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Abstract: The space–time adaptive processing (STAP) technique can effectively suppress the ground
clutter faced by the airborne radar during its downward-looking operation and thus can significantly
improve the detection performance of moving targets. However, the optimal STAP requires a large
number of independent identically distributed (i.i.d) samples to accurately estimate the clutter plus
noise covariance matrix (CNCM), which limits its application in practice. In this paper, we fully
consider the heterogeneity of clutter in real-world environments and propose a sparse Bayesian
learning-based reduced-dimension STAP method that achieves suboptimal clutter suppression per-
formance using only a single sample. First, the sparse Bayesian learning (SBL) algorithm is used
to estimate the CNCM using a single training sample. Second, a novel angular Doppler channel
selection algorithm is proposed with the criterion of maximizing the output signal-to-clutter-noise
ratio (SCNR). Finally, the reduced-dimension STAP filter is constructed using the selected channels.
Simulation results show that the proposed algorithm can achieve suboptimal clutter suppression
performance in extremely heterogeneous clutter environments where only one training sample can
be used.

Keywords: space–time adaptive processing; sparse Bayesian learning; reduced dimension; angular
Doppler channel

1. Introduction

Airborne radar is highly valued by many countries in the world because of its strong
maneuverability and longer direct viewing distance than ground radar. However, due to the
influence of ground clutter, the moving target detection performance of airborne radar will
be seriously degraded when looking down. The ground clutter is not only strong but also
has different speeds relative to the aircraft in different directions, which greatly broadens
the clutter spectrum. How to suppress ground clutter is the key problem to be solved
in airborne radar systems. Space–time adaptive processing (STAP) [1] technology has
been widely used by many researchers because of its excellent ground clutter suppression
performance. Traditional STAP algorithms need to use target-free samples adjacent to
the cell under test (CUT) to obtain an estimate of the clutter plus noise covariance matrix
(CNCM). According to the Reed–Mallett–Brennan (RMB) criterion [2], the output signal-to-
clutter-noise ratio (SINR) loss after processing by the STAP algorithm is less than 3 dB only
if the number of training samples used is more than two times the number of degrees of
freedom (DOFs) of the system. Unfortunately, it is difficult in reality to provide such a large
number of i.i.d samples for airborne radar since ground clutter is often heterogeneous due
to external non-ideal factors. Therefore, the study of STAP algorithms with few samples
and high performance is very important for practical applications.

In the decades since the STAP algorithm was first proposed, numerous researchers
have proposed many methods that can reduce the sample requirements of the STAP to some
extent. Klemm proposed an auxiliary channel method (ACP) [3], which can effectively
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reduce the number of i.i.d samples required for STAP. Under ideal conditions, ACP can
achieve near-optimal performance, but when non-ideal factors (such as internal clutter
motion and array amplitude and phase errors) are present, the performance loss can be
significant. Dipietro proposed the extended factor approach (EFA) [4], which uses all
spatial domain channels for adaptive processing after Doppler filtering. As a result, EFA
is robust to non-ideal factors in the spatial domain. However, when the airborne radar
system has a large number of spatial DOFs, EFA still requires many training samples.
Wang proposed a joint domain localized processing algorithm (JDL) [5] for space–time
adaptive processing by selecting multiple channels adjacent to the channels to be detected
in the angular Doppler plane. Compared with EFA, this method has the advantage of
further reducing the training sample and lowering the computational complexity and the
disadvantage of being more affected by non-ideal factors. In the study of STAP techniques
based on spatial–temporal spectral sparsity, the literature [6–12] utilizes several training
samples without target signals to reconstruct the spatial–temporal amplitude spectrum of
the clutter and estimate the CNCM. This type of method has the advantage of estimating
the clutter covariance matrix relatively accurately using only 4–6 i.i.d training samples, but
it also suffers from high computational complexity and inevitable off-grid problems.

In this paper, an RD STAP method based on the sparse Bayesian algorithm is proposed,
which has the advantages of requiring fewer samples and suitable clutter suppression
performance. In the traditional RD STAP algorithm, we found the following phenomenon,
i.e., when the number of samples is insufficient, the output SINR obtained using the RD
matrix to process the estimated CNCM followed by adaptive processing is larger than that
obtained by directly using the estimated CNCM for adaptive processing. Inspired by this,
we consider estimating an inaccurate CNCM using only a single sample in the extremely
heterogeneous clutter environment and then selecting the optimal RD channel to make
the output SINR satisfy the target detection requirements. In our proposed algorithm, the
CNCM is first estimated using the SBL algorithm when only a single sample is available.
Although this estimated CNCM cannot be used directly for adaptive processing, it can
be used to construct RD transformation matrices. Second, the proposed channel selection
algorithm is utilized to select the optimal RD channel in the angular Doppler plane with
the criterion of maximizing the output SINR. Finally, the selected channels and estimated
CNCM are used to construct the RD STAP filter. The main contributions of this paper are
as follows:

1. A novel RD STAP method based on the SBL algorithm is proposed, which has subopti-
mal clutter suppression performance in extremely heterogeneous clutter environments
with only one training sample available.

2. A novel angular Doppler domain RD channel selection algorithm is proposed, which
maximizes the output SINR as a criterion for selecting auxiliary channels. In general,
suboptimal clutter suppression performance can be achieved by selecting 3–8 auxiliary
channels using the proposed algorithm.

In order to more clearly show the superiority of the proposed algorithm in sample de-
mand, Table 1 lists the minimum number of samples required by several related algorithms
to achieve suboptimal performance. In Table 1, M refers to the number of pulses and N
refers to the number of elements.

Table 1. Training samples required by several related algorithms.

Algorithm Required Samples

EFA [4] 6N
JDL(3*3) [5] 18

SBL-STAP [9] 6
Proposed method 1
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The remainder of this paper is organized according to the structure below. In Section 2,
we briefly review the STAP model and processors based on the GSC architecture. In
Section 3, we derive the processing flow of the proposed algorithm in detail. In Section 4,
we perform extensive simulation experiments to illustrate the effectiveness of the proposed
algorithm. Finally, in Section 5, we summarize some useful conclusions.

Notation: In this paper, the symbol ⊗ denotes the Kronecker product. The symbol
∥·∥F and ∥·∥0 are used to represent the Frobenius (𝓁F) norms and 𝓁0 pseudo-norms,
respectively. Scalars are italicized, and lowercase bold and uppercase bold denote vectors
and matrices, respectively. The operators (·)T and (·)H denote transpose and conjugate
transpose, respectively. The operation of finding the expectation of a random variable v
is denoted by E(v). The symbol A ∈ B presents set A belongs to set B. The empty set is
represented by the symbol ∅.

2. STAP Model and GSC form Processor
2.1. STAP Model

The system considered is a pulse Doppler radar installed on an airborne platform. The
antenna of this radar is a uniform line array (ULA) containing N array elements with a
spacing d equal to half of the operating wavelength λ of the system. The airborne platform
is flying at an altitude of h and a speed of v. The radar transmits a coherent burst of pulses
at a fixed pulse repetition frequency (PRF) fr = 1/Tr, where Tr refers to the pulse repetition
time (PRT). A total of M pulses are transmitted during the coherent processing interval
(CPI), so the length of the coherent processing time is MTr. The geometric model of the
airborne radar is shown in Figure 1a. Each PRT needs to be sampled L times to cover the
distance interval, and LMN complex baseband samples are obtained after matched filtering
the returns from each pulse within a CPI, which is referred to as radar datacube, shown in
Figure 1b.

Figure 1. Airborne radar geometric configuration and datacube. (a) Airborne radar downward-
looking working model; (b) the radar datacube.

According to the clutter model proposed by Ward [1], the normalized spatial and
normalized Doppler frequency of the i-th clutter patch can be expressed as

fd,i =
2v
λ fr

cos(θi) cos(φi) (1)
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fs,i =
d
λ

cos(θi) cos(φi) (2)

where θi and φi are the elevation and azimuth angle, respectively. Then, the space–time
steering vector can be expressed as

s( fd,i, fs,i) = a( fd,i)⊗ b( fs,i) (3)

a( fd,i) = [1 exp(j2π fd,i) · · · exp(j2π(M − 1) fd,i)]
T (4)

b( fs,i) = [1 exp(j2π fs,i) · · · exp(j2π(N − 1) fs,i)]
T (5)

where a( fd,i) and b( fs,i) are the time and spatial steering vectors, respectively. Considering
the range ambiguity, the space–time snapshot can be expressed as [1]

xl = xc + xn =
Na

∑
a=1

Nc

∑
i=1

αa,is( fd,a,i, fs,a,i) + xn (6)

where αa,i represents the random complex amplitude of the i-th clutter patch of a-th am-
biguous range. xn is modeled as zero mean Gaussian white noise. Assuming that the clutter
patches are independent of each other, the ideal CNCM can be calculated as

Rc+n = ΦΓΦH + σ2 IMN = Rc + σ2 IMN (7)

where Rc represents the clutter covariance matrix, σ2 represents the noise power, Φ ∈
CMN×Nc denotes the matrix consisting of the space–time steering vectors of each clutter
patch, Γ ∈ CNc×Nc is a diagonal matrix with the main diagonal elements being the power
of each clutter patch. Assuming that vt is the space–time steering vector of the target,
the optimal STAP filtering weight can be obtained by solving the following optimization
problem [13]:

min WH
optRc+nWopt

s.t. WH
optvt = 1

(8)

and the optimal weight is expressed as

Wopt =
R−1

c+nvt

vH
t R−1

c+nvt
(9)

In the traditional SR STAP algorithm, we discretized the normalized space–time plane
uniformly to K = NsNd points, where Ns ≫ N is the number of spatial channels and
Nd ≫ M is the number of Doppler channels. Then, the SR signal model with single
measurement vectors (SMV) is expressed as [14]

x = Dw + ε (10)

where x represents the measurement vector and D is the space–time overcomplete dictio-
nary obtained by discretizing the space–time plane. ε represents the additive zero mean
Gaussian white noise vector. w is a sparse coefficient vector, which is also the parameter to
be solved. The sparse coefficient solution problem in Equation (10) can be approximated as
the following convex optimization problem [15]:

min
w

∥w∥1

s.t. ∥x − Dw∥2 ≤ ρ
(11)

where ρ denotes the fitting error tolerance.
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2.2. GSC form Processor

As shown in Figure 2, the GSC structure processer is divided into upper and lower
branches [16,17]. The upper branch is the main channel containing the target and clutter
component, and the lower branch is the auxiliary channel containing only the clutter
component. The GSC processor can improve the SINR in the main channel by utilizing the
clutter in the auxiliary channel to cancel the clutter in the main channel. The space–time
steering vector of the main channel can be expressed as

St( fd,t, fs,t) = a( fd,t)⊗ b( fs,t) (12)

where fd,t and fs,t denote the normalized spatial and normalized Doppler frequency, re-
spectively. And a( fd,t) and b( fs,t) are the time and spatial steering vector, respectively. The
matrix B of the lower branch represents the blocking matrix, which consists of the angular
Doppler channel other than the main channel. On the one hand, there is no dimensionality
reduction in the STAP processing when B contains all angular Doppler channels other than
the main channel. On the other hand, different subsets of all angular Doppler channels
other than the main channel can be selected to form different RD STAP algorithms.

Figure 2. GSC form processor.

The GSC processor transforms the space–time adaptive processing detection structure
into a standard Wiener filter. As shown in Figure 2, the output of the GSC filter without
reduced dimension can be expressed as

y = d − WHz (13)

where d is the output of the upper branch and z ∈ C(NM−1)×1 is the clutter vector that does
not contain the target, given by

d = SH
t X (14)

z = BHX (15)

where B ∈ CNM×(NM−1) is the blocking matrix, which is composed of space–time steer
vectors of different angular Doppler channels except the main channel. It is well known
that angular Doppler channels are perpendicular to each other. Therefore, we have

BHSt = 0 ∈ C(MN−1)×1 (16)

The design philosophy of the GSC filter is to minimize the output power, which gives
rise to the following optimization problem.

min
W

J(W) = min
W

E
[
∥y∥2

2

]
(17)

The optimal weight vector is calculated as

Wopt = R−1
z rzd (18)

where Rz denotes the CNCM of the lower branch

Rz = E
[
zzH

]
(19)
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rZd is the cross-correlation vector between the upper and lower branch outputs.

rzd = E[zd∗] (20)

3. Proposed Algorithm

In the proposed algorithm, the CNCM of the cell under test R̂ is first estimated by the
SBL algorithm. Then, R̂ and the proposed angular Doppler channel selection algorithm are
used to design the RD transformation matrix Tr. When Tr is obtained, Tr and R̂ are uesd to
design the RD filter. Finally, the RD filter is used to process the data of the CUT and detect
the target. The flowchart of the proposed algorithm is shown in Figure 3.

Figure 3. The flowchart of the proposed algorithm.

3.1. CNCM Estimation Method Based on SBL

In this section, we first derive the method for estimating the CNCM using SBL when
only a single sample is available and then provide a pseudo-code for computing the
covariance matrix. Rewrite the sparse signal model expressed in Equation (10) as follows.

x = Dw + ε (21)

where x ∈ CMN is the measurement data vector, which is the single sample used in the
proposed algorithm. D ∈ CMN×Ns Nd is an overcomplete space–time dictionary obtained
by discretizing the normalized space–time plane. w ∈ CNs Nd×1 is the sparse coefficient
vector to be solved. ε ∈ CMN×1 is the noise vector with mean 0 and variance σ2IMN , and
noise power σ2 is the unknown parameter. Based on the above assumptions, the likelihood
probability density function of x has the following form:

p
(

x|w, σ2
)
=

(
2πσ2

)− MN
2 exp

(
− 1

2σ2 ∥x − Dw∥2
)

(22)

To ensure the sparsity of the model, we assign to each element of w a Gaussian prior
with zero mean and α−1

i variance. As a result, the joint distribution of each element in w
can be expressed as

p(w|α) =
Ns Nd

∏
i=1

(2π)−
1
2 α

1
2
i exp

(
−αi

2
w2

i

)
(23)
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where α =
[
α−1

1 , α−1
2 , · · · , α−1

Nd Ns

]T
is the hyperparameters vector. According to [18], the

suitable priors thereover are Gamma distributions for α and σ2. As a result, the joint
probability density function of the elements in vector α can be expressed as

p(α) =
Ns Nd

∏
i=1

Gamma(αi|a, b) (24)

p
(

σ−2
)
= Gamma

(
σ−2

∣∣∣c, d
)

(25)

where
Gamma(α|a, b) = Γ(a)−1baαa−1e−bα (26)

with Γ(a) =
∫ ∞

0 ta−1e−tdt. To make these priors non-informative [18], we might fix their
parameters to small values: e.g., a = b = c = d = 10−6. Then, calculating the estimates of
each parameter based on the given data can be accomplished by calculating the posterior
probability density function as follows:

p
(

w, α, σ2
∣∣∣x) =

p
(

x|w, α, σ2)p
(
w, α, σ2)

p(x)
(27)

To simplify the calculation, this posterior is written in another equivalent form:

p
(

w, α, σ2
∣∣∣x) = p

(
w|x, α, σ2

)
p
(

α, σ2
∣∣∣x) (28)

According to the famous Bayes’ theorem, the posterior distribution over the w is thus
given by [18]

p
(

w|x, α, σ2) =
p( x|w,σ2)p(w|α)

p( x|α,σ2)

= (2π)−
Ns Nd

2 |Σ|−
1
2 exp

(
− 1

2 (w − µ)TΣ−1(w − µ)
) (29)

Therefore, the posterior covariance and mean are expressed respectively as [19,20]

Σ =
(

σ−2DH D + Λ
)−1

(30)

µ = σ−2ΣDHx (31)

where Λ = diag
([

α1, α2, · · · , αNs Nd

])
.

Next, the expectation maximization (EM) [18] algorithm is used to update the hy-
perparameters α and σ2. First, calculate the updated formula for the hyperparameter
α. Ignoring the terms in the logarithm that are not relevant to α, we can obtain the
following expectation:

Ew|t,α,β(log(p(w|α)p(α))) (32)

We maximize this expectation to obtain an iterative update formula for α. By differen-
tiating this expectation in Equation (32) and making the derivative equal to 0, we obtain
the following iterative updating equation:

(αi)
new =

1
Ew|t,α,β

(
w2

i
) =

1
Σi,i + µ2

i
(33)

By following the same steps as before, we can obtain the following expectation associ-
ated only with σ−2:

Ew|t,α,β(log(p( x|w, β)p(β))) (34)
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By maximizing the expectation in Equation (34), we can obtain an iterative update
formula for σ2:

(
σ2

)new
=

Ew|t,α,β

(
∥x − Dw∥2

)
NsNd

=
∥x − Dµ∥2 + trace

(
ΣDH D

)
NsNd

(35)

The iterative updates of α and σ2 does not stop until the preset constraints are satisfied.
After the iterative updating of the parameters converges, the CNCM can be calculated as

R̂ = DΠDH + σ2 IMN (36)

where Π = diag
([

µ2
1, µ2

2, · · · , µ2
Ns Nd

])
.

The pseudo-code for the SBL-based CNCM estimation method is shown in Algorithm 1.

Algorithm 1. CNCM estimation method based on SBL.

Step1: Given the initial values σ2
0 = 0.01, α0,i = 1, i = 1, 2, · · · , Ns Nd

Step2: Compute the posterior moments

Σk+1 =
(

σ−2
k DH D + Λk

)−1

µk+1 = σ−2
k Σk+1DH x

Step3: Update the α and σ2 using the EM rule
αk+1,i =

1
Σk+1,i,i+µ2

k+1,i

σ2
k+1 =

∥x−Dµk+1∥2+trace(Σk+1DH D)
Ns Nd

Step4: Continue Step 2 and 3 until convergence
Step5: Assuming ŵ = µk+1
Step6: Compute the CNCM by

R̂ = DŵŵH DH + σ2
k+1 IMN

3.2. Channel Selection Algorithm Based on SINR Maximum Criterion

As shown in Figure 4, the matrix V in the lower branch denotes the selection matrix,
which consists of some columns of the unit matrix. If K channels are selected as auxiliary
channels, then the selection matrix V will consist of the K columns of the unit matrix and
the DOF of the filter is reduced from (NM − 1) to K. In RD STAP, the RD observation data
vector is formed using the selection matrix V ∈ C(NM−1)×K:

b = VHz ∈ CK×1 (37)

Figure 4. Reduced-dimension GSC form processor.

The corresponding K × K RD CNCM is shown below.

Rb = VH RzV ∈ CK×K (38)

Now, we need to specify how to select the optimal auxiliary channel. We propose an
iterative algorithm for selecting the auxiliary channel using the maximum output SINR
as a criterion. When selecting the first channel, we need to choose the one that maximizes
the output SINR from the J = (MN − 1) candidates. When we choose the j-th channel
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as the first auxiliary channel, the selection matrix V =
[
ej
]

has only one column, where
ej represents the j-th column of the unit matrix. In this case, the RD matrix can then be
expressed as

Tr = [St, BV] ∈ CNM×2 (39)

Apply the RD matrix to the estimated CNCM R̂ to obtain the localized CNCM R̂Local .

R̂Local = TH
r R̂Tr ∈ C2×2 (40)

According to [21], we have the following relationship:

R̂Local =

[
σ2

d r̂H
bd

r̂bd R̂b

]
(41)

Based on the conclusions of Equation (18), the filter weight under the RD GSC structure
can be expressed as

W = R̂−1
Local r̂bd (42)

and we have

WT =

[
1

−W

]
(43)

The output SINR when the j-th auxiliary channel is selected can be calculated by the
following equation:

SINRj =

∣∣WH
T ST

∣∣2
WH

T R̂LocalWT
, j = 1, 2, · · · , J (44)

The angular Doppler channel that maximizes the output SINR is the first auxil-
iary channel selected. The problem of finding the maximum output SINR is expressed
as follows:

m = max
j

(
SINRj

)
(45)

Then, the selection matrix V = [em], for the sake of expression, let v1 = em, this means
that the first column of the selection matrix is em. Then, the selected channel is deleted from
the candidate channel, and there are (NM − 2) candidate channels left.

When we select the k-th auxiliary channel, there are already (k − 1) channels selected
and (MN − k − 2) candidate channels left. The selection matrix V can be expressed as

V = [v1, · · · , vk−1, vk] (46)

where v1, · · · , vk−1 have been selected in the previous step, and vk is the channel to be
selected. In other words, the selection matrix V in Equation (46) has only one column to be
determined, namely vk. In this case, the RD matrix is Tr ∈ CMN×(k+1), and the localized
CNCM is R̂Local ∈ C(k+1)×(k+1). Calculate the output SINR according to Equations (39)–(45)
and select the channel with the largest output SINR as vk. In general, selecting 3–5 channels
can achieve suboptimal clutter suppression performance.

The pseudo-code of the proposed channel selection algorithm is represented in Al-
gorithm 2. It should be emphasized that the proposed channel selection algorithm is an
iterative algorithm. Before use, you can preset the number of channels to be used as the
iteration stop condition. For example, if you want the algorithm to stop when C channels
are selected, then the C channels selected have the largest output SINR compared to other
channel combinations with the same number of channels. Step2 and Step3 in Algorithm 2
are the core iteration steps. Each time Step2 and Step3 are executed, one channel will be
selected and the number of candidate channels will be reduced by one.
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Algorithm 2. The pseudo-code of the proposed channel selection algorithm.

Step1: Given the initial value:
Estimated covariance matrix R̂
selection matrix V ∈ ∅
blocking matrix B contains all candidate auxiliary channels
total number of candidate channels J = (MN − 1)

Step2: Loop: j = 1, 2, · · · , J
Q =

[
V, ej

]
Tr = [St, BQ]

R̂Local = TH
r R̂T

W = R̂−1
Local r̂bd

WT =

[
1

−W

]
SINRj =

|WH
T ST |2

WH
T R̂LocalWT

SINR(j) = SINRj
end loop

Step3: solve m = max
j

(SINR(j))

Let V = [V, em], and remove Bem from candidate channel
the number of remaining candidate channels J = J − 1

Step4: Continue Step2 and Step3 until preset constraints are satisfied.
Output: Selection matrix V

4. Numerical Simulation

In this section, we will compare the performance of the proposed algorithm with
several existing classical algorithms of the same type through simulation experiments. The
performance is mainly judged by the output SINR and output SINR loss, and the formulas
for calculating these two metrics are provided below [1]:

SINR =
σ2ξt

∣∣WHSt
∣∣2

WH RW
(47)

LSINR =
σ2

MN

∣∣WHSt
∣∣2

WH RW
(48)

where R, W, and ξt refer to the ideal CNCM, STAP filter weight, and preset signal-to-noise
ratio (SNR), respectively.

An airborne phased array radar system is considered in the simulation, and the preset
simulation parameters are shown in Table 2. To ensure that the simulations are correct, all
the simulation results in the paper are the average of 100 Monte Carlo experiments.

Table 2. List of simulation parameters.

Symbols Parameters Value

λ wavelength 0.25 m
d element spacing 0.125 m
v velocity 125 m/s
H height 8000 m
M number of pulses 12
N number of elements 12
fr PRF 2000 Hz
fs sampling frequency 1 MHz

θm main lobe elevation angle 0◦

ϕm main lobe azimuth angle 90◦

ξc CNR 40 dB
ξt SNR 10 dB
Ns Angular discretization 4 N
Nd Doppler discretization 4 M
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4.1. Performance Analysis Based on Simulation Data

In order to clearly state the simulation results in this section, the intuitive view of the
clutter Capon spectrum of the data used in the simulation is given. Figure 5a shows the
known ideal Capon spectrum of the CUT. Figure 5b shows the Capon spectrum estimated
by the SBL algorithm, with only a single sample available. The value of the color bar in
Figure 5 represents the normalized value of the clutter distribution relative to the main
lobe on the space–time two-dimensional plane. Figure 5c,d show the clutter Capon spectra
obtained using 100 training samples and 10 training samples according to the ML estimation
method, respectively. By comparing these four Capon spectra in Figure 5, it can be clearly
seen that the accuracy of the Capon spectra estimated by the SBL algorithm is between
those estimated by 100 and 10 samples, respectively.

Figure 5. Comparison of estimated clutter Capon spectra. (a) Ideal CNCM; (b) SBL, a single snapshot;
(c) ML, 100 snapshots; (d) ML, 10 snapshots.

It is well known that the space scanned by the eigenvectors corresponding to large
eigenvalues is the clutter subspace [12,22], so the number of large eigenvalues can reflect
the accuracy of CNCM estimation. According to Brennan’s criterion [1], the number of
large eigenvalues in this paper should be 23. Figure 6 clearly shows that the accuracy of
estimating CNCM using 100 samples is much higher than using 10 samples, and the accu-
racy of estimating CNCM using the SBL algorithm in the single-sample case is somewhere
in between.
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Figure 6. Comparison of eigenspectra of ideal and estimated CNCM.

In addition, the performance of the proposed algorithm varies with the number of
selected auxiliary channels under different target normalized Doppler frequencies, which
are presented in Figure 7a–f. From Figure 7, We can clearly see that only 3–5 auxiliary
channels are needed to achieve suboptimal clutter suppression performance, and using
more channels not only takes a huge computational burden but also gains little performance
improvement. It can also be found that the clutter suppression performance is rather
degraded when too many auxiliary channels are used, which is due to the inaccurate
CNCM estimation. Therefore, from the point of view of balancing algorithmic performance
and computational complexity, it is wise to choose 3–7 auxiliary channels.

It should be noted that there is a total of (MN − 1) auxiliary channels to choose
from. When all candidate channels are selected, the proposed algorithm degenerates
into the traditional STAP algorithm based on sparse recovery (SR STAP), and naturally,
there is no dimensionality reduction. The SINR of the proposed algorithm with different
numbers of auxiliary channels is shown in Figure 8, where C represents the number of
auxiliary channels selected. C = 1 indicates that the proposed algorithm selects only one
auxiliary channel. From Figure 8, we can observe that the output SINR of the proposed
algorithm is better than that of traditional SR STAP when only one auxiliary channel is used.
Furthermore, we can observe that the SINR of the proposed algorithm with 80 auxiliary
channels is approximately the same as that with 5 auxiliary channels but slightly lower than
that with 7 auxiliary channels, which is consistent with the simulation results in Figure 7.

The comparison of the output SINR loss of the proposed algorithm with the best
STAP [1], JDL [5] algorithm, and direct data domain (D3) algorithm [23] is shown in
Figure 9. In the simulation of Figure 9, the number of auxiliary channels used by the
proposed algorithm is 3, and the number of auxiliary channels used by the JDL algorithm is
8. Three scenarios for estimating the CNCM are considered: 100 samples, 10 samples, and
the SBL algorithm, which uses only one sample to estimate the CNCM. In the simulation of
the direct data domain algorithm, the lengths of the spatial and temporal sliding windows
are 2, 4, and 6, respectively. The simulation results are shown in Figure 9, where it can be
clearly seen that the JDL algorithm still has a larger output SINR loss than the proposed
algorithm when using 100 samples. Moreover, the output SINR loss of the proposed
algorithm is nearly 20 dB smaller than that of the direct data domain algorithm, which
indicates that the proposed algorithm has better clutter suppression performance than the
direct data domain algorithm.
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Figure 7. The SINR of the proposed algorithm varies with the number of auxiliary channels used.
(a) fd = −0.5; (b) fd = −0.3333; (c) fd = −0.1667; (d) fd = 0.0833; (e) fd = 0.25; (f) fd = 0.4167.

To illustrate the superiority of the proposed channel selection algorithm, we compare
the output SINR loss of the SBL-JDL algorithm with that of the proposed algorithm. The
SBL-JDL algorithm is a single-sample algorithm that obtains the CNCM by the SBL al-
gorithm and then selects 8 auxiliary channels according to the JDL algorithm. The only
difference between the SBL-JDL algorithm and the proposed algorithm is the method of
selecting auxiliary channels. As can be seen in Figure 9, although the number of auxiliary
channels used is less than that of the SBL-JDL algorithm, the proposed algorithm still has a
better SINR loss than the SBL-JDL algorithm.



Remote Sens. 2024, 16, 307 14 of 18

Figure 8. SINR comparison of the proposed method with C = 1,3,5,7,80 and the traditional SR STAP.

Figure 9. Clutter suppression performance comparison of several typical algorithms.

We also simulated the target detection performance of the optimum STAP, JDL algo-
rithm (100 samples), direct data domain algorithm, and the proposed algorithm. The target
is added to the 51−th range bin. The simulation results are shown in Figure 10. We can see
that the proposed algorithm performs close to the optimal STAP and the JDL algorithm
using 100 samples when the constant false alarm detector is used.

Figure 10. Comparison of adaptive beamforming output of several typical algorithms.

So far, we have been considering an ideal error-free clutter environment. In order to
verify the robustness, we introduce the gain-phase (GP) error in the simulation experiments
in Figure 11. According to [16,24], the clutter model with GP errors can be expressed as

xGP = EDw + xn (49)
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The GP error matrix E can be expressed as

E = IM ⊗ diag
(
[e1 exp(jφ1), e2 exp(jφ2), · · · , eN exp(jφN)]

T
)

(50)

where ej and φj denote the amplitude error and phase error added to the j-th array element,
respectively. In Figure 11, the average fluctuation of the added amplitude error is 3%, 5%,
and 7% of the amplitude without error, respectively. The average fluctuations of the added
phase error are 3◦, 5◦, and 10◦, respectively. The number of auxiliary channels used by
the proposed algorithm is 3, 5, 7, and 8, while the number of auxiliary channels used by
the JDL algorithm is always 8. In addition to this, the proposed algorithm uses only one
sample, and the JDL algorithm uses 100 samples.

Figure 11. SINR loss of the proposed algorithm and JDL algorithm in the presence of GP error.
(a) Proposed algorithm, C = 3; JDL, C = 8; (b) proposed algorithm, C = 5; JDL, C = 8; (c) proposed
algorithm, C = 7; JDL, C = 8; (d) proposed algorithm, C = 8; JDL, C = 8.

The simulation results in Figure 11 show that the introduction of GP error degrades
the performance of the proposed algorithm and the JDL algorithm, and the larger the
GP error, the more the performance degrades. In addition, the output SINR loss of the
proposed algorithm decreases as the number of auxiliary channels used increases. The
proposed algorithm has no significant advantage over the JDL algorithm when only three
auxiliary channels are used in the presence of GP errors, as can be seen in Figure 11a.
From Figure 11b–d, gradually increasing the number of auxiliary channels used, the
performance of the proposed algorithm gradually improves and outperforms the JDL
algorithm. The proposed algorithm performs significantly better than the JDL algorithm
when 7 or 8 auxiliary channels are used.
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4.2. Performance Analysis Based on Measured Data

To further analyze the performance of the proposed algorithm, the proposed algorithm
is applied to the Mountain-top data (t38pre01v1_cpi_6) in this subsection. The data were
collected by the Lincoln Laboratory at the Massachusetts Institute of Technology [25]. The
specific parameters of the Mountain-top dataset are shown in Table 3.

Table 3. The main parameter of Mountain-top dataset.

Parameters Value

Array number 14
Pulses number 16

PRF 625 Hz
Bandwidth 500 kHz

Range cell number 403
Range cell of target 147

Azimuth angle of target 275◦

Normalized Doppler frequency of target 0.25

This dataset contains a total of 403 range cells, and the target is located at the 147th
range cell. Using the clutter data of all 403 range cells, the clutter covariance matrix is
estimated as [2]

Rm =
1

403

403

∑
i=1

xixH
i (51)

In Formula (51), xi represents the clutter data of the i-th range cell. Using Rm to
calculate clutter Capon spectrum is shown in Figure 12.

Figure 12. Estimated clutter spectrum using all 403 range cells.

When the performance of the proposed algorithm is verified using the measured
dataset, the sliding window method is used to detect the presence of the target along the
range cell. In order to prevent the target energy leakage caused by the movement of the
target from affecting the detection performance, four range cells on the left and right sides
of the range cell under test are specified as protection cells. The clutter data of the fifth range
cell on the left or right adjacent to the range cell under test are used as training samples
for target detection according to the proposed algorithm. The detection results along the
range cell are shown in Figure 13. In Figure 13, circled by a purple dashed ellipse, is the
output energy of the range cell where the target is located. It can be seen from Figure 13
that the proposed algorithm can detect targets both when 5 channels and 10 channels are
used. The difference between the two cases is that when 10 channels are used, the range cell
without a target has less clutter remaining. Comparing the proposed algorithm with the
traditional SR STAP algorithm, it can be seen that when only one training sample is used,
the traditional SR STAP not only fails to detect the target but also generates a false alarm in
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the range cell without a target. It is obvious that the performance of traditional SR STAP
will decrease significantly when the CCM estimation is not accurate, but the proposed
algorithm can still maintain acceptable target detection performance.

Figure 13. Output power against the range cell.

5. Conclusions

In this work, an angular Doppler domain reduced-dimension STAP algorithm based
on SBL was proposed. First, the CNCM is estimated by the SBL algorithm using only
one sample. Second, the RD matrix is designed using the estimated CNCM and the
proposed angular Doppler channel selection algorithm. Finally, the estimated CNCM and
the designed RD matrix are used to design an RD filter to process the data of the CUT
and detect the target. The experimental results demonstrate that the proposed algorithm
maintains suboptimal performance in extremely heterogeneous clutter environments where
only one sample is available. Due to the high computational complexity of the currently
popular efficient sparse recovery algorithms, in order to improve the real-time performance
of the proposed algorithms, the future research direction is mainly focused on the fast and
accurate sparse recovery algorithms suitable for airborne radar.
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