method, we conducted experiments on three publicly avail-
able aerial image datasets: DOTA, NWPU VHR-10, and DIOR.

The DOTA dataset [34] is employed for object detection in aerial images, consisting
of 2806 aerial images that cover 15 common object categories. These categories include
bridges, ports, ships, airplanes, helicopters, small vehicles, large vehicles, baseball fields,
ground tracks, tennis courts, basketball courts, soccer fields, roundabouts, swimming pools,
and storage tanks. In our research, we used the training set for model training and the
validation set to assess the performance.

The NWPU VHR-10 dataset comprises a total of 800 ultra-high-resolution (VHR)
remote sensing images, encompassing 10 common recognizable object categories. These
ten object classes include airplanes, ships, storage tanks, baseball fields, tennis courts,
basketball courts, ground runways, ports, bridges, and vehicles. We utilized 600 of these
images for training and 200 for validation in our experiments.

DIOR is a large-scale benchmark dataset designed for optical remote sensing image
object detection. The dataset comprises 23,463 images with 192,472 instances, covering
20 object classes. These 20 object classes include airplanes, airports, baseball fields, basket-
ball courts, bridges, chimneys, dams, expressway service areas, expressway toll stations,
harbors, golf courses, ground track fields, overpasses, ships, stadiums, storage tanks, tennis
courts, train stations, vehicles, and windmills.

4.2. Evaluation Metrics

To assess the performance of the proposed method, we employed four common evalu-
ation metrics, precision, recall, average precision, and mean average precision, as described
in ’The Elements of Statistical Learning’ by Hastie et al. [35] and the evaluation method
proposed by Muhuri et al. [36]. Their formulas are as follows:
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Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

In this context, TN represents the number of true negatives, FN represents the number
of false negatives, and FP represents the number of false positives. Precision measures
the proportion of correctly detected positives among all positive detections, while recall
measures the proportion of correctly detected positives among all positive samples.

Average precision (AP) is calculated by computing the average precision across the
range of recall values from 0 to 1.

AP =
∫ 1

0
P(R)dR (17)

Mean average precision (mAP) is used to describe the performance of multi-class object
detection and is calculated as follows:

mAP =
1

Nclass

Nclass

∑
j=1

∫ 1

0
Pj(Rj)dRj (18)

where Nclass is the number of classes in the dataset, j represents the index of a particular
class, and Pj and Rj are the precision and recall for class j.

4.3. Implementation Details

“Our experiments were conducted using the mmrotate framework [37]. The implemen-
tation was carried out in Python 3.8.10, utilizing Torch 1.10.0+cu113. Initially, we segmented
the original DOTA images, and subsequently, the training images were resized to 1024 × 1024
pixels. The experiments were performed on a single GPU, specifically the NVIDIA RTX 3090,
running Ubuntu 18.04 as the operating system. We employed Stochastic Gradient Descent
(SGD) as the optimizer, with a learning rate of 0.005, momentum of 0.9, and weight decay of
0.0001. The batch size was set to 1, and we carried out a total of 12 training epochs.”

5. Results

This section commences with a thorough comparison of the attention mechanisms
utilized in the model at hand and those employed in other models. Following this, the
experimental results of the model on the DOTA dataset, NWPU VHR-10 dataset and DIOR
datasetwill be visualized and comprehensively compared.

5.1. Results on the DOTA Dataset

We integrated our attention mechanism into the baseline model, resulting in a notable,
1.0%, increase in mAP. The comparative results in Table 1 illustrate significant improve-
ments in the detection rates for specific categories, such as “airplane” (+3.9%), “baseball
field” (+2.1%), and “helicopter” (+11.3%), when compared to the baseline model.

To assess the enhancement brought by EuPea in the model performance, we conducted
visual experiments by analyzing various features, including those processed through the
FPN (Feature Pyramid Network). As depicted in Figure 7, our EuPea attention model
significantly intensifies the focus on primary objects. These results imply that our model
can effectively augment the representative power of targets within the network, all without
the need to introduce any additional parameters.

Through the comparison in Figure 7, it is evident that the model, after incorporating the
Euclidean–Pearson attention mechanism, exhibits a significantly improved focus on targets
compared to the baseline model. While the SE attention mechanism can boost the attention on
detected objects, its performance in detecting small targets is not very pronounced. In contrast,
our EuPea attention mechanism noticeably increases the attention on various target categories
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and significantly improves the detection performance for small targets. It is worth noting that
all these improvements are achieved without introducing extra parameters.

Table 1. Comparing the performance of our proposed method and the baseline model on the DOTA dataset.

METHOD PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R3Det [8] 88.8 67.4 44.1 69.0 62.9 71.7 78.7 89.9 47.3 61.2 47.4 59.3 59.2 51.7 24.3 61.5
CSL [38] 88.1 72.2 39.8 63.8 64.3 71.9 78.5 89.6 52.4 61.0 50.5 66.0 56.6 50.1 27.5 62.2
RoI Trans [10] 89.9 76.5 48.1 73.1 68.7 78.2 88.7 90.8 73.6 62.7 62.0 63.4 73.7 57.2 47.9 70.3
Oriented rcnn [11] 85.9 75.5 51.8 78.0 69.1 84.0 89.3 90.7 73.9 62.6 62.8 66.4 75.4 56.9 44.0 71.3
Oriented rcnn + SE [14] 89.7 80.6 50.8 74.1 67.9 84.2 89.2 90.8 72.3 62.7 61.0 65.5 75.5 57.6 50.5 71.5
Oriented rcnn + CBAM [15] 89.8 75.4 50.9 70.8 68.7 84.4 89.1 90.6 73.8 62.7 59.3 66.9 75.1 59.0 49.6 71.6
Oriented rcnn + SimAM [18] 89.8 75.4 50.9 78.8 68.7 84.4 89.1 90.6 73.8 62.7 59.3 66.9 75.1 59.0 49.6 71.6
Oriented rcnn + Eu 89.8 76.5 51.5 75.2 67.7 84.5 89.2 90.7 74.0 62.5 61.6 65.0 75.5 57.6 53.1 71.6
Oriented rcnn + Pea 89.4 75.0 50.0 76.8 68.8 84.5 89.4 90.7 73.0 62.8 61.5 66.3 75.3 57.5 53.7 71.7
Oriented rcnn + EuPea 89.6 77.6 51.3 76.6 69.3 85.3 89.3 90.7 74.2 62.6 63.1 66.4 75.4 58.4 55.3 72.3

The bold text in the table represents the optimal values for each category detection. The baseline model is Oriented
RCNN [15]. “Eu” represents the results obtained when only the Euclidean distance is incorporated, and “Pea”
represents the results obtained when only the Pearson correlation coefficient is incorporated. The following are
the abbreviations for different categories: PL—planes; BD—baseball fields; BR—bridges; GTF—ground runways;
SV—small vehicles; LV—large vehicles; SH—ships; TC—tennis courts; BC—basketball courts; ST—storage tanks;
SBF—soccer fields; RA—roundabouts; HA—harbors; SP—swimming pools; HC—helicopters.
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Figure 7. Visualizations of feature activation introduced through different networks.

Furthermore, there has been a notable improvement in mitigating both missed detec-
tions (false negatives) and false alarms (false positives) to a certain extent. Figures 8 and 9,
respectively, illustrate the reduction in missed detections and false alarms using Euclidean
distance attention and Pearson attention. In each subfigure, the left section showcases the
detection outcomes of the baseline model, while the right section displays the detection
results produced by our proposed method. Missed detections are denoted in red, while
false alarms are indicated in green. The positive results generated by the Euclidean–Pearson
attention mechanism can be seen in Figure 10.
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(a)

(b)

Figure 8. The impact of incorporating Euclidean distance attention into the model: (a) missed
detection of small vehicles; (b) false detection of basketball court.

(a)

(b)

Figure 9. The impact of incorporating Pearson attention into the model: (a) missed detection of
baseball diamond; (b) false detection of aircraft.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. Visualization of the positive results: (a) ship and harbor; (b) plane; (c) roundabout; (d) small
vehicle, tennis court, and large vehicle; (e) bridge; (f) harbor; (g) swimming pool; (h) basketball court;
(i) storage tank; (j) baseball diamond and soccer field; (k) ground track field; (l) helicopter and plane.

The Euclidean–Pearson attention mechanism excels at weight allocation in the spa-
tial domain, making efficient use of spatial semantic information. Moreover, due to its
parameter-free nature, this attention mechanism achieves higher detection accuracy while
maintaining the training speed. In terms of inference speed, we conducted a compari-
son between our model and other attention mechanism models, as illustrated in Table 2.
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These experiments were conducted on the DOTA dataset, with input data shapes set to
1024 × 1024.

Table 2. A comparison of model complexity and training speed with other models.

METHOD FPS FLOPs Parameters mAP

Baseline 15.8 211.43G 41.14M 71.3
Baseline + SE 15.2 211.46G 41.84M 71.5

Baseline + CBAM 15.0 211.53G 42.08M 71.6
Baseline + SimAM 15.4 211.43G 41.14M 71.6
Baseline + EuPea 15.1 211.43G 41.14M 72.3

5.2. Results on the NWPU VHR-10 Dataset

The experiments conducted on the NWPU VHR-10 dataset yielded notable improve-
ments in performance. The AP values and mAP values for various categories are presented
in Table 3. It is evident that our approach enhanced the baseline model’s mAP by 2.4%.
The incorporation of distance information contributed to a 1.4% improvement in detection
performance. Additionally, the utilization of Pearson correlation information led to sig-
nificant improvements in AP, with an 8% increase for storage tanks, a 7.7% increase for
basketball courts, an 8.6% increase for harbors, and a 3.9% increase for vehicles.

Table 3. Comparing the baseline model, Oriented RCNN, with our proposed model on the NWPU
VHR-10 dataset.

METHOD AP SH ST BD TC BC GTF HA BR VE mAP

R3Det [8] 97.8 87.5 80.8 88.6 71.2 80.1 85.2 72.3 84.2 82.1 82.9
CSL [38] 97.8 88.2 80.5 88.7 71.3 81.0 86.1 71.9 86.1 84.6 83.6
RoI Trans [10] 99.9 90.1 81.0 90.7 72.4 81.8 90.9 78.0 88.6 89.3 86.3
Oriented rcnn [11] 99.9 90.4 81.4 90.6 72.3 81.5 98.0 76.8 90.9 85.1 86.7
Oriented rcnn + SE [14] 99.9 90.8 81.0 90.7 72.7 81.3 98.9 78.4 89.1 89.0 87.2
Oriented rcnn + CBAM [15] 99.9 90.4 80.7 90.7 72.7 88.7 100 76.1 89.7 89.7 87.9
Oriented rcnn + SimAM [18] 99.9 90.4 80.9 90.7 72.7 89.3 99.8 77.9 89.8 89.6 88.1
Oriented rcnn + Eu 100 90.7 80.6 90.6 72.7 81.5 99.7 86.2 88.2 89.1 87.9
Oriented rcnn + Pea 99.9 90.7 80.9 90.7 72.7 87.2 100 86.3 87.8 88.5 88.5
Oriented rcnn + EuPea 99.9 90.2 89.4 90.7 72.7 89.2 100 85.4 84.4 89.0 89.1

The bold text in the table represents the optimal values for each category detection. The baseline model is
the Oriented RCNN model. “Eu” represents the results obtained when only Euclidean distance information
is incorporated, while “Pea” represents the results obtained when only Pearson correlation information is
incorporated. AP: airplane; SH: ship; ST: storage tank; BD: baseball diamond; TC: tennis court; BC: basketball
court; GTF: ground track field; HB: harbor; BD: bridge; VE: vehicle.

For the NWPU VHR-10 dataset, we visualized the impact of distance information and
Pearson correlation information on the baseline model separately, as shown in Figures 11 and 12.
The left side represents the baseline model, while the right side represents the improved
model. We use red circles to denote missed detections and green circles to denote false
alarms. Positive detection results are illustrated in Figure 13.

We compared our model with other models on the NWPU VHR-10 dataset in terms
of model complexity and inference speed, as shown in Table 4. It can be seen that while it
improved the detection accuracy, the EuPea module did not reduce the inference speed.
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Table 4. Comparison of model performance on the NWPU VHR-10 dataset.

METHOD FPS FLOPs Parameters mAP

Baseline 21.5 211.43G 41.13M 86.7
Baseline + SE 21.4 211.46G 41.83M 87.2
Baseline + CBAM 21.3 211.53G 42.10M 87.9
Baseline + SIM 21.4 211.43G 41.13M 88.1
Baseline + EuPea 21.4 211.43G 41.14M 89.1

(a)

(b)

Figure 11. The impact of applying the Euclidean distance attention model to the baseline model:
(a) missed detection of bridges; (b) false alarm of vehicle.

(a)

(b)

Figure 12. The impact of applying the Pearson correlation mechanism model to the baseline:
(a) missed detection of bridges; (b) false detection of ground runways.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 13. Visualization of the positive results: (a) airplane and storage tank; (b) baseball diamond
and ground track field; (c) vehicle; (d) harbor; (e) bridge; (f) baseball diamond, basketball court, and
tennis court; (g) ship.

5.3. Results on the DIOR Dataset

The experiments conducted on the DIOR dataset demonstrate an improvement in
performance. Specifically, the AP values and mAP values for each category are shown in
Table 5. Our Euclidean–Pearson attention module enhances the mAP of the baseline model
by 1.8%. The distance information module performs well, leading to a 0.4% improvement
in detection performance. Furthermore, the Pearson module further boosts detection
performance, contributing an additional 0.9% to the mAP. It is worth noting that our
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approach not only achieves improvements in overall performance but also effectively
eliminates missed detections and wrong detections.

Table 5. Comparing the baseline model, Oriented RCNN, with our proposed model on the DIOR dataset.

METHOD APL APT BF BC BR CM DA ESA EST GF

R3Det [8] 89.6 6.40 89.5 71.2 14.4 81.7 8.90 26.5 48.1 31.8
CSL [38] 90.9 2.60 89.4 71.5 7.10 81.8 9.30 31.4 41.5 58.1
RoI Trans [10] 90.8 12.1 90.8 79.8 22.9 81.8 8.20 51.3 54.1 60.7
Baseline [11] 90.9 18.3 90.8 80.7 35.0 81.8 15.4 59.8 52.9 55.3
Baseline + SE [14] 90.9 19.5 90.8 80.4 33.8 81.8 15.3 59.7 52.6 57.9
Baseline + SimAM [18] 90.9 20.0 90.7 80.4 34.2 81.8 17.4 60.0 53.7 55.4
Baseline + Eu 90.9 20.2 90.8 80.1 35.4 81.8 17.6 59.7 53.7 58.9
Baseline + Pea 90.9 18.6 90.7 80.3 34.3 81.8 19.3 58.6 53.5 57.0
Baseline + EuPea 90.9 21.6 90.8 80.9 37.0 81.8 20.5 62.0 53.7 59.7

GTF HA OPS SP STD ST TC TS VEH WD mAP

65.6 8.20 33.4 69.2 51.9 72.9 81.1 21.4 54.2 44.7 48.5
63.2 17.5 26.6 69.3 53.8 72.8 81.6 18.4 47.2 46.3 49.0
75.8 30.6 40.5 89.9 88.2 79.5 81.8 20.6 67.9 55.1 59.1
76.3 21.8 53.2 89.8 85.6 79.3 81.8 36.3 68.8 56.2 61.5
76.4 24.6 56.1 89.7 89.0 79.7 81.8 29.6 68.4 56.0 61.7
76.5 23.5 54.4 89.8 88.5 80.0 81.8 40.4 68.7 55.8 62.2
76.2 28.3 56.1 89.9 86.3 79.8 81.8 29.7 69.0 55.6 61.9
76.7 25.8 55.1 89.7 88.7 79.8 81.8 41.3 68.7 55.8 62.4
78.9 31.6 56.6 90.0 88.3 79.7 85.4 42.6 59.2 56.5 63.3

The bold text in the table represents the optimal values for each category detection. The baseline is the Oriented
RCNN. Eu stands for stand-alone European module, Pea stands for stand-alone Pearson module. APL: airplane;
APT: airport; BF: baseball field; BC: basketball court; BR: bridge; CM: chimney; DA: dam; ESA: expressway service
area; ETS: expressway toll station; GF: golf field; GTF: ground track field; HA: harbor; OPS: overpass; SP: ship;
STM: stadium; ST: storage tank; TC: tennis court; TS: train station; VEH: vehicle; WD: windmill.

For the DIOR dataset, we visualized the impact of the two modules on the baseline
model. As illustrated in Figures 14 and 15, the left side represents the baseline model, while
the right side represents the model with the improved modules. In the figures, red circles
denote missed detections, and green circles denote false detections. Positive detection
results are illustrated in Figure 16.

On the DIOR dataset, we conducted a comparison of the inference speeds of our
model. As shown in Table 6, our model maintains its inference speed without an increase
in parameters.

Table 6. Comparison of model performance on the DIOR dataset.

METHOD FPS FLOPs Parameters mAP

Baseline 20.9 211.44G 41.14M 61.5
Baseline + SE 19.4 211.46G 41.79M 61.7

Baseline + SIM 20.4 211.43G 41.13M 62.2
Baseline + EuPea 20.3 211.43G 41.14M 63.3
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(a)

(b)

Figure 14. The impact of incorporating Euclidean distance attention into the model: (a) missed
detection of dam; (b) false detection of tennis court.

(a)

(b)

Figure 15. The impact of applying the Euclidean distance attention model to the baseline model:
(a) missed detection of bridge; (b) false detection of stadium.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Cont.
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(j) (k) (l)

(m)

Figure 16. Visualization of the positive results: (a) airplane and airport; (b) basketball court; (c) ve-
hicle and stadium; (d) golf field; (e) expressway service area and expressway toll station; (f) train
station; (g) ship; (h) ground track field, baseball field, and tennis court; (i) chimney; (j) storage tank;
(k) windmill; (l) overpass; (m) dam.

6. Conclusions

In this paper, we present a new parameter-free attention mechanism called EuPea,
aimed at addressing the semantic information loss in remote sensing target detection during
feature extraction, particularly regarding the lack of association between elements. It
effectively integrates the Euclidean distances and Pearson correlation coefficients between
elements, producing an attention-weighted feature map used to generate more robust
features for neural networks. The experimental results show that EuPea outperforms
other models, demonstrating a noteworthy 1.0% increase in average precision on the
DOTA dataset, a 2.4% enhancement on the NWPU VHR-10 dataset, and a 1.8% boost in
average precision on the DIOR dataset. The proposed attention mechanism significantly
outperforms its counterparts in accuracy while maintaining a nearly identical inference time
to the baseline model. The consistent advancements across various datasets emphasize the
generalizability and adaptability of EuPea across diverse scenarios and data distributions.
Moreover, it exhibits effective resistance against false-negative and false-positive detections.
Furthermore, considering potential applications, EuPea exhibits promise in various real-
world scenarios. Its adaptability to different remote sensing tasks and its potential impact on
practical applications are noteworthy aspects that merit further exploration. As a parameter-
free attention mechanism, the versatility of EuPea suggests that it could easily be integrated
into diverse remote sensing applications, providing a valuable tool for researchers and
practitioners alike.
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