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Abstract: Rapidly stitching unmanned aerial vehicle (UAV) imagery to produce high-resolution
fast-stitch maps is key to UAV emergency mapping. However, common problems such as gaps and
ghosting in image stitching remain challenging and directly affect the visual interpretation value of
the imagery product. Inspired by the data characteristics of high-precision satellite images with rich
access and geographic coordinates, a seamless stitching method is proposed for emergency response
without the support of ground control points (CGPs) and global navigation satellite systems (GNSS).
This method aims to eliminate stitching traces and solve the problem of stitching error accumulation.
Firstly, satellite images are introduced to support image alignment and geographic coordinate
acquisition simultaneously using matching relationships. Then a dynamic contour point set is
constructed to locate the stitching region and adaptively extract the fused region of interest (FROI).
Finally, the gradient weight cost map of the FROI image is computed and the Laplacian pyramid
fusion rule is improved to achieve seamless production of the fast-stitch image map with geolocation
information. Experimental results indicate that the method is well adapted to two representative sets
of UAV images. Compared with the Laplacian pyramid fusion algorithm, the peak signal-to-noise
ratio (PSNR) of the image stitching results can be improved by 31.73% on average, and the mutual
information (MI) can be improved by 19.98% on average. With no reliance on CGPs or GNSS support,
fast-stitch image maps are more robust in harsh environments, making them ideal for emergency
mapping and security applications.

Keywords: UAV remote sensing; satellite reference image; fast-stitch image map; dynamic contour;
Laplacian pyramid fusion

1. Introduction

Emergency mapping is known as the “eyes over the disaster area”, providing the
first access to the latest video, imagery and various thematic maps of the scene. It plays
an important role in understanding the situation and responding to the disaster. With the
advantages of rapid response and low cost, an unmanned aerial vehicle (UAV) is able to
observe the target area in real time and is widely used in all types of emergency mapping
tasks [1]. However, UAV imagery is notable for its small image size and insufficient degree
of overlap. Therefore, rapid and reliable stitching of imagery to produce large-format UAV
fast-stitch maps is key to the effectiveness of UAV emergency mapping.

In emergency mapping scenarios, current image stitching strategies have some lim-
itations. Aerial triangulation methods and traditional tools, such as Pix4Dmapper and
Photoscan, are capable of stitching high-quality seamless orthophotos but require com-
plex levelling at ground control points (GCPs). This is time-consuming and does not
allow for emergency response. Strategies based on simultaneous localization and mapping
(SLAM) [2–4] and inter-frame transformation [5–10] offer significant speed advantages
but suffer from serious cumulative error problems. Currently, it typically relies on global
navigation satellite systems (GNSS) and position orientation system (POS) for rectification
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and geographic coordinates acquisition [5,6], but this method is less reliable for emergency
mapping tasks in extreme environments, such as GNSS denial. Another approach [7–10] is
to minimize cumulative error through a keyframe selection strategy and multiple optimiza-
tion strategies to achieve greater robustness. In addition, with the rapid development of
deep learning, many researchers have attempted to use end-to-end deep neural networks
to learn frame-to-frame transformation relationships to avoid error accumulation [11–13].
However, current algorithms based on deep learning can only take two images as input
and are not able to process a sequence of drone images. The analysis shows that a fast
and reliable framework for seamless stitching of UAV fast-stitch image maps is still worth
investigating in emergency mapping scenarios.

High-precision orthorectified satellite imagery entails every pixel containing geo-
coordinate information. Inspired by this, if image stitching is supported by establishing a
matching relationship between UAV images and satellite reference images, not only can
error accumulation be avoided, but the stitched products also have pixel-to-pixel corre-
sponding absolute geographic coordinate information. Although in emergency response
scenarios it is difficult to predict the location of the required satellite image and prepare the
image data due to factors such as GNSS rejection and time constraints, satellite imagery is
characterized by easy access to open data channels and rich sources. In emergencies, rele-
vant emergency departments can be contacted to quickly assess the approximate region of
the disaster or incident, and satellite imagery resources within that region can be obtained
through various platforms such as the Internet, local government or mapping agencies.
Under the condition that no CGPs and GNSS support are needed, the method has greater
robustness and reliability, which well compensates for the limitations of most methods in
emergency mapping scenarios.

However, in practice, influenced by factors such as UAV capture time, position and lens
distortion, the overlap of adjacent UAV images is irregular, and there are large geometric
and hue differences at the stitch boundary. This results in obvious gaps in the fast-stitch
image map [14], which directly affects the visual interpretation value of UAV emergency
mapping products. In order to obtain high-quality UAV fast-stitch maps and provide
an effective geographic information guarantee for emergency mapping, it is necessary to
perform seamless processing during image stitching. Image stitching seamless processing
methods have been the object of more in-depth research, mainly divided into three kinds of
ideas. We will introduce each of these methods below.

1.1. Optimal Stitch Line

The first idea is to avoid the generation of gaps, and the optimal stitch line method is one
of the representative methods [15], such as the snake model [16], Dijkstra’s algorithm [17,18],
the dynamic programming (DP) algorithm [19,20], graph cut algorithms [21,22] and ant colony
optimization [23]. In addition, with the rapid development of deep learning convolutional
neural networks (CNNs) over the last few years [24–28], Li et al. [29] proposed to combine
the semantic segmentation information of CNNs [30,31] to calculate the difference and
search for the optimal stitching seam. By constructing different calculation rules, this
method automatically searches for a stitch seam with the minimum difference in the image
overlap region, which can effectively avoid the generation of gaps and has been adopted
by many commercial software [32]. However, this method has high requirements on the
overlap between image frames and is not applicable in emergency response scenarios when
the overlap between UAV image frames is very small.

1.2. Image Feature Information-Based Method

The second idea is to correct gaps, and the method based on image feature information
is one of the representative methods [33,34]. The method is inspired by the formation of the
gap. By analyzing the image characteristics of the region near the stitch boundary, a certain
area on both sides of the gap is identified as the region of interest (ROI). An optimization
function is constructed within the ROI to correct the pixel differences to achieve seamless
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stitching. Zhu. et al. [33] propose a forced correction method with a simple function that is
easy to implement but has limited effect on the processing of images with large differences.
Chen. et al. [34] enhance the function according to the visual characteristics of the human
eye, which improves the ability to process color images.

These methods have the advantage of not being limited by the size of the image
overlap area. They are also effective in the case of very small image overlaps and are robust
to UAV image data with irregular overlaps between frames. However, to position gaps,
existing methods require pixel-level coordinate computation and direction determination,
which is cumbersome and difficult to respond to in real time. With the introduction
of satellite reference image assistance, image alignment is able to obtain the absolute
coordinates of each pixel, and the relationship between the front and rear frame boundaries
is a known quantity.

Aiming at the limitations of the above methods, this paper designs a dynamic contour-
based fusion ROI (FROI) adaptive extraction method, which makes full use of the boundary
information and image contour features to achieve the direct accurate positioning of the gap.
Without increasing the complexity of the algorithm, the efficiency is significantly improved.

1.3. Image Fusion

The third idea is to fuse gaps, and image fusion is one of the representative methods. It
can be seen that the disparity optimization function in the image feature information-based
method only supports smoothing in two fixed directions, horizontal and vertical. As the
method does not take into account the fusion of information between frames, it is easy to
lose detailed information in the image. The image fusion algorithm, on the other hand,
achieves a smooth transition in hue and exposure by performing a weighted fusion process
on all pixels in the overlapping region. This method is also not limited by the degree
of overlap between frames and better preserves inter-frame information. The weighted
averaging method [35] is a simple algorithm with short processing times. Szeliski [36]
proposed a fade-in and fade-out fusion algorithm to achieve a natural transition of pixel
gray values in overlapping regions, and a number of studies have been carried out by
many scholars [37,38]. The above method is very effective when the geometric alignment
accuracy is high (geometric stitching error within one pixel). However, in emergency
response scenarios where the task content is random and complex, it is preferable to
quickly obtain the image stitching map of the target area at the cost of an acceptable loss
of accuracy to capture the real-time geographic dynamics. Therefore, due to a variety of
factors, it is difficult to ensure that the geometric alignment accuracy of the image is within
one pixel. If there is a large alignment error, the stitched image will be prone to ghosting,
resulting in lower image quality.

To solve the ghosting problem caused by the above methods, Brown, M. et al. [39]
applied the idea of multi-resolution to the smoothing process of image stitching and
achieved good results in image fusion. Aslantas, V. et al. [40] compared the fusion effects of
multi-resolution image fusion algorithms, such as the Laplacian pyramid, contrast pyramid,
gradient pyramid and morphological pyramid, which showed that the Laplacian pyramid
was more effective. The Laplacian pyramid fusion algorithm proposed by Burt, P.J. et al. [41]
is a classical algorithm to deal with the exposure difference problem, which can achieve
a smooth and uniform fusion effect. A large number of tools have been optimized and
integrated based on the above algorithms, including OpenCV and Photoshop. However,
this method may produce problems such as image blurring and quality degradation, and
the processing of computer memory overhead is time-consuming. If the fusion process
is only carried out in a certain range on both sides of the gap, it can effectively reduce
the workload and improve the processing efficiency. Therefore, in this paper, the joint
application of the image feature information-based method and image fusion methods is
carried out. It is also designed to introduce the gradient weight cost map to optimize the
traditional Laplace pyramid fusion algorithm, taking into account the high quality and
efficiency of image stitching in emergency response scenarios.
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Based on the above analyses, most of the current image stitching seamless processing
methods have higher requirements for the overlap between image frames and alignment
accuracy, which seriously affects the production and application of emergency mapping
image products. Against this background, this paper comprehensively considers the quality
and efficiency of UAV image stitching and proposes a seamless stitching strategy for UAV
fast-stitch maps in emergency response with the assistance of satellite imagery. With the
aim of eliminating gaps, a dynamic contour-based FROI adaptive extraction method is
designed to solve the problem of direct and fast positioning of gaps. The gradient weight
cost map is introduced to optimize the traditional Laplacian image fusion method, and
the quality of the stitched image is effectively enhanced. Under the condition that the
position parameter information, such as GCPs and GNSS, is not required, the seamless
fast-stitch image map with geolocation information can be automatically outputted. The
main contributions of the method proposed in this paper are as follows:

1. Using high-precision satellite imagery without the need for GCP and GNSS support
overcomes the problem of error accumulation in traditional image stitching strategies
and achieves absolute positioning and fast stitching of UAV images;

2. A dynamic fast positioning and elimination method of gap is proposed. It breaks
through the technical bottleneck that the effect of the traditional seamless processing
method is limited by the degree of overlap between frames and alignment accuracy
and improves the quality of stitched images.

The rest of the paper is structured as follows: Our method for the seamless stitching of
UAV fast-stitch image maps is described in Section 2, the experimental results are given in
Section 3 and the discussion is given in Section 4. Finally, conclusions are given in Section 5.

2. Methodology

We design a method for UAV fast-stitch image maps assisted by satellite reference images,
which avoids the problem of image drift and distortion caused by the accumulation of errors
in the traditional stitching strategy. Without relying on positional information, such as GCPs
and GNSS, the incremental output of UAV fast-stitch image maps with geographic coordinates
is achieved. The process of stitching technology is shown in Figure 1.
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Figure 1. Workflow diagram of the seamless stitching technique for UAV fast-stitch image maps
using satellite reference images. (1) UAV image data input. (2) Satellite imagery-assisted real-time
alignment and positioning. Establish the matching relationship between satellite imagery and UAV
imagery to help align UAV imagery and capture geographic coordinates. (3) Adaptive extraction of
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FROI based on dynamic contours. Construct dynamic contour point sets to locate gaps and adaptively
extract FROIs. (4) Multi-resolution image fusion based on gradient weight cost map. Construct FROI
with gradient weight cost map, perform Laplacian pyramid image fusion and incrementally stitch
UAV fast-stitch map.

2.1. Satellite Imagery-Assisted Real-Time UAV Image Alignment and Positioning

To ensure the quality and efficiency of UAV fast-stitch image maps for emergency re-
sponse, the reliability and real-time nature of image alignment are critical. The introduction
of satellite imagery to support rapid alignment and stitching eliminates the accumulation of
errors without the need for levelling iterations. At the same time, absolute positioning can
be achieved through direct acquisition of geographic coordinates. The schematic diagram
of satellite imagery-assisted real-time UAV image alignment and positioning is shown in
Figure 2.
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positioning where Ou − xuyuzu coordinate system is the UAV image coordinate system, Or − XrYrZr

coordinate system is the satellite image coordinate system, CP denotes the matched point set obtained
by feature matching between the UAV image and the satellite reference image, and T denotes the
transformation model from the UAV image to the satellite image coordinate space.

Firstly, using the highly accurate orthorectified satellite image as a reference, the UAV
image is subjected to feature extraction and matching with the satellite imagery on a frame-
by-frame basis. Given the differences between UAV and satellite imagery [42,43], the feature
extraction was performed using the self-supervised framework SuperPoint [44], which
has better real-time performance and stronger generalization ability. Feature matching is
performed with SuperGlue [45], an algorithm based on a graphical neural network that
mimics human vision to create an attention mechanism to identify features and compute
the optimal match through an optimal transfer problem.

After each frame of the UAV image is successfully matched with the satellite imagery,
the alignment transformation model is computed based on the corresponding multiple
matching point pairs to realize the conversion of the UAV image coordinate space to the
satellite image coordinate space. The pair of matching points obtained by the feature
matching between the UAV image frame m and the satellite reference image is defined
as CP =

{(
Um

i , Rm
i
)
, i = 1, 2, 3, . . . , N

}
, where Um

i = (xu, yu, zu) and Rm
i = (Xr, Yr, Zr)
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denote the matching points on the UAV image frame and the satellite reference image,
respectively. Then the transformation model from the UAV image to the satellite reference
image at this time can be obtained as T ∈ RH×W×2, satisfying T · (xu, yu, zu) = (Xr, Yr, Zr).
Common transformation models T include perspective transformation models, polynomial
models, etc.

In this part of the method, each frame of the UAV image alignment is an independent
operation, and the frames do not affect each other, allowing synchronization of image data
input and processing. In emergency response scenarios, incremental real-time stitching is
typically used with frame-by-frame image data input. In addition, the stitching quality
is not limited by the degree of image overlap, which avoids the matching difficulties and
alignment errors caused by the lack of inter-frame overlap in the traditional method.

However, due to imaging characteristics, hue and exposure differences between UAV
image frames are unavoidable, and pixel gray values are rearranged during the image
alignment process. Therefore, after the satellite imagery-assisted rapid alignment, obvious
gaps will be formed at the stitching boundary of the UAV images, which need to be further
smoothed using the methods proposed in Sections 2.2 and 2.3.

2.2. Adaptive Extraction of FROI Based on Dynamic Contours
2.2.1. Dynamic Contour-Based Geometric Positioning of the Stitching Area

To meet the real-time requirements of UAV fast-stitch maps, the strategy developed in
Section 2.1 uses frame-by-frame incremental stitching. However, significant gaps in the
stitched areas often require further processing as pixels are rearranged during the image
rectification process. The usual method [15–22] is to re-segment the image by solving
the difference optimization function for the overlapping region of the image, but the
segmentation quality of this method is limited by the degree of overlap between frames
and the accuracy of the alignment. At the same time, it ignores the information about the
boundaries of the front and back frames. The external contour of the image is a high-level
feature, independent of low-level features, such as grayscale and texture, and is much
more robust. Therefore, by using the boundary contour information and the dynamically
updated inter-frame boundary relationship, we can directly localize the gaps and use them
as stitching area localization lines. This can produce good visual effects without increasing
the complexity of the algorithm. The steps are as follows:

1. Region initialization. Assign the region using the position information obtained from
the alignment. The pixels in the overlapping area are judged according to the inter-
frame boundary relationship, and the pixels are assigned a value of 0 to obtain the
boundary contour polygon area;

2. Contour point set extraction. The initialized polygon area is binarized and geometri-
cally analyzed to extract a set of contour points including the gap boundary points,
which can be expressed as

Cl =
n

∑
i=1

Cl(pi)dl =
n

∑
i=1

[Cb(pi) + Cs(pi)]dl (1)

where Cl indicates the set of extracted contour points, pi indicates the contour line
point, Cb(pi) and Cs(pi) represent the non-gap and gap parts of the boundary contour,
respectively and dl represents the integration along the boundary contour;

3. Dynamic geometric positioning. The acquired set of contour points Cl is aligned with
the image frames to be stitched, and the gaps Cs are positioned directly according
to the boundary geometry. This process is repeated for each frame to be stitched to
achieve dynamic and fast positioning of the stitched area between frames.

2.2.2. Adaptive FROI Extraction

After the stitching area positioning, the positioning line is the red solid line segment
O1O2O3 as shown in Figure 2. Ii−1

u and Ii
u indicate the stitching of two adjacent images,
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respectively, and Io indicates the image overlap area. There are often hue and brightness
jumps in the adjacent two images that need to be fused and smoothed due to the indepen-
dent capture environment of each frame. Conventional methods usually process the entire
overlapping area Io. This increases the computational complexity of the fusion and the risk
of losing image detail information. In contrast, the need for uniform hue and exposure can
be better met by fusing only in the outer rectangular area extending on either side of the
localization line since hue differences are usually most pronounced near this line.

Define ξ as the width of the outer rectangle; the smaller ξ, the less processing required
for the fusion and the better the real-time performance; the larger ξ, the larger the hue
smoothing interval and the stronger the fusion effect. In order to take into account the
real-time and image quality of the UAV fast-stitch image map, the width ∆ξ needs to be
determined adaptively according to different inter-frame situations to delineate the FROI.
The FROI and related details are shown in Figure 3.
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system defined above is the geographic coordinate system in which the high-precision ortho-satellite
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Because of the UAV’s capture characteristics, the overlap between frames is irregular
and dynamically changing. To achieve a natural and uniform visual effect, the more overlap
there is, the wider the fusion smoothing interval required under certain conditions of hue
and exposure difference. Therefore, in this paper, the solution of the adaptation factor ∆ξ is
based on the dynamic change of overlap between frames. Under the premise of ensuring
the fusion effect, the fusion workload is reduced as much as possible to improve the image
stitching efficiency. The steps for solving the adaptation factor ∆ξ are as follows:

1. The coordinates of the four image corner points are obtained using the matching
relationship established with satellite reference images. By means of boundary in-
tersection, the adjacent image boundary intersection Oc (c = 0, 1, . . ., n) is obtained,
where n is the number of boundary intersection points;

2. The area of the single image Su and the area of the overlapping area between adjacent
images So are calculated separately. The formula for calculating the area is given
as follows:

S =
1
2

k−1

∑
j=1

(xjyj+1 − xj+1yj) (2)

where xj (j = 0, 1, . . ., k − 1) and xj+1 (j = 0, 1, . . ., k − 1) is the horizontal coordinate
of the adjacent corner point, yj (j = 0, 1, . . ., k − 1) and yj+1 (j = 0, 1, . . ., k − 1) is the
vertical coordinate of the adjacent corner point, and k is the number of corner points;

3. Solve for the degree of overlap between adjacent images, which is calculated as fol-
lows:

θ =
So

Si
u

(3)
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where Si
u is the area of the ith image to be stitched. Since the stitching method uses

incremental stitching, in practice the previous frame of the stitching is the group of
images, so for simplicity, the overlap solution is based directly on the area of the
image to be stitched;

4. Solve for the adaptation factor ∆ξ based on θ. The formula is as follows:

∆ξ = max
{
(xc+1

o − xc
o), (y

c+1
o − yc

o)
}
× θ (4)

where xc
o (c = 0, 1, . . ., n) and xc+1

o (c = 0, 1, . . ., n) are the horizontal coordinates of
the corner points adjacent to the image overlap region Io, and yc

o (c = 0, 1, . . ., n) and
yc+1

o (c = 0, 1, . . ., n) are the vertical coordinates of the corner points adjacent to the
image overlap region Io. The adaptive factor ∆ξ is solved by taking the maximum
overlap length in the fore-and-aft overlap and side overlap, ensuring that it can meet
the fusion requirements in both directions at the same time.

2.3. Multi-Resolution Image Fusion Based on Gradient Weight Cost Map
2.3.1. Gradient Weight Cost Map Calculation

To achieve a seamless visual effect of the UAV fast-stitch image map, the hue and
exposure differences within the FROI extracted also need to be smoothed using the image
fusion algorithm. Since UAV sequence images are usually center-projected images, the
closer the image is to the center of projection, the less the projection distortion and the
better the image quality. Thus, to make the image results retain richer image details and
further improve the performance of the fusion algorithm, this paper constructs an image
gradient weight cost map based on the image characteristics of the center projection. We
calculate the distance between each pixel within the FROI and the background (the region
containing no valid image information is defined as Ω1), and pre-process the pixels in the
FROI by weighting them in the following steps:

1. Image binarization processing. The image to be fused is converted to HSV color space,
and the HSV threshold is extracted by an adjuster to decide on the trade-off of image
information to obtain a binary image on a two-dimensional plane. This binary image
can be considered to contain only two types of pixels: the target (the region containing
the valid image information is defined as Ω2, where the FROI region is defined as
Ω3, Ω3 ⊂ Ω2) and the background, where the target pixel value is set to 255 and
the background pixel value is set to 0. The formula for the binarization process is
as follows:

p(i, j) =
{

255 p(i, j) ∈ Ω2
0 p(i, j) ∈ Ω1

(5)

2. Noise reduction filtering. Noise reduction is completed by using a Gaussian filter to
process the noise points that appear after the image binarization processing;

3. Distance transformation calculation. The distance of each non-zero pixel in the image
from its own nearest zero is calculated using the distance transformation function as
shown in Figure 4. At this time, the gray value in the pixel represents the distance
between the pixel and the nearest background pixel. Common distance transformation
functions are as follows:

Dp(i, j) =
√
(xi − xi

b)
2 + (yj − yi

b)
2 (6)

where (xi
b, yi

b) is the nearest background pixel; i.e., (xi
b, yi

b) ∈ Ω1; (xi, yj) is the target
pixel within the FROI, and (xi, yj) ∈ Ω3, Dp(i, j) is the distance factor of pixel p(i, j).
The schematic diagram of Dp(i, j) is shown in Figure 5;
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Figure 4. Schematic diagram of distance transformation calculation. The region containing no
valid image information is defined as Ω1. The region containing the valid image information is
defined as Ω2, where the FROI region is defined as Ω3. Regions Ω1, Ω2 and Ω3 are interrelated:
Ω1 ∩ Ω2 = 0, Ω1 ∪ Ω2 = 1, Ω3 ⊂ Ω2. Dp indicates the distance of the pixel (xi, yj) from its nearest
background pixel.
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Figure 5. Heat map of distance factor Dp calculation results. Different colors correspond to different
Dp values on the color bar. DMax

p denotes the maximum value of the distance factor Dp. The more
yellow the color, the larger the Dp. Different colors correspond to different Dp values on the color
bar; the more yellow the color, the larger the Dp.

4. Weight normalization. The distance grayscale map obtained from the calculation is
normalized; i.e., the distance value is replaced by a pixel value to achieve a smooth
transition of the pixel value within the stitching seam [0, ∆ξ], to obtain a gradient
weight cost map of the image to be fused. The normalization process is as follows:

ρ(i, j) = φ(i, j, ∆ξ)p(i, j) =
[
1 − log∆ξ (Dp + 1)

]
p(i, j) (7)

where ρ(i, j) is the normalized pixel weight, φ(i, j, ∆ξ) is the weight function, and a
graph of the weight function is shown in Figure 6. The larger the value of ∆ξ, the
smoother the trend of the weights. φ is determined by both the distance factor Dp and
the adaptive factor ∆ξ, making the weights suitable for both limiting image detail loss
and eliminating exposure differences. A schematic diagram of the normalized weight
result is shown in Figure 7.
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2.3.2. Improved Multi-Resolution Pyramid Fusion

The traditional Laplacian pyramid image fusion algorithm decomposes the target
image into different spatial frequency bands, and the fusion process is performed in
each spatial frequency layer separately. It can effectively eliminate ghosting caused by
misalignment, effectively eliminate stitching gaps and achieve natural and smooth visual
effects. The most critical aspect of the multi-resolution image fusion algorithm is the
selection and design of the mask, which is the determination of the image fusion weighting
rules. However, a traditional algorithm usually uses a fixed weighted mask, i.e., a value of
0 and 255 on each side of the stitching area, which is directly weighted for fusion. Due to
the lack of selectivity for fused pixels, it is easy to cause poor fusion quality away from the
stitched area. Based on the image gradient weight cost map constructed in Section 2.3.1,
an effective improvement of the Laplacian pyramid fusion algorithm can be achieved. In
order to make the UAV fast-stitch image products contain more image detail information
and achieve uniform and seamless visual effects, this paper improves the fusion rules
of the traditional algorithm to achieve performance optimisation. The specific steps are
as follows:

1. Extract the FROI of the image to be stitched and the group of stitched images, which
perform a Gaussian pyramid decomposition to obtain GU and GR, respectively, with
the following decomposition rules:

Il(i, j) =
2
∑

m=−2

2
∑

n=−2
w(m, n)Il−1(2i + m, 2j + n)

(0 ⩽ i ⩽ Hl , 0 ⩽ j ⩽ Wl , 1 ⩽ l ⩽ N)
(8)

where Il(i, j) is the lth layer image, Hl and Wl are the height and width of the lth
layer image, N is the total number of Gaussian pyramid levels, and w(m, n) is a
two-dimensional weight function;

2. Laplacian pyramid decomposition is performed on the FROIs of the image to be
stitched and the group of stitched images to obtain LapU and LapR. The decomposi-
tion rules are:

I*
l (i, j) = 4

2
∑

m=−2

2
∑

n=−2
w(m, n)Il [

m+i
2 , n+j

2 ]

(0 ⩽ i ⩽ Hl , 0 ⩽ j ⩽ Wl , 1 ⩽ l ⩽ N)
(9)

where I*
l is the interpolated enlargement of the lth layer image Il , and the interpolated

image I*
l is the same size as the l-1st layer image Il−1. Subtracting Il−1 from its

interpolated image I*
l yields the corresponding Laplacian pyramid layer l-1 image

Lapl , which can be expressed as follows:{
Lapl = Il − I*

l+1, 0 ≤ l < N
LapN = IN , l = N

(10)

3. The gradient weight cost map of the FROI is solved as mask input, Gaussian pyramid
decomposition is performed to obtain GM, and at this time the Gaussian image GM
has the same number of layers as the Laplacian image LapU and LapR to be fused;
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4. On each layer, LapU , LapR are fused according to the fusion rules of the current
layer GM to achieve a smooth transition of pixel values in the FROI and to obtain a
Laplacian pyramid LapF of the fused image, where the fusion rules are as follows:

Lapl
F = Gl

M(i, j) ∗ Lapl
U +

(
255 − Gl

M(i, j)
)
∗ Lapl

R (11)

where Lapl
F is the fused image Laplacian pyramid lth layer image, Gl

M is the gradient
weight cost map mask Gaussian pyramid lth layer image, Lapl

U and Lapl
R are the

FROIs Laplacian pyramid lth layer image of the image to be stitched and the group of
stitched images;

5. The reconstruction of the high-resolution fused image is repeated by interpolating and
expanding the fused Laplacian pyramid LapF from the top layer and summing the
images from the lower layers. The reconstruction process can be expressed as follows:{

Il
F = Lapl

F + I∗l+1
F , 0 ≤ l < N

IN
F = Lapl

F, l = N
(12)

where Il
F is the reconstructed fused image pyramid lth layer image, Lapl

F is the fused
image Laplacian pyramid lth layer image, and I∗l+1

F is the image Il+1
F interpolation

enlargement result.

3. Experiments and Results
3.1. Data Sets

To fully verify the performance advantages of the algorithm in this paper, we use DJI
UAVs to capture two sets of aerial UAV images of a location in Henan Province in different
seasons as experimental data. Both images are 1280 × 720 pixels in size and contain typical
feature elements such as lakes, roads, buildings and forests. The types of landform features
likely to be encountered in most emergency mapping scenarios are covered. Among them,
Data I are winter UAV aerial photography data acquired in October 2020, flying at an
altitude of about 400 m, with an uneven flight speed, ranging from about 5–7 km/h. The
number of images is 61, with a high overlap between images of around 40–60 per cent.
Moreover, the presence of more severe haze increases the difficulty of processing. Partial
zooms of the Data I image are shown in Figure 8. Data II are the summer aerial image
data from the UAV, acquired in June 2021, flying at an altitude of approximately 500 m
and an odd speed, ranging from about 25–30 km/h. The number of images is 25, with an
overlap between images of around 10–15 per cent. Partial zooms of the Data II image are
shown in Figure 9. The two datasets differ significantly in terms of data amount, overlap
between frames, landform and hue. It can better represent the imagery characteristics of
UAV emergency mapping.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 23 
 

 

the FROIs Laplacian pyramid lth layer image of the image to be stitched and the 
group of stitched images; 

5. The reconstruction of the high-resolution fused image is repeated by interpolating 
and expanding the fused Laplacian pyramid 𝐿𝑎𝑝  from the top layer and summing 
the images from the lower layers. The reconstruction process can be expressed as 
follows: 𝐼 = 𝐿𝑎𝑝 + 𝐼∗ , 0 ≤ 𝑙 < 𝑁𝐼 = 𝐿𝑎𝑝 ,                       𝑙 = 𝑁 (12)

where 𝐼   is the reconstructed fused image pyramid lth layer image, 𝐿𝑎𝑝   is the 
fused image Laplacian pyramid lth layer image, and 𝐼∗  is the image 𝐼  interpo-
lation enlargement result. 

3. Experiments and Results 
3.1. Data Sets 

To fully verify the performance advantages of the algorithm in this paper, we use DJI 
UAVs to capture two sets of aerial UAV images of a location in Henan Province in different 
seasons as experimental data. Both images are 1280 × 720 pixels in size and contain typical 
feature elements such as lakes, roads, buildings and forests. The types of landform fea-
tures likely to be encountered in most emergency mapping scenarios are covered. Among 
them, Data I are winter UAV aerial photography data acquired in October 2020, flying at 
an altitude of about 400 m, with an uneven flight speed, ranging from about 5–7 km/h. 
The number of images is 61, with a high overlap between images of around 40–60 per cent. 
Moreover, the presence of more severe haze increases the difficulty of processing. Partial 
zooms of the Data I image are shown in Figure 8. Data II are the summer aerial image data 
from the UAV, acquired in June 2021, flying at an altitude of approximately 500 m and an 
odd speed, ranging from about 25–30 km/h. The number of images is 25, with an overlap 
between images of around 10–15 per cent. Partial zooms of the Data II image are shown 
in Figure 9. The two datasets differ significantly in terms of data amount, overlap between 
frames, landform and hue. It can better represent the imagery characteristics of UAV emer-
gency mapping. 

   
(a) (b) (c) 

Figure 8. Partial zooms of images from Data I, containing typical features such as (a) lake, (b) build-
ing and (c) farm. The scale of the image in Data I is about 1:1000. 

   
(a) (b) (c) 

Figure 9. Partial zooms of images from Data II, containing typical features such as (a) calibration 
field, (b) road and (c) forest. The scale of the image in Data II is about 1:1250. 

Figure 8. Partial zooms of images from Data I, containing typical features such as (a) lake, (b) building
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Figure 9. Partial zooms of images from Data II, containing typical features such as (a) calibration 
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Figure 9. Partial zooms of images from Data II, containing typical features such as (a) calibration
field, (b) road and (c) forest. The scale of the image in Data II is about 1:1250.

In the method of this paper, the satellite image data region is the approximate region,
which only needs to include the UAV flight area to support the feature matching between
UAV images and the satellite image. Therefore, the satellite image data selected in the
experiments of this paper are based on the assumption of a known approximate mission
region rather than being based on the precise positioning information from GNSS. Its
partial zooms are shown in Figure 10. The size of the image is 896 × 1024 pixels. There are
significant differences between the satellite reference imagery and the UAV imagery, both
in terms of feature type and exposure. It well represents the fast-stitch scenario of UAV
imagery in most emergency response situations.
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Figure 10. Partial zooms of satellite imagery, containing typical features such as (a) lake, (b) building,
(c) farm, (d) calibration field, (e) road and (f) forest. The scale of the satellite imagery is about 1:3000.

3.2. Experimental Details

The SuperPoint and SuperGlue deep learning models in this experiment were imple-
mented using the PyTorch framework. The hardware platform used for the experiments
was a laptop with an I7 CPU and a GeForce RTX 2060 graphics card (6 GB video memory)
(US AI company NVIDIA, Santa Clara, CA, USA). The chosen programming language was
Python, and the system environment was Ubuntu 18.04.

At present, the evaluation of fusion algorithms falls mainly into two categories. The
first is the qualitative description by visual discrimination, which directly judges whether
the hue, exposure and sharpness of the image are consistent. However, the evaluation
results of this method are more subjective, and reliability is difficult to guarantee. The
second is a quantitative evaluation through statistical fusion of various image parameters.
The data analysis is used to measure whether the fused image meets the basic requirements,
such as the uniformity of exposure and the richness of the image information. Based on
this, we use a combination of qualitative and quantitative evaluation methods to conduct
an experimental comparison study with commonly used fusion stitching algorithms in
terms of stitched image quality, algorithm processing time and other aspects.

Five classical evaluation metrics were selected for quantitative evaluation, including
grayscale mean value (u), peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), mutual information (MI) and correlation coefficient (CC). The evaluation
metrics evaluate image quality from three dimensions: pixel statistics, information theory
and structural information. They can complement and cross-check one another, increasing
the objectivity and reliability of the evaluation results. Among them, the evaluation control
criteria for PSNR are shown in Table 1. If R(i, j) is the image to be evaluated, F(i, j) is the
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original image and the image sizes are all M × N, the above evaluation criteria are defined
as follows:

u =
1

MN

M

∑
i=1

N

∑
j=1

R(i, j) (13)

PSNR = 10log

(
MN(max(F)− min(F))/

M

∑
i=1

N

∑
j=1

[R(i, j)− F(i, j)]2
)

(14)

SSIM(R, F) =
[
l(R, F)]α

[
c(R, F)]β[s(R, F)]γ

l(R, F) = 2µRµF+C1
µ2

R+µ2
F+C1

c(R, F) = 2σRσF+C2
σ2

R+σ2
F+C2

s(R, F) = σRF+C3
σRσF+C3

(15)

MI(R, F) = H(R) + H(F)− H(R, F)

H(R) = −
N−1
∑

i=0
pilog pi H(R, F) = −∑

r, f
pRF(r, f )logpRF(r, f ) (16)

CC =
∑M−1

x=0 ∑N−1
y=0 (R(x, y)− R(x, y))(F(x, y)− F(x, y))√

∑M−1
x=0 ∑N−1

y=0 (R(x, y)− R(x, y))2
∑M−1

x=0 ∑N−1
y=0 (F(x, y)− F(x, y))2

(17)

Table 1. Image quality standards evaluated by PSNR.

PSNR/dB Image Quality Standards

PSNR ≥ 40 Superb picture quality, virtually the same as the original
30 ≤ PSNR < 40 Good picture quality, very similar to the original
20 ≤ PSNR < 30 Poor picture quality with significant distortion

PSNR < 20 Very poor picture quality with unacceptable image distortion

3.3. FROI Adaptive Experiment

The experiments aim to validate the adaptive performance of the proposed FROI. In
both datasets, we performed image fusion experiments using adaptive ∆ξ and different
fixed values of ξ, respectively. For a more intuitive comparison of their fusion smoothing
effects, image frames with great differences in exposure and more challenging fusion
smoothing were selected for zoom-in analysis, where the zoomed area is the image block
near the inter-frame stitching positioning line. The image blocks are all 150 × 150 pixels in
size, as shown in Figures 11 and 12. When directly superimposed (ξ = 0), there is a clear
difference in exposure on either side of the stitching positioning line.
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For the quantitative analysis, we used the mean grayscale line plot to evaluate the
image fusion effect at different values of ξ. We blocked the analyzed image blocks again
uniformly and numbered them from top to bottom and from left to right; the blocking and
numbering methods are shown in Figure 13. To further analyze the degree of uniformity of
hue and exposure within the image, the u within each block was calculated separately and
a line graph was plotted. As shown in Figure 14, the horizontal axis indicates the block
number, and the vertical axis indicates the u of each block. The flatter the line, the more
uniform the grayscale distribution within the image block and the better the fusion effect.
As ξ increases, the grayscale distribution line of the image block tends to become flatter, and
the hue difference of the fusion image is smoothed compared to the grayscale distribution
line of the original image (ξ = 0). There is a positive correlation between ξ and the degree
of fusion. However, when ξ is increased to a certain threshold, the grayscale distribution
folds of the image blocks tend to become more similar as ξ increases. When using the
adaptive ∆ξ calculated from Formula (4), the grayscale distribution of both data image
blocks is flatter. This shows that ∆ξ can adequately meet the requirements of inter-frame
fusion and the fused images have good grayscale consistency.
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For qualitative analysis, the fusion results using adaptive ∆ξ and different fixed ξ for
the zoomed analysis image blocks are shown in Figures 15 and 16. The red circles mark
the areas of the figures with the greatest differences in hue and exposure. From Figures
15a–c and 16a–d, it can be seen that when using fixed ξ, the larger the ξ, the larger the hue
smoothing interval of the fusion, the stronger the fusion effect, and the exposure uniformity
within the image is significantly improved.
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Figure 15. The fusion results of Data I zoomed analysis image blocks when using adaptive ∆ξ and
different fixed ξ. (a) ξ = 10, (b) ξ = 20, (c) ξ = 30, (d) ∆ξ = 34, (e) ξ = 40.
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Figure 16. The fusion results of Data II zoomed analysis image blocks when using adaptive ∆ξ and
different fixed ξ. (a) ξ = 10, (b) ξ = 20, (c) ξ = 30, (d) ξ = 40, (e) ∆ξ = 47.

However, comparing (d) and (e) of Figure 15, it can be seen that after ξ has been
increased to a certain threshold, the hue within the image is relatively uniform. As ξ
increases, the fusion smoothing results are closer together, and the visual effects are similar.
However, as the fixed ξ rises, the fusion processing becomes more demanding and time-
consuming. In practice, to ensure the smoothing effect of different image frames, it is
usually necessary to artificially set a larger fixed ξ value for fusion processing, which
inevitably generates an additional workload and is not conducive to emergency response.

As can be seen in Figures 15d and 16e, when using adaptive ∆ξ, it can be seen that the
fused image results have a more uniform distribution of hue in the fore-and-aft and side
directions. Uniform visual results are achieved for both sets of data with the more challeng-
ing image blocks. Since the adaptive ∆ξ can be dynamically adjusted according to different
inter-frame difference situations, it maximises the processing efficiency under the premise
of guaranteeing the fusion effect and has obvious advantages in emergency response.

3.4. Fusion Experiment

The experiments were designed to verify the advantages of the proposed fusion
method. We selected six pairs of images containing typical features as test data in two sets
of experimental data. Comparisons were made with the weighted average fusion algorithm
(WA), the maximum flow/minimum cut algorithm (Maxflow/Mincut) [17,18] and the
Laplacian pyramid fusion algorithm (LAP) based on an OpenCV implementation. Of
these, WA is the most commonly used image fusion algorithm, Maxflow/Mincut is a
representative algorithm based on optimal stitching, and both the LAP and SatellStitch
in this paper are based on FROI. The PSNR, SSIM, MI, CC and experimental time (Time)
statistics for the fused image results of the four methods are shown in Table 2.

Table 2. Quantitative evaluation of test data fusion results.

Evaluation
Indicators Method Forest Calibration

Field Building Road Farm Lake

PSNR/dB

WA 29.202 28.319 26.806 29.569 29.507 27.438
Maxflow/Mincut 30.695 26.846 27.148 28.665 29.224 27.684

LAP 39.589 40.542 31.985 33.752 37.992 34.369
SatellStitch 43.155 50.751 32.916 51.131 54.187 54.695

SSIM

WA 0.933 0.943 0.947 0.966 0.955 0.965
Maxflow/Mincut 0.959 0.945 0.958 0.967 0.948 0.967

LAP 0.996 0.998 0.985 0.992 0.992 0.990
SatellStitch 0.997 0.999 0.989 0.999 0.994 0.999

MI

WA 1.540 2.078 1.995 1.836 1.411 1.291
Maxflow/Mincut 1.861 2.141 2.091 1.791 1.378 1.298

LAP 3.177 3.739 2.989 2.435 2.590 2.013
SatellStitch 3.323 4.159 3.043 3.084 3.167 2.844

CC

WA 0.985 0.984 0.979 0.984 0.984 0.980
Maxflow/Mincut 0.990 0.976 0.980 0.983 0.982 0.977

LAP 0.998 0.998 0.992 0.993 0.997 0.993
SatellStitch 0.999 0.999 0.993 0.999 0.998 0.999

Time/s

WA 2.903 3.204 3.147 2.885 2.489 2.571
Maxflow/Mincut 0.652 0.621 0.637 0.482 0.606 0.571

LAP 1.190 1.221 1.131 1.196 1.189 1.276
SatellStitch 1.198 1.129 1.105 1.291 1.164 1.256
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As can be seen from Table 2 and Figure 17, WA takes the longest time, has the worst real-
time performance and has difficulty adapting to UAV imagery data with large differences
in hue and exposure between the frames. The algorithms all have a PSNR below 30 dB. This
indicates significant image distortion problems in the fusion images. The Maxflow/Mincut
shows some advantages in terms of time consumption, but its PSNR fluctuates around
30 dB, indicating that the image quality after fusion is still unsatisfactory. Compared with
the LAP, the PSNR of SatellStitch is improved by an average of 31.73%, and the MI is
improved by an average of 19.98%, indicating that our algorithm has effectively improved
the quality of the fused image, and the fused image is very similar to the original image
and inherits the spectral radiation information of the original image better. In terms of
algorithm processing efficiency, since SatellStitch and the LAP need to construct different
spatial frequency layers for fusion, it takes slightly longer than Maxflow/Mincut but has
good real-time performance compared to WA.
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results of different fusion algorithms).

For a more visual comparison of the performance of different fusion algorithms, a
local zoom analysis was performed on images containing typical features and significant
hue differences in the test data, as shown in Figures 18 and 19. The first column is the
original alignment image, and different colored boxes are used to indicate the area of the
image where the corresponding color represents the algorithm for the zoomed comparison.

Figure 18 contains vertical structural features, such as trees and buildings, and it can be
seen that WA has produced significant ghosting and blurring around the structural features
and that the images are severely distorted. Maxflow/Mincut avoids the appearance of
blur, but due to the differences in hue and exposure between frames, there are gaps in
the blended image where hue and brightness jump around. With less hue and exposure
variation, the LAP and SatellStitch achieve more natural blending results not only on
flatland areas but also on vertical structures, such as buildings and trees.

Figure 19 shows the results of the more challenging image blending. There is color
degradation at the edges of the image due to the effects of hazy weather, producing more
significant hue differences. It can be seen that both WA and Maxflow/Mincut struggle to
achieve the desired visual effect and distortions and misalignments appear in geometric
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features such as roads. The LAP has limited ability to process images with large hue
differences, and its fused images result in significant halos on the lake. SatellStitch shows
greater robustness, and the fused image is clear and tonally consistent.
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3.5. Image Stitching Experiment

Due to the high altitude of the UAV, the ground in the survey area is not very undu-
lating and can be approximately flat. Therefore, this paper estimates the transformation
relationship T between the UAV image and the satellite reference image as a perspective
transformation model within a certain accuracy range to achieve fast alignment and stitch-
ing of the image frames. Figure 20 shows the UAV fast-stitch image maps of Data I and
Data II. It can be seen that the overall visual effect of the stitched image results of SatellStitch
is satisfactory, with good adaptability and robustness to UAV image data with different
hues and irregular overlaps between frames.
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Figure 20. The results of the UAV fast-stitch image maps with data from (a) Data I and (b) Data II.

To quantitatively assess the quality of the UAV fast-stitch image maps, 50 points were
randomly selected by hand from the stitching results of the two datasets and compared
with the satellite reference image. Table 3 shows the statistical results of the mean pixel
errors in the x and y directions. As can be seen from Table 3 and Figure 21, SatellStitch
effectively solves the problem of error accumulation in traditional stitching methods, with
the majority of pixel errors in all directions of the image being within three pixels.

Table 3. Statistical results of the mean pixel error in the x and y direction of the UAV fast-stitch image
maps. The results were obtained by manually selecting 50 points at random on the UAV fast-stitch
image maps. The statistics were visually compared with the satellite reference image.

Data Number of Images ¯
σx (pixels)

¯
σy (pixels)

Data I 61 1.26 1.14
Data II 25 1.28 1.74
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Table 4 shows the average time spent per frame per step in the stitching flow of Satell-
Stitch. It compares it with the well-known commercial software Pix4DMapper V4.5.6 [46].
It can be seen that the processing time of Pix4DMapper increases sharply as the number
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of image frames increases. In contrast, SatellStitch introduces satellite reference image
assistance, and each frame of the UAV image can be directly corrected without iteration and
overall levelling, with low computational complexity, so that large-scale image data can be
processed smoothly and quickly, with an average time of 2.36 s per frame of image stitching
and an approximately linear computational complexity. In the image Data I stitching
experiments with a large amount of image data, the stitching efficiency was improved by
62.31% compared to Pix4DMapper.

Table 4. Comparison of the average time taken for each step in the stitching flow of the fast-stitch
image maps and the time taken for Pix4DMapper stitching.

Data
SatellStitch Pix4DMapper

¯
TMatching (s)

¯
TAlignment (s)

¯
TFusion (s)

¯
TStitching/TStitching (s)

Data I 0.93 0.27 1.28 2.48/151.37 6.58/401
Data II 0.91 0.22 1.12 2.25/56.25 2.76/69

4. Discussion

In extreme scenarios such as disaster relief, UAV image stitching can be affected by
various factors, such as image distortion and drastic changes in terrain. Therefore, in order
to better support emergency mapping tasks, a stitching algorithm needs to meet special
requirements, such as stability, adaptivity, and real-time performance. This paper is focused
on the theoretical and experimental study of the stitching method for UAV fast-stitch image
maps, which provides a new idea to meet the special requirements for stitching UAV
images in emergency response situations, such as disaster rescue and risk assessment. The
effectiveness of the SatellStitch is verified through experiments on two UAV image datasets.
It can produce high-quality and seamless fast-stitch image maps in a variety of terrain
scenarios and remains robust under large hue differences caused by hazy weather.

First of all, Satellstitch has a high degree of stability. Since the satellite reference
image is a ground orthographic projection, each pixel has absolute geographic coordinates.
Therefore, with the help of the satellite image, each frame of the UAV image is able to
directly achieve absolute positioning after rapid alignment using the points obtained by
feature matching to calculate the transformation model. In addition, the transformation
model calculation is performed only between the UAV image and the satellite image,
which effectively solves the problem of cumulative error in the traditional inter-frame
transformation method of the UAV image. Furthermore, the stitching quality is not limited
by the degree of image overlap, which avoids the matching difficulty and stitching failure
problem caused by insufficient overlap between frames in the traditional method. It is
highly reliable in extreme conditions, such as GNSS denial, and the pixel error statistics in
Table 3 show that the average pixel error of Satellstitch is controlled within three pixels.

In addition, Satellstitch also has excellent adaptability. We tested the advantages of
the adaptive FROI. By comparing the fusion results of the two datasets, it can be seen
that the ξ to achieve a more desirable fusion effect between different image frames is
different. In practice, if the fusion smoothing requirement between different image frames
is only satisfied by increasing ξ, it will incur a high time cost when faced with a huge
amount of UAV image data, and it is difficult to ensure a real-time emergency response.
The fusion method based on ∆ξ proposed in this paper can fully satisfy the fusion needs
between different frames. Moreover, it improves the fusion efficiency while ensuring
the fusion effect. At the same time, Satellstitch achieves an effective improvement over
traditional fusion algorithms. It is able to adapt to different environmental conditions and
feature types. We analyze and compare with the current commonly used image fusion
algorithms. Compared with the single image fusion algorithm WA and the representative
algorithm Maxflow/Mincut based on optimal stitching, SatellStitch effectively avoids gaps
and ghosting. The gradient weight cost map designed in this paper also effectively enhances
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the performance of the LAP and reduces the loss of image details, improving the quality of
the stitched images with an average improvement of 31.73% in PSNR, 19.98% in MI and
greater than 0.99 in both CC and SSIM. In terms of real-time performance, compared to the
well-known commercial software Pix4DMapper, Satellstitch can significantly increase the
processing speed with little loss of stitching accuracy and can process large-scale image
data smoothly and quickly, which is of practical value in emergency mapping scenarios,
such as risk assessment and disaster relief.

In actual emergency mapping missions, in order to capture as comprehensive a picture
as possible of the disaster area, including damage to buildings, casualty locations, road
traffic conditions, etc., UAVs usually have a high flight altitude. Under this premise, Satell-
stitch has an obvious advantage in fast stitching of extensive image maps, and the simple
perspective transformation model can fully meet the application standards. However,
when the UAV is flying at a low altitude, the assumptions of the perspective transformation
model may be violated, affecting the stitching accuracy of individual image frames, so
the flight altitude parameter must be taken into account. In future work, we will work on
solving the difficult problem of stitching fast UAV images in more diverse and complex
emergency mapping scenarios and further improve the robustness and applicability of
the algorithm.

5. Conclusions

Seamless stitching of UAV fast-stitch image maps is a key technology for providing
real-time geographic information services for emergency mapping and is of great social
and practical importance. This paper focuses on the problems of inter-frame drift distor-
tion, ghosting and gaps that tend to occur in fast-stitch image maps. We integrate the
advantages of two methods, image feature information-based method and image fusion,
and apply them jointly. It also introduces the assistance of satellite reference images and
proposes a seamless and autonomous method for producing UAV fast-stitch image maps
for emergency response. Experiments have been conducted on two sets of UAV image data
with different seasons and features, and the following conclusions have been reached:

1. The UAV fast-stitch image map stitching strategy assisted by satellite reference images
effectively solves the cumulative error problem of the traditional method. Without the
support of GCPs and GNSS, the UAV image alignment can be absolutely positioned,
which can meet the application requirements of UAV emergency mapping;

2. The dynamic contour-based multi-resolution image fusion algorithm achieves the
simultaneous resolution of stitching-gap and ghosting problems. The smoothing
ability of hue and exposure differences is remarkable, and the quality of the stitched
image is effectively improved.

In summary, the SatellStitch proposed in this paper can provide new technical support
for UAV emergency mapping and has important application value in activities such as
disaster rescue and risk assessment.
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