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Abstract: In large-scale remote sensing scenarios characterized by intricate terrain, the straightforward
road imaging features in synthetic aperture radar (SAR) images make them susceptible to interference
from other elements such as ridges, compromising the robustness of conventional SAR image road
extraction methods. This paper introduces a method that integrates Gaofen-3 (GF-3) with a resolution
of 3.0 m, Digital Elevation Models (DEMs), and Gaofen-2 (GF-2) remote sensing image data with
a resolution of 4.0 m, aiming to improve the performance of road extraction in complex terrain.
Leveraging DEMs, this study addresses the limitations in feature-based SAR algorithms, extending
their application to complex remote sensing scenarios. Decision-level fusion, integrating SAR and
multispectral images, further refines road extraction precision. To overcome issues related to terrain
interference, including fragmented road segments, an adaptive rotated median filter and graph-
theory-based optimization are introduced. These advancements collectively enhance road recognition
accuracy and topological precision. The experimental results validate the effectiveness of the multi-
source remote sensing image fusion and optimization methods. Compared to road extraction from
multispectral images, the F1-score of the proposed method on the test images increased by 2.18%,
4.22%, and 1.4%, respectively.

Keywords: road extraction; remote sensing; SAR image; multispectral image; large-scale scenarios

1. Introduction

Roads are a critical aspect of man-made infrastructure, playing a pivotal role in
urban planning, change detection, traffic management, disaster assessment, and various
other scenarios. Furthermore, in the age of urban expansion and rapid advancements
in remote sensing technology, high-resolution remote sensing imagery is emerging as a
valuable resource for road information extraction, thereby revolutionizing cartography
and geospatial studies [1]. Current high-precision road maps are traditionally generated
through labor-intensive and costly methods such as vehicle-mounted mobile surveys and
airborne Light Detection and Ranging (LiDAR). With the advent of high-resolution satellite
remote sensing technology, the utilization of remotely sensed data for extracting road
information has gained prominence.

The proliferation of multisensor and multispectral Earth observation satellites has
introduced a diverse array of image data. Each sensor type brings its unique advantages,
influencing the choice of data for specific applications. Currently, road extraction from
remote sensing data employs various sources, including smartphone Global Positioning
System (GPS) data, SAR images, LiDAR data, and optical images, among others [2].
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SAR stands out for its all-weather, day-and-night imaging capabilities, rich information
content (amplitude, phase, polarization), and independence from weather conditions,
making it a viable choice for road extraction. SAR-based road extraction algorithms can be
categorized into semi-automatic and fully automatic methods. Semi-automatic approaches
involve human–computer interaction and include the snake model, particle filter, template
matching, a mathematical morphology, and the extended Kalman filter [3–7]. In contrast,
fully automatic methods require no human intervention and encompass techniques such
as dynamic programming, Markov Random Field (MRF) models, Genetic Algorithms
(GAs), and fuzzy connectedness [8–11]. Furthermore, the advent of deep learning has
introduced a new paradigm, exemplified by Henry’s use of the Fully Convolutional Neural
Network (FCNN) model for road segmentation in TerraSAR images in 2018, Zhang’s
automatic discrimination method based on a deep neural network (DNN) for roads from
dual-polarimetric (VV and VH) Sentinel-1 SAR imagery in 2019 [12], and the utilization in
reference [13] of Copernicus Sentinel-1 SAR satellite data in a deep learning model based
on the U-Net architecture for image segmentation in 2022. Reference [14] proposed an
improved Deeplabv3+ network for the semantic segmentation of SAR images in 2023.

However, the distinct imaging characteristics of SAR data pose unique challenges for
road extraction. SAR images are susceptible to coherent patch noise, interference from
speckles, and other phenomena that hinder image interpretation, ultimately affecting
road feature extraction. Moreover, road extraction based on SAR images faces challenges
when confronted with similar features, such as ridges, in the images, leading to issues of
road recognition robustness. Deep learning-based methods, although powerful, are data-
dependent and require substantial training samples, with road recognition effectiveness
closely tied to the quality of SAR images.

On the other hand, optical images offer rich feature information, including spectral,
geometric, and textural features, enhancing feature decoding capabilities. Various road ex-
traction methods have been developed for optical images, such as template-matching-based
object detection, knowledge-based methods, object-based image analysis (OBIA), and ma-
chine learning-based object detection [15]. Template-matching-based methods, one of the
earliest detection methods, rely on template generation and similarity metrics, encompass-
ing rigid and deformable template matching [16,17]. Knowledge-based methods transform
target detection into a hypothesis testing problem, incorporating geometric and contextual
knowledge [18,19]. OBIA-based methods efficiently merge shape, texture, geometry, and
contextual semantic features, including image segmentation and target classification [20].
Machine learning-based algorithms perform object detection through classifier learning,
primarily influenced by feature extraction, fusion, and classifier training [21–23].

Nonetheless, optical imagery encounters limitations such as cloud cover, fog, and
diurnal variations, rendering it unsuitable for real-time ground observation in certain
situations, particularly in emergency relief operations. Additionally, optical imagery may
result in fragmented road segments due to occlusions, shadows, and other factors, impeding
the extraction of geometric and shape features.

To maximize the benefits of different sensors and optimize road extraction outcomes,
the fusion of multi-source remote sensing images offers a promising solution. Depending
on the level of data abstraction and the stage of remote sensing data fusion, fusion can
be categorized into three levels: pixel-level, feature-level, and decision-level fusion [24].
Pixel-level fusion integrates original image metadata directly and encompasses methods
like the Intensity Hue Saturation (IHS) transform, Principal Component Analysis (PCA)
transform, and Brovey’s change [25–27]. Feature-level fusion combines extracted features,
involving clustering and Kalman filtering methods [28,29]. Decision-level fusion represents
the highest level of data fusion, offering decision support for specific objectives, includ-
ing Support Vector Machine (SVM), the PCA transform, and Brovey’s change, among
others [30,31].

However, methods for road extraction based on the fusion of multi-source remote
sensing images remain underexplored, representing a pivotal research area. In 2021,
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reference [32] developed a United U-Net (UU-Net) for fusing optical and synthetic aperture
radar data for road extraction, subsequently training and evaluating it on a large-scale
multi-source road extraction dataset. In 2022, reference [33] introduced SDG-DenseNet, a
novel deep learning network, and a decision-level optical and SAR data fusion method for
road extraction. In various other remote sensing domains, leveraging the advantages of
multi-source remote sensing data for land cover recognition has become prevalent. In 2023,
reference [34] proposed a method that integrates multispectral and radar data, employing
a deep neural network pipeline to analyze available remote sensing observations across
different dates. In another study conducted in 2023 [35], various feature parameters were
extracted from GF-2 panchromatic and multispectral sensor (PMS) and GF-3 SAR data.
Additionally, a canopy height model (CHM) derived from Unmanned Aerial Vehicle (UAV)
LiDAR data was utilized as observational data for mangrove height estimation. This
approach accurately estimated the heights of mangrove species.

In summary, many existing road extraction methods relying on single sensors face a
significant challenge. These algorithms struggle to cope with issues like coherent patch
noise, sudden disturbances such as building occlusion, and the influence of numerous
interfering features with characteristics similar to roads. This limitation hampers their
applicability to the extraction of roads in large-scale complex terrain.

To address the challenge of road extraction in ultra-large-scale and complex scenarios,
this paper integrates the penetrating abilities of high-resolution SAR remote sensing im-
agery and the rich spectral information of multispectral images. We propose a decision-level
fusion approach for SAR and multispectral images, making the following key contributions:

(1) Aided DEM for road extraction in complex terrain scenes: To enable road extrac-
tion from high-resolution SAR images in large-scale composite scenes, we focus on
a common feature in SAR images that closely resembles roads—mountain ridges.
Leveraging features such as magnitude, direction, contrast, and the multi-angle tem-
plate matching of roads in SAR images, we incorporate DEM data. We exploit the fact
that roads exhibit significantly gentler slopes and lower variance compared to ridges,
thus enhancing the robustness of road extraction in composite scenes.

(2) A road optimization method based on the rotational adaptive median filter and
graph theory: To address challenges such as optical image occlusion and introduced
interference segments during the fusion of multi-source remote sensing images, we
introduce a rotatable road-like shape median filter. This filter effectively fills in broken
and small-area road segments in network reconstruction by using convolution kernels
with various orientations. We identify matching regions in the candidate road image
and apply median judgments to bridge broken areas. To remove interfering features,
we utilize graph theory’s topological and connectivity characteristics, optimizing the
road network and excluding isolated and non-connected candidate roads.

By integrating the capabilities of various sensors and fusing their data, our approach
aims to enhance road extraction in complex scenarios, contributing to more accuracy.

2. Methods

In order to extend the remote sensing image road extraction algorithm to large-scale
complex terrain scenes, this paper amalgamates the advantages of various sensors and
employs a decision-level fusion of multi-source remote sensing images. This approach
facilitates road extraction in large-scale complex scenes while prioritizing robustness. The
methodology comprises the following four primary steps. (1) High-resolution SAR road
extraction: this step focuses on multi-scale and multi-feature fusion for road extraction
from SAR images, aided by DEM. (2) Multispectral image road extraction: here, spectral
features and the Normalized Difference Water Index (NDWI) are harnessed to identify
candidate road regions, subsequently refined using a road template matching algorithm.
(3) Multi-source remote sensing image fusion: this stage emphasizes decision-level fusion,
unifying information from diverse sensors to enhance road extraction. (4) Road optimiza-
tion based on rotational adaptive median filter and graph theory: an optimization strategy
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is introduced, incorporating a rotational adaptive median filter and graph theory to enhance
the road network’s topological and connectivity characteristics.

These overarching sections provide a comprehensive view of the method’s compo-
nents. Subsequent sections delve into the details of each step, offering a more comprehen-
sive understanding of the methodology. The overall structure of the proposed method is
visually represented in Figure 1.
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Figure 1. General structure of the proposed method.

2.1. Large-Scale Complex Scene Road Extraction from SAR Images with the Assistance of DEM

Historically, road extraction from high-resolution SAR remote sensing images relied on
geometric features, texture attributes, and the detection of bi-parallel lines, complemented
by radiometric properties. However, this approach had inherent limitations. As SAR
image road extraction algorithms extend to large-scale complex terrains, a significant
challenge emerges—the differentiation between roads and ridges. This challenge arises due
to the similarity in feature information between ridges and roads, encompassing radiation,
geometry, double-parallel-line characteristics, and closely proximate width. Consequently,
traditional road extraction methods face difficulty in effectively discerning between the
two. Figure 2 illustrates typical interference features encountered in large-scale scenes,
where the orange-boxed section represents interference from ridges.

This paper introduces an SAR image road extraction method tailored for large-scale
complex terrain using assisted DEM data. The approach involves a multi-step process,
including image preprocessing, feature extraction through multi-angle template matching,
feature binarization and fusion, and morphological optimization using Advanced Land
Observing Satellite (ALOS) DEM assistance.
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Given the intricate nature of terrain in large-scale and complex settings, conventional
filtering methods may exhibit limitations, particularly in handling noise or blurring phe-
nomena. To address this challenge, the article adopts a multi-view processing method to
enhance feature discernment. The feature extraction method based on multi-angle template
matching combines the multi-angle directional characteristics of the road by introducing a
rectangular filter template T with a variable orientation. The SAR image is continuously
convolved with the rotated filter template, and the information of each feature of the road
is calculated according to the result of the convolution. The angle θk of the convolution
template and the specific convolution process are defined, respectively, as follows [36]:

θk = 180 ∗ k
N0

, k = 0, 1, . . . , N0 − 1 (1)

r(i, j, k) = r(i, j)⊗ T(θk), (2)

where θk is the angle between the direction of the filter template and the horizontal axis;
N0 is the number of angles to be traversed, indicating the number of times the template
matching is performed in different directions; and k denotes the number of directions
currently obtained, determining the angle of the filter template. T(θk) denotes the template
obtained by rotating the angle θk based on the underlying rectangular template T, which is
then convolved with the SAR image to obtain the different pixel information r(i, j, k) under
different angles.
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In this paper, we set N0 to 18, i.e., the filter template needs to be rotated by a total of
18 different angles, and the angle interval of each rotation is 10◦. Finally, we express the
road direction feature as the following equation [37]:

θ0(i, j) = argmin
θ

r(i, j, k), k = 0, 1, . . . , 17 (3)

From this, the corresponding minimum radiance characteristics of the individual pixel
points, as well as the contrast characteristics of the road, respectively, can be obtained:

r0(i, j) = r(i, j, θ0), (4)

c0(i, j) =
∥∥∥∥∑k r(i, j, k)

18
− r0(i, j)

∥∥∥∥, (5)

The direction and contrast features of the roads are obtained by traversing the selected
number of directions k. By iteratively exploring different values for the parameter k, we
derive the directional and contrast characteristics of the roads. Leveraging the topological
and continuous properties of roads, areas that do not meet the area threshold conditions for
a specific angle are eliminated. The directional and contrast features of the roads are then
binarized and fused, resulting in the traditional binarized road result image R(i, j) [37].

Building upon the functional characteristics of roads as artificial structures, which
exhibit significantly gentler slopes and lower variance compared to ridges, this study
utilizes ALOS World 3D—30 m data and the original SAR imagery for image registration
and reprojection. This process generates a two-dimensional elevation matrix D(i, j) that is
pixel-wise paired with the SAR imagery.

Subsequently, morphological methods are employed to identify road nodes in the
binarized road result image R(i, j) and to segment each road into n road segments.

S(k) = D(i, j)·R(i, j, k), k = 1, 2, . . . , n (6)

where k represents the number of road segments, R(i, j, k) denotes the k-th segmented
road in the traditional binarized road result image, and S(k) is obtained by the dot prod-
uct, where the non-zero element is the elevation information of each pixel in the k-th
road segment.

Finally, the variance of all non-zero elements in S(k) is calculated, and linear regression
is applied to obtain the variance and slope of each candidate road segment. Setting a slope
threshold according to the ‘Highway Engineering Technical Standards [38]’, slope and
variance threshold judgments are applied to each candidate road segment. This process
effectively distinguishes roads from ridges, enhancing the robustness of road extraction in
large-scale complex terrain.

This comprehensive methodology ensures accurate road extraction in complex terrains
and diverse environments, offering robust results for large-scale terrain.

2.2. Road Extraction from Multispectral Remote Sensing Images

Given the challenges in efficiently and accurately extracting road information from
remote sensing images, especially in complex terrains, this study harnesses the rich spectral
features of multispectral images applied to GF-2 imagery (4.0 m resolution). We strategically
combine different spectral bands to highlight specific aspects of road information.

2.2.1. Spectral Features

Spectral features are derived from luminance observations of the same feature point
in different image bands, forming a multidimensional random vector X:

X = [x1, x2, . . . , xn]
T , (7)
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where n represents the total number of bands in the image, and xj denotes the luminance
value of the feature point in the ‘i-th’ band image.

To enhance feature identification, single-band remote sensing images can be colorized
by assigning different colors based on luminance layers. For example, water bodies,
which exhibit strong absorption in the infrared band and appear dark, are assigned a
low brightness value, highlighting them in a distinct color. Similarly, sandy areas with
high reflectance are identified by higher brightness values. Understanding these spectral
characteristics provides a better means to obtain feature category images.

Color synthesis is a crucial aspect of remote sensing image display, based on additive
color synthesis principles. When selecting specific bands and assigning them to red, green,
and blue primary colors, color images are created. The choice of the best synthesis scheme
depends on the application’s specific objectives, aiming to maximize information retained
after synthesis while minimizing information correlation between bands.

2.2.2. Water Index NDWI

The Water Index (WI) is a valuable tool in remote sensing for detecting and categorizing
water bodies in digital images. A crucial component of this is the NDWI [39], which utilizes
reflectance in the near-infrared (NIR) and green light bands. It is calculated using the
following formula:

NDWI = (Green − NIR)/(Green + NIR), (8)

where Green refers to the green light band, and NIR refers to the near-infrared band.
The threshold value for NDWI typically falls within the range of 0 to 1. NDWI capital-
izes on the strong absorption characteristics of water bodies in the near-infrared band,
which exhibit minimal reflection, and the robust reflectivity of vegetation. This approach
effectively extracts water information while mitigating interference from vegetation. How-
ever, in urban environments with image shadows caused by buildings, the WI may en-
counter challenges when distinguishing water from soil and building features during water
information extraction.

In our study, we adopt the standard false-color synthesis scheme, which highlights the
NIR, red, and green bands as red, green, and blue, respectively. This creates a standard false-
color image that contains road information. We then proceed to extract specific spectral
road information, gradually reducing its saturation, and apply segmentation to identify
candidate road regions. To ensure the precision of road spectral information extraction, we
introduce the use of NDWI to mitigate the influence of road-like spectral features, such as
those from water bodies. Finally, the pixel range of the candidate road is determined based
on the spatial resolution of the multispectral image and the width range of the trunk road.
A road-like slender road template is selected, and the adaptive rotation sliding window is
employed to match it with the multispectral image. The threshold determination method is
applied to obtain the road network after template matching. Subsequently, the main road
information is extracted from the multispectral image.

As shown in Figure 3, it represents the resultant map of road extraction for multispec-
tral images. Figure 3a represents the input multispectral image, Figure 3b represents the
standard false-color image of Figure 3a, Figure 3c represents the set of candidate roads ob-
tained based on the spectral features and the NDWI, and Figure 3d represents the backbone
candidate roads obtained using the template matching method.

This comprehensive methodology enhances road extraction by incorporating spectral
information and NDWI, providing a more accurate representation of road features in
complex terrain and diverse environmental conditions.
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2.3. Multi-Source Remote Sensing Image Fusion Based on Decision Layer

SAR remote sensing images and optical images each possess unique advantages and
inherent limitations in road imaging. While individual sensor utilization often yields favor-
able outcomes, such an approach remains constrained by specific sensor limitations. SAR
images offer simple feature information but are vulnerable to noise, whereas optical images
are susceptible to various factors like clouds, fog, buildings, and vegetation cover. This
variability often causes discontinuities in road areas within the original images, impacting
road extraction. To address these limitations, this paper employs the fusion of multi-source
remote sensing images for road extraction.

In the preprocessing of remote sensing image fusion, three primary methods are
commonly employed: pixel-level fusion, feature-level fusion, and decision-level fusion [40].

Pixel-level fusion integrates data after precise alignment and preliminary processing.
While it retains much of the original image data, it might be less efficient for large datasets
and could be susceptible to various forms of noise and contamination. Feature-level
fusion merges multiple road features extracted from different images, retaining feature



Remote Sens. 2024, 16, 297 9 of 23

information while avoiding unnecessary noise. However, it demands significant compu-
tational resources. The decision-level fusion method combines road recognition results
from multi-source images based on independent classifications from each sensor. This ap-
proach requires fewer multi-source satellite data points, delivers enhanced anti-interference
capabilities, and accommodates variations in shooting time, angle, and location.

The registration process between SAR images and multispectral images involves
several key steps. Firstly, SAR images undergo orthorectification to eliminate parallax
caused by ground elevation differences. Subsequently, the ‘Georeferencing’ tool in ArcGIS
was employed to register SAR images, multispectral images, and DEM, achieving cross-
source alignment and ensuring proper registration and alignment among the images.
Following this, image reprojection is applied to ensure consistent image resolution across
multiple remote sensing sources, with a post-reprojection resolution of 3.0 m. Lastly, the
corresponding overlapping regions are cropped to create a candidate road dataset.

In this paper, due to disparities in imaging angles and shooting times between SAR and
multispectral images, the pixel-level and feature-level fusion methods might not be feasible.
Therefore, the decision-level fusion method is chosen to fuse SAR and multispectral remote
sensing images. The overlap of the k-th road segment can be expressed as

L(k) = ∑ S(i, j, k)·M(i, j)
∑ S(i, j, k)

, k = 1, 2, . . . , n (9)

T(i, j) =
{

S(i, j, k) L(k) ≤ T
0 L(k) > T

, (10)

where L(k) represents the degree of overlap between the SAR image and the optical
image, S(i, j, k) represents the k-th segment result of SAR image road extraction, S(i, j, k)
signifies the SAR image road extraction result, M(i, j) indicates the road extraction result
of multispectral images, and “·” denotes the dot-multiplication operation. The threshold
T is employed to signify the overlap threshold, which, guided by empirical evidence and
validation, is set to 0.15.

Consequently, we derive the road segment T(i, j) from the SAR image, based on
the meeting requirements of the overlap degree. Building upon this, the final result of
multi-source remote sensing image fusion is achieved by overlaying the optical image road
extraction result M(i, j) with the aforementioned equation.

F(i, j) = M(i, j) + T(i, j), (11)

As a result, this study accomplishes the fusion of road extraction from multi-source
remote sensing images by leveraging the optical image road extraction method, consid-
ering the results of road extraction from SAR images comprehensively. This approach
effectively overcomes scenarios involving missing roads due to lighting and other occlu-
sions, thereby enhancing the robustness of the road extraction algorithm. Figure 4 outlines
the comprehensive implementation process.

2.4. Rotational Adaptive Median Filter and Graph Theory

Road extraction based on multi-source remote sensing fusion effectively mitigates
issues related to buildings, vegetation shadows in optical images, and feature insufficiency
and coherent spot noise in SAR images. However, this decision-level fusion method
occasionally introduces misjudged roads into the results, balancing recall and precision.
Addressing these challenges and enhancing the road extraction process are crucial.

Two persistent problems occur in the road extraction results from multispectral and
SAR fusion. Firstly, despite the overlap calculation between road extraction results from
SAR images and optical images, some road segments fail to meet the requirements, leading
to discontinuities in roads and the introduction of small branch roads. Secondly, decision-
level image fusion often struggles with road-like interfering segments that meet area
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and length conditions and are challenging to manage using conventional mathematical
morphology methods.
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To tackle these issues, two improvement methods are proposed.
The first method introduces an adaptive rotated median filter optimizer. The median

filter, commonly employed as a denoising nonlinear filter, stands out for its immunity
to outliers and its ability to address pretzel noise in images. Notably, the median filter
offers various implementations, including the adaptive median filter (AMF), Progressive
Switching Median Filter (PSMF), vector directional filter, and others, primarily used as an
image preprocessing method [41]. This technique operates by substituting the target noise
pixel with the median of its local neighborhood, determined by the filter window’s size,
which defines the area surrounding the target pixel and the number of pixels within this
region, and can be the process expressed as follows:

Median(P) = Med{Pi} =

{
Pi(

k+1
2 ), k is odd

1
2

[
Pi(

k
2 ) + Pi(

k
2 + 1)

]
, k is even

, (12)

where Pi is the ascending or descending sequence of neighboring pixels and k is the number
of pixels in the neighborhood. According to the above equation, we find that the result of
median filtering depends on the median value of the corresponding neighborhood pixels
and is not affected by outliers. Taking advantage of this property, we construct an adaptive
median filter optimizer for road shapes with the aim of filling and connecting the fine
broken areas after the fusion of multi-source remote sensing images, and at the same time
deleting some fine non-trunk roads. The specific computation is as follows:

θk = 180 ∗ k
N0

, k = 0, 1, . . . , N0 − 1 (13)

R(i, j, k) = F(i, j)⊗ Med(θk), (14)

R0(i, j) = R(i, j, 1) ∪ R(i, j, 2) ∪ . . . ∪ R(i, j, N0), (15)
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where θk represents the angle between the direction of the median filter template and
the horizontal axis. The variable k denotes the number of directions currently obtained.
Med(θk) denotes the template derived by rotating the θk angle concerning the rectangular
template, Med. The application of the median filtering results in R(i, j, k) at various angles
through convolution operations. Subsequently, the results of median filter optimization
across different directions undergo a logical ‘or’ operation, thereby achieving the matching
of the median filter across multiple angles. Figure 5 illustrates the specific effects of the
adaptive rotational median filter optimization, where ⊗ represents convolution operations,
θ denotes the rotation angle of the convolution kernel, and the orange ellipse represents the
detailed optimization details.
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From the outcomes observed in the aforementioned figure, the application of the
nonlinear median filter’s capabilities in dealing with abnormal interference noise is evident.
Leveraging the median filter’s features, this paper introduces a specific rectangular filter
template, optimizing the median filter by adjusting its orientation to address issues like
broken road segments and non-trunk branch roads during the extraction process.

Reviewing the methods discussed above, both the decision-level fusion of multi-source
remote sensing images and the adaptive rotary median filter optimization aimed to identify
the missing road segments within complex scene features. The focus is now directed
towards identifying non-road areas within the road extraction results, with the intent of
reducing mistakenly extracted roads in road recognition.

Following the aforementioned method, we obtained a binary road extraction map.
After the optimization via adaptive rotated median filtering, the connected broken road
segments were restored, and non-trunk branch regions were eliminated. However, a
significant challenge remains in dealing with candidate segments misclassified as trunk
roads, especially those that are discrete and falsely identified as main roads. Traditional
morphological methods for analyzing segment aspect ratios often prove insufficient in
resolving these discrete misclassifications, which resemble roads but are misidentified.

Taking into account the topological and connectivity characteristics inherent in road
networks, this study seeks to optimize the results of road network graphs using principles
from graph theory. The core approach involves considering road extraction results as a
graph structure and optimizing node determinations based on the graph’s weight relation-
ships. The specific implementation process includes the preprocessing of the road graph
using adaptive median filtering optimization results R0(i, j) and applying the connectivity
criterion to generate the graph R0(i, j, k) with N segments. These segments are treated as
nodes of the graph, with each representing a road segment and the minimum distance
between them acting as the graph’s weight. The result is an undirected weighted graph
M, where M(i, j) indicates the minimum distance between the i-th and j-th road segments.
Subsequently, graph theory is applied to exclude disruptive terms, where discrete or dis-
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tant segments are considered interference and are consequently eliminated. The specific
calculations are as follows:

d(i) = min
j ̸=i

M(i, j), i = 1, 2, . . . , N (16)

U = {i | d(i) > minDt }, (17)

R(i, j, k) =
{

0, i f k ∈ U
R0(i, j, k), otherwise

, (18)

where d(i) represents the minimum non-diagonal value within the weighted graph M,
signifying the shortest distance between the i-th segmented road and others. The parameter
minDt designates the minimum distance threshold, while the set U encompasses road
segments whose minimum distances fail to meet the prescribed condition, often associated
with discrepant or misdetected roads. Following this criterion, road segments failing to
satisfy connectivity and topological standards are excluded. As a result, R(i, j, k) is derived
as the final road extraction outcome.

2.5. Evaluation Metrics

In this paper, the evaluation of road extraction effectiveness relies on the Open Street
Map (OSM) open-source dataset. The assessment utilizes common road surface metrics,
including recall, precision, and F1-score [42,43]. These metrics are vital for assessing the
quality of the road extraction model.

Recall: Completeness measures the proportion of correctly extracted real road pixels,
reflecting the model’s road continuity and integrity. A higher completeness value indicates
improved model performance.

Recall =
TP

TP + FN
, (19)

where TP denotes the number of correctly extracted road pixels, and FN denotes the
number of road pixels incorrectly identified as non-roads.

Precision: Correctness represents the proportion of predicted road pixels that are
actually real road pixels. It quantifies the model’s ability to avoid false road detections.

Precision =
TP

TP + FP
, (20)

where FP denotes the number of non-road pixels incorrectly identified as roads.
F1-score: The F1-score is a weighted average of precision and recall, combining both com-

pleteness and correctness metrics. It offers a balanced assessment of the model’s performance.

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (21)

The combination of these metrics provides a comprehensive evaluation of road extrac-
tion performance. However, it is important to note that factors such as the time difference
between OSM dataset collection and remote sensing image acquisition and the potential
imperfections in the OSM dataset for certain urban areas can influence the evaluation.
To account for these variations, this paper considers all three metrics and does not rely
solely on a single evaluation indicator. Additionally, in cases where OSM road segment
coordinates slightly deviate from those in remote sensing images, this paper evaluates
the relevant indices by applying appropriate morphological extensions to the real OSM
road values.
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3. Materials

In the realm of remote sensing, the initial and pivotal step before any image processing
is data pre-processing. Due to variations in shooting scenes, times, angles, and resolutions
among different satellite images, data pre-processing is of paramount importance. The
primary objective is to ensure that data from various satellite images effectively represent
the same scene and correspond as closely as possible to the pixel location. This meticulous
alignment is essential for achieving precision in subsequent analysis, image fusion, and
meaningful comparisons between images.

In this paper, our foremost endeavor is to align remote sensing images obtained from
diverse sources. The alignment process involves determining the reference point based on
landmark orientation. We meticulously selected high-resolution SAR images from the GF-3
satellite’s ultra-fine stripe (UFS) dataset, optical images from the multispectral band of the
GF-2 satellite (comprising four bands: R, G, B, and NIR), and global digital surface model
data (DSM) from ‘ALOS World 3D—30 m’. All these images are meticulously aligned to
the WGS 84 coordinate reference system to ensure rigorous spatial alignment.

Furthermore, in our data pre-processing workflow, we aim to maximize the alignment
of each image. To achieve this, we conduct precise cropping of the common areas shared
between these images, resulting in a set of aligned GF-3, ALOS, and GF-2 images, each
at their respective resolutions. To achieve seamless geometric alignment and ensure data
congruity, we employed ArcGIS’s ‘Georeferencing’ tool for image registration. Additionally,
we utilized the GDAL library for image reprojection, ensuring consistent sampling at the
same resolution across all images. The results of this image pre-processing process are
presented in Figure 6.
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For this experiment, we selected two sets of large-scale images sourced from Shan-
dong Province and Hubei Province in China. The SAR images, sourced from the GF-3
satellite, feature a spatial resolution of 3 m × 3 m, while the optical images obtained from
the GF-2 satellite consist of four bands, R, G, B, and NIR, with a spatial resolution of 4 m.
Additionally, we leveraged the ‘ALOS World 3D—30 m’ dataset, which provides global
digital surface model data (DSM) with a horizontal resolution of 30 m. To validate the
algorithms proposed in this paper, we incorporated Open Street Map, an open-source road



Remote Sens. 2024, 16, 297 14 of 23

map. A comprehensive description of the datasets utilized in this study is meticulously
detailed in Table 1.

Table 1. Description of the datasets used in this paper.

Data Satellites Resolution Shooting Date Scale Area

1
GF-3 3.0 m 4 May 2023

5877 × 5171
Weifang,

ShandongGF-2 4.0 m 3 April 2022

2
GF-3 3.0 m 14 April 2023

6078 × 3944 Wuhan,
HubeiGF-2 4.0 m 1 November 2022

3 AOLS
DEM 1 30 m 5877 × 5171

6078 × 3944
Global

Regions

4 OSM 2 5877 × 5171
6078 × 3944

Global
Regions

1,2 ALOS DEM and OSM data are included in both Data1 and Data2 scenarios.

4. Results and Discussion

To comprehensively validate the effectiveness of the proposed method in this paper,
we conducted validation experiments using GF-2 and GF-3 remote sensing image data
captured under varying conditions, including different times, scenes, and shooting angles.
Based on the geographical locations and scene types of the selected images, we categorized
the test images into three distinct groups: composite scenes featuring mountain ridges,
densely populated urban areas, and expansive large-scale terrain.

In the upcoming section, we meticulously analyze and discuss the optimization effects
of the method proposed in this paper across different scene types. The evaluation process
encompasses several critical aspects, including road extraction from SAR images in complex
scenes with the support of DEMs, the fusion of multi-source remote sensing images, and
the application of optimization techniques that involve the use of rotating adaptive median
filters and graph theory.

4.1. Complex Scene Road Extraction from SAR Images with the Auxiliary of DEM

To validate the road extraction method for complex terrain in SAR images with the
aid of the DEM proposed in this paper, two GF-3 images captured at different times and
locations in complex terrains were chosen for testing. The method proposed in this paper
is compared with the conventional method [37], which is based on pixel, geometric, and
bi-parallel line features of SAR images, as well as a method based on Directional Grouping
and Curve Fitting [44], as shown in Table 2. The results of the case tests are illustrated in
Figures 7 and 8:

Table 2. Results of road extraction from SAR image with assisted DEM.

Method Recall Precision F1-Score

Figure 7. Traditional methods 0.8923 0.6062 0.7219
Directional Grouping and Curve

Fitting Method 0.6573 0.6133 0.6345

The SAR road extraction method
incorporates auxiliary DEM 0.8625 0.7624 0.8094

Figure 8. Traditional methods 0.9219 0.5714 0.7055
Directional Grouping and Curve

Fitting Method 0.9552 0.6843 0.7974

The SAR road extraction method
incorporates auxiliary DEM 0.9226 0.8955 0.9089

Bold indicates the superior performance of the method under a specific evaluation metric.
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Figure 7. Road extraction results for SAR images with complex terrains Set 1. (a) SAR image;
(b) visualized DEM data; (c) multi-scale and multi-feature road extraction; (d) Directional Grouping
and Curve Fitting Method; (e) road extraction result with auxiliary DEM; (f) corresponding true-value
road map.

As observed in the figures, when extracting roads in large-scale complex SAR image
areas, relying solely on the intrinsic radiometric features of roads is unsuitable for scenes
with complex terrains and interfering elements like mountain ridges (Figures 7c and 8c).
This interference leads to unsatisfactory road extraction results.

In this paper, DEM data are integrated into traditional multi-scale multi-feature road
extraction, as shown in Figures 7b and 8b, where the color depth represents the eleva-
tion. Leveraging the fact that roads typically exhibit gentler slopes compared to ridges,
this method assesses the slope of each candidate road segment. The results, as shown
in Figures 7e and 8e, demonstrate a significant reduction in the influence of interfering
features such as ridges. Specific quantitative evaluation indices are provided in Table 2.
Three classical assessment indices, recall, precision, and F1-score, are used for a quantitative
comparison of the method’s effectiveness before and after using the assisted DEM.



Remote Sens. 2024, 16, 297 16 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 24 
 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Road extraction results for SAR images with complex terrains Set 2. (a) SAR image; (b) 
visualized DEM data; (c) multi-scale and multi-feature road extraction; (d) Directional Grouping 
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Figure 8. Road extraction results for SAR images with complex terrains Set 2. (a) SAR image;
(b) visualized DEM data; (c) multi-scale and multi-feature road extraction; (d) Directional Grouping
and Curve Fitting Method; (e) road extraction result with auxiliary DEM; (f) corresponding true-value
road map.

The experimental results indicate that the SAR road extraction method proposed in
this paper, with the assistance of the DEM, enhances the algorithm’s robustness in complex
remote sensing scenes compared to traditional methods that solely rely on radiometric
features. Notably, the proposed method sacrifices a small amount of recall to achieve a
significantly higher road extraction precision by optimizing road segment adjudication.

In Figure 7, the recall of the method proposed in this paper is 89.23%, a 2.98% re-
duction compared to the traditional method. The precision is 76.24%, marking a 15.62%
improvement over the traditional method. The final F1-score is 80.94%, representing an
8.75% enhancement compared to the traditional method, and a notable improvement of
17.49% compared to the Directional Grouping and Curve Fitting Method. For Figure 8, the
proposed method achieves a recall of 92.26%, an improvement of 0.07% compared to the
traditional method. The precision is 89.55%, a significant 32.41% improvement over the
traditional method. The F1-score is 90.89%, demonstrating a 20.34% improvement over the
traditional method, and an enhanced performance of 11.15% compared to the Directional
Grouping and Curve Fitting Method.

4.2. Multi-Source Remote Sensing Image Road Fusion and Result Optimization

Building upon the use of the DEM to enhance road extraction from SAR remote
sensing images, this paper conducted tests on several groups of large-scale complex feature
scenes captured by GF-2 and GF-3 satellites at different times and locations. These tests
were conducted to verify the reliability of the decision layer fusion of multi-source remote
sensing images and the optimization method based on the rotationally adaptive median
filter and graph theory. Figures 9–11 display the source images and result maps at different
stages of the fusion and optimization process.
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Figure 9. Road extraction results from multi-source image fusion Set 1. (a) Multispectral image; (b) 
multispectral road result map; (c) SAR image; (d) SAR road result map with assisted DEM; (e) multi-
source remote sensing image fusion result map; (f) rotational-adaptive-median-filter-based result 
map; (g) graph-theory-optimization-based result map; (h) true value road map. 

Figure 9. Road extraction results from multi-source image fusion Set 1. (a) Multispectral image;
(b) multispectral road result map; (c) SAR image; (d) SAR road result map with assisted DEM;
(e) multi-source remote sensing image fusion result map; (f) rotational-adaptive-median-filter-based
result map; (g) graph-theory-optimization-based result map; (h) true value road map.
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Figure 10. Road extraction results from multi-source image fusion Set 2. (a) Multispectral image;
(b) multispectral road result map; (c) SAR image; (d) SAR road result map with assisted DEM;
(e) multi-source remote sensing image fusion result map; (f) rotational-adaptive-median-filter-based
result map; (g) graph-theory-optimization-based result map; (h) true value road map.
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Figure 11. Road extraction results from multi-source image fusion Set 3. (a) Multispectral image;
(b) multispectral road result map; (c) SAR image; (d) SAR road result map with assisted DEM;
(e) multi-source remote sensing image fusion result map; (f) rotational-adaptive-median-filter-based
result map; (g) graph-theory-optimization-based result map; (h) true value road map.
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The figures illustrate that the fusion of SAR and multispectral images at the decision
layer combines the strengths of both sensors. It leverages SAR’s penetrating ability to com-
pensate for challenges posed by buildings and shadow obstructions during optical imaging,
resulting in a more comprehensive road extraction. Additionally, the method based on
rotational adaptive median filtering effectively fills broken regions and removes small
interfering road segments, enhancing road segment continuity. Finally, the optimization
method based on graph theory capitalizes on road topology and continuity to eliminate
discrete and continuous large interfering road segments.

The table below (Table 3) provides a comparison of road fusion and result optimization
results for multi-source remote sensing images:

Table 3. Fused and optimized results of multi-source remote sensing image road extraction.

Comparison of Methods Recall Precision F1-Score

Figure 9

SAR road extraction method 0.7237 0.6506 0.6852
Multi-spectral image road extraction 0.9332 0.8557 0.8927

Multi-source image fusion 0.9440 0.8277 0.8820
Adaptive median filter optimization 0.9485 0.8447 0.8936

Graph Theory Optimization Methods 0.9349 0.8949 0.9145

Figure 10

SAR road extraction method 0.9680 0.5536 0.7044
Multi-spectral image road extraction 0.8594 0.6888 0.7647

Multi-source image fusion 0.9225 0.6798 0.7828
Adaptive median filter optimization 0.8967 0.7119 0.7937

Graph Theory Optimization Methods 0.8545 0.7642 0.8069

Figure 11

SAR road extraction method 0.7075 0.5534 0.6211
Multi-spectral image road extraction 0.8085 0.7162 0.7596

Multi-source image fusion 0.8516 0.6865 0.7602
Adaptive median filter optimization 0.8256 0.7135 0.7654

Graph Theory Optimization Methods 0.7814 0.7659 0.7736

Bold indicates the superior performance of the method under a specific evaluation metric.

The experimental results reveal variations in the performance of road extraction
methods across different remote sensing scenes, influenced by factors such as scene size and
complexity. In the context of SAR image road extraction, the metrics of recall, precision, and
F1-score exhibit relatively low values, emphasizing the inherent challenges in this domain.

In contrast, road extraction methods based on multispectral remote sensing images
generally exhibit superior performance metrics. However, they are susceptible to limitations
imposed by cloud cover, lighting conditions, and shadows from structures. To address
these challenges comprehensively, this paper takes into account the distinct characteristics
and advantages of various sensors.

Considering the continuity and topology of roads, this paper exploits the substantial
overlap in characteristics between SAR images and multispectral images for decision-level
image fusion. Specifically, the road segments identified in SAR image results and the
road results from multispectral images undergo overlap threshold determination. Road
segments whose overlap meets the defined threshold are then superimposed onto the
multispectral image road map. This innovative approach effectively addresses the issue of
missing roads in multispectral images caused by cloud cover, varying lighting conditions,
and building shadows. Consequently, it significantly enhances the recall rate of road
recognition, even though there may be a slight reduction in precision compared to methods
solely reliant on multispectral images. This methodological integration ensures a more
robust and comprehensive road extraction process, leveraging the strengths of both SAR
and multispectral remote sensing technologies.

Specifically, the adaptive median filtering optimization, as shown in Figure 9, yields
the highest recall at an impressive rate of 94.85%. In contrast, the graph-theory-based
optimization method consistently delivers the highest precision (89.49%) and F1-score
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(91.45%). The multi-source image fusion, as depicted in Figure 10, achieves the highest
recall at 96.80%, although it exhibits a slightly lower recognition precision. Conversely,
graph-theory-based optimization consistently achieves the highest precision (76.42%) and
F1-score (80.69%). When we examine the results displayed in Figure 11, we observe
that multi-source image fusion records the highest recall at 85.16%. Simultaneously, the
graph-theory-based optimization method demonstrates the highest precision (76.59%) and
F1-score (77.36%).

Our proposed optimization approach, encompassing multi-source remote sensing
image fusion, adaptive median filtering, and graph theory, significantly enhances precision
and F1-score in the context of road recognition, particularly in large-scale complex remote
sensing terrain. Furthermore, the introduction of the adaptive rotated median filter and
the application of graph theory optimization effectively address challenges related to road
continuity and topology. These methods facilitate the connection of disconnected road
segments and the removal of discontinuities, resulting in substantial improvements in the
continuity and topological properties of the recognized road networks.

In the future, we can consider further image fusion through pixel-level or feature-level
integration, provided that the registration accuracy of multi-source images is sufficiently
high. Additionally, by incorporating a more diverse range of remote sensing data from
various sources, we can leverage the distinctive advantages of different sensors, thereby
reducing the judgment errors associated with a single sensor. Additionally, we can explore
the integration of deep learning-based methods for multi-source image fusion analysis,
aiming to realize a road extraction algorithm with enhanced precision and robustness.

5. Conclusions

In conclusion, this study presents a comprehensive approach for road extraction
from complex remote sensing terrain, with a particular focus on high-resolution SAR
images. By introducing the auxiliary DEM-based method and multi-source remote sensing
image fusion, coupled with optimization techniques like the adaptive rotated median filter
and graph theory, we address the ridge interference in SAR image road extraction and
the influences of lighting and building shadows in multispectral images. The proposed
methods extend the road extraction algorithm to larger scene scales, enhancing the precision,
F1-score, continuity, and topological performance of road extraction in remote sensing
images. Notably, the F1-score achieves values of 91.45%, 80.69%, and 77.36% on different
test images.

This study not only demonstrates the effectiveness of our proposed methodologies but
also highlights their potential applications in real-world scenarios. The decision layer fusion
of multi-source remote sensing images, combined with optimization techniques, allows
for a well-balanced trade-off between recall and precision. The resulting road extraction
exhibits an improved network topology and road recognition quality, making it a valuable
contribution to the field of remote sensing and geospatial analysis.

However, the fusion of multi-source remote sensing images demands high image
registration accuracy, posing a significant challenge that requires innovative solutions.
Furthermore, the integration of additional data sources, such as synthetic aperture sonar
images, LiDAR, or aerial imagery, holds promise for further improving the robustness and
accuracy of road extraction. This aspect also merits future exploration and research.
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