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Abstract: Accurate and reliable information on tree species composition and distribution is crucial
in operational and sustainable forest management. Developing a high-precision tree species map
based on time series satellite data is an effective and cost-efficient approach. However, we do not
quantitatively know how the time scale of data acquisitions contributes to complex tree species
mapping. This study aimed to produce a detailed tree species map in a typical forest zone of the
Changbai Mountains by incorporating Sentinel-2 images, topography data, and machine learning
algorithms. We focused on exploring the effects of the three-year time series of Sentinel-2 within
monthly, seasonal, and yearly time scales on the classification of ten dominant tree species. A random
forest (RF) and support vector machine (SVM) were compared and employed to map continuous
tree species. The results showed that classification with monthly datasets (overall accuracy (OA):
83.38–87.45%) outperformed that with seasonal and yearly datasets (OA:72.38–85.91%), and the RF
(OA: 81.70–87.45%) was better than the SVM (OA: 72.38–83.38%) at processing the same datasets.
Short-wave infrared, the normalized vegetation index, and elevation were the most important
variables for tree species classification. The highest classification accuracy of 87.45% was achieved by
combining RF, monthly datasets, and topography information. In terms of single species’ accuracy,
the F1 scores of the ten tree species ranged from 62.99% (Manchurian ash) to 97.04% (Mongolian
Oak), and eight of them obtained high F1 scores greater than 87%. This study confirmed that monthly
Sentinel-2 datasets, topography data, and machine learning algorithms have great potential for
accurate tree species mapping in mountainous regions.

Keywords: tree species classification; monthly dataset; Sentinel-2; machine learning; topography;
mountainous forest

1. Introduction

Accurate and up-to-date forest tree species maps are essential for many ecological and
forestry applications, such as biodiversity monitoring, carbon estimating, forest resource
surveys and monitoring, sustainable forest management, and serving as model fundamental
datasets [1–3]. Tree species information can be obtained from existing tree species maps and
vegetation type maps [4,5]. However, tree species maps derived from species distribution
models provide potential geographic ranges rather than the exact geo-location of tree
species [4]. A vegetation type map with a coarser scale offers the forest types distribution,
but cannot provide detailed tree species information. Therefore, accurate tree species maps
with finer spatial resolution are highly demanded.
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Compared to conventional field tree species investigation approaches, the technol-
ogy of remote sensing offers a practical and economical means for mapping tree species,
especially for large scales and inaccessible environments [6]. Multiple types of active
and passive remotely sensed data were explored for tree species classification in recent
studies [7]. Among them, using airborne hyperspectral data or combining hyperspectral
data with light detection and ranging (LiDAR) data can obtain promising classification
accuracies, as they can complement each other by integrating abundant spectral and vertical
structural information of forests [8–11]. In addition, very-high-spatial-resolution (VHR)
data such as WorldView-3, QuickBird-2, and aerial imagery captured by unmanned aerial
vehicles (UAVs) have been implemented to detect individual trees, owing to the potential
of sub-metric resolution for distinguishing the canopy and reducing the impact of mixed
pixels on tree species classification [12–14]. Despite their high classification accuracy, the
applications of these images are limited, considering data availability, costs, and applied
region extent [15]. Multispectral imagery is the primary data source for large-scale tree
species mapping. The increasing accessibility of time series data has enabled researchers to
incorporate phenological information into tree species discrimination [3,16]. As the most
popular time series data, the Landsat has been conducted to map tree species in large areas,
but it is insufficient for accurately separating species with high diversity, owing to a long
revisiting time and coarse spatial resolution [17,18]. Thus, imagery with a higher temporal
and spatial resolution needs to be considered. Sentinel-2 satellites provide free, accessible,
high-spatiotemporal-resolution remote sensing imagery, which may be the optimal choice
for tree species mapping over large regions. A revisit cycle of 3–5 days is promising for
acquiring dense time series imagery, while the spatial resolution of 10 m is beneficial for
capturing more detailed forest tree observations [19]. Moreover, red-edge and short-wave
infrared (SWIR) are sensitive to variations in chlorophyll contents and have been shown to
improve the discriminating capability of tree species [20]. The studies evaluated the ability
of spectral–temporal features derived from Landsat-8 and Sentinel-2 for tree species classi-
fication and concluded that Sentinel-2 outperformed Landsat-8 images [21,22]. However,
repeated tree species classification at scale over an extensive geographic area through an
image-based method is challenging, due to frequent cloud cover and rapid phenological
changes [2].

To overcome the limitations of image-based classification, temporal aggregation and
time series analysis have been developed and applied to Sentinel-2 and Sentinel-2-like
imagery. Time series analysis uses all available cloud-free observations to make a com-
position, and such a method includes the calculation of spectral–temporal metrics [23].
For example, this approach was used to classify tree species in the Polish Carpathians by
combining Sentinel-2 and environmental factors [3]. Temporal aggregation essentially fills
data gaps using the median, mean, and max/min metrics calculated from time series im-
ages, which have been used to classify land cover, crop types, and forest habitats [24]. The
beneficial application of Sentinel-2 temporal imagery and associated processing methods
in tree species classification has been recognized. Several studies have adopted Sentinel-2
temporal imagery from distinct phenological stages to classify tree species and demon-
strated it provides an extraordinary advantage [25–27]. The classification accuracy varied
with different time scales of input data, such as monthly, seasonal, and yearly time steps.
However, most researchers focused on utilizing images from all available acquisitions or
seasonal acquisitions, and few considered time effects. Therefore, the influence of tem-
poral aggregation based on different time scales on tree species classification needs to be
further investigated.

Another problem in tree species classification is connected to spectral variability at the
regional scale. Variations in the spectral signature of tree species are related to geography,
and it is difficult to make a distinction from other tree species just by utilizing satellite
data [28,29]. Moreover, mountainous forests are typically affected by topographic effects.
For example, the reflectivity on different slopes varies largely [30]. To overcome this
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problem, environmental variables such as topography factors can be selected as auxiliary
variables in the classification model.

For processing large and complex datasets consisting of multiple tiles and multi-
temporal imagery, as well as topography data, efficient platforms and algorithms are
required. Google Earth Engine (GEE) appears to be one of the best solutions [31]. GEE,
a cloud-based platform, facilitates large-scale geographic data processing and long-term
environment monitoring and analysis. GEE has been successfully used in various fields and
at various scales, such as global mangrove forest extracting and forest structural parameters
mapping, greatly improving computational efficiency [32,33]. Furthermore, GEE provides
some machine learning (ML) algorithms that can deal with complex and high-dimensional
data for classification. Random forests (RF) and support vector machines (SVM) are
the most popular and have been extensively applied in tree species classification. RF is
represented by its inherent immunity to data noise, powerful learning ability, and ability to
quantitatively assess variable importance [34]. SVM has merits in quickly and precisely
processing high-dimensional data and limited training samples [35]. There are some
discrepancies in the results across studies as to which model is better [22,29]. Therefore, it
is necessary to select the most suitable model to achieve the optimal classification accuracy.

In this study, we hypothesize that the monthly dataset performs better than the
seasonal and yearly datasets, since more information on the temporal development of the
vegetation state should be contained. We aimed to map the tree species in a mountainous
forest by incorporating time series Sentinel-2 images, topography data, and machine
learning algorithms. We investigated the effect of temporally aggregated imagery with
different time scales, as well as different classifiers, on tree species classification. The
specific goals were: (1) exploring the potential of multi-temporal Sentinel-2 reflectance,
the vegetation index, and topography auxiliary variables for separating ten dominant
tree species; (2) confirming the most appropriate time series data, including monthly,
seasonal, and yearly composites for the best classification accuracy; and (3) evaluating the
performance of an RF and SVM on tree species classification.

2. Materials and Methods
2.1. Study Area

The Lushuihe region is located in the east of Jilin province, China (Figure 1), which
is one of the representative forest zones in the Changbai Mountain area [36]. It covers
a forest area of approximately 1164 km2, with an elevation ranging from 317 ma.s.l. to
1338 ma.s.l. The climate belongs to a cold temperate continental monsoon climate marked
by cold and dry winters as well as warm and rainy summers. The annual temperature
ranges from −12.5 ◦C to 21.5 ◦C, with a mean temperature of 2.9 ◦C, while the annual
precipitation is between 800 and 1040 mm and mostly occurs in warm summer. Thus,
the climate condition is characterized by a low temperature, abundant precipitation, and
a moist atmosphere, which benefits the formation of thick, deciduous, broadleaf, and
coniferous mixed forests [37]. These coniferous forests are typically Korean pine (Pinus
tabuliformis), Scots pine (Pinus sylvestris), Dragon spruce (Picea asperataMast), and Dahurian
larch (Larix gmelinii). The broadleaved forests are mainly White birch (Betula platyphylla), As-
pen (Populus davidiana), Mongolian Oak (Quercus mongolica), Amur linden (Tilia amurensis),
Manchurian ash (Fraxinus mandshurica), and Manchurian walnut (Juglans mandshurica).
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Figure 1. The geographical location map of the study area, major forest vegetation types, the
reference sample sites, and the DEM. The reference sample sites (yellow dots, 1392 points in total)
represent the center of the selected inventory polygons. The vegetation types came from http:
//data.ess.tsinghua.edu.cn/ (accessed on 19 April 2023).

2.2. Methods

The workflow of tree species classification mapping is shown in Figure 2. Firstly, we
processed the reference data and Sentinel-2 images, as well as made a reference dataset
partition. Secondly, we calculated the candidate variables and created three input datasets
with different time scales. Thirdly, we evaluated the features’ importance and determined
the input variables of the models. Finally, we assessed the tree species classification accuracy
by comparing three time-scale images and two classifiers (RF and SVM).

2.2.1. Sentinel-2 Data and Topographic Variables

Sentinel-2 surface reflectance (SR) imagery overlapping with four Sentinel-2 tiles was
employed in the GEE platform. The Sentine-2 SR product is an orthoimage in UTM/WGS84
projection and provides bottom-of-atmosphere reflectance images derived from the as-
sociated Level-1C product [38]. Therefore, the Sentine-2 SR product has already been
geometrically and atmospherically corrected [15,38]. The SR product includes additional
outputs, such as an aerosol optical thickness map and a scene classification map, together
with quality indicators for cloud and snow probabilities at a 60 m resolution. To obtain more
high-quality and representative pixels, the datasets were acquired between January 2018

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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and December 2020 with a cloud cover of less than 15%, and then a cloud-mask operation
for both opaque and cirrus cloud cover was performed on each Sentinel-2 scene using the
QA60 bitmask band in GEE. Sentinel-2 20 m bands located in red-edge and short-wave
infrared were nearest neighbor resampled to match the resolution of 10 m bands. Sentinel-2
with ten bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12) were selected, while Sentinel-2
60 m bands (B1, B9, B10) were discarded. To improve the recognition ability of spectral
features and eliminate the influence of partial environmental elements on classification
effects, four vegetation indices (Table 1) were calculated, including the Enhanced Vegetation
Index (EVI) [39], Normalized Difference Vegetation Index (NDVI) [40], Normalized Burn
Ratio (NBR) [41], and Normalized Difference Infrared Index (NDII) [24]. The NDVI allows
for the identification of photosynthesizing vegetation by investigating the bands of higher
absorption and chlorophyll reflectance. The EVI is generated to obtain a better sensitivity
in dense vegetation regions and a better response to variations in different species’ canopy
structures. The NDII considers the short-wave infrared region, which is most susceptible
to canopy water content. The NBR was originally developed for monitoring vegetation
regeneration over burnt areas, but recent study has proved the effectiveness of the NBR
for vegetation or tree species classification [24]. There were 14 bands consisting of 10
reflectance and 4 vegetation indices with each image.
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Table 1. Vegetation indices adopted in this work.

Index Formula/Description

Enhanced vegetation index (EVI) EVI = 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)
Normalized Burn Ratio (NBR) NBR = (B8 − B12)/(B8 + B12)

Normalized difference vegetation index (NDVI) NDVI = (B8 − B4)/(B8 + B4)
Normalized Difference Infrared Index (NDII) NDII = (B8 − B11)/(B8 + B11)

To evaluate the impact of temporal aggregation images with different input periods on
classification accuracy, three different time scales were defined, including monthly (Mon),
seasonal (Sea), and yearly (Yea). The Sea dataset was divided into winter (December–
February), spring (March–May), summer (June–August), and fall (September–November),
which typically represented the occurrence of vegetation phenological events in the study
area [24]. Based on the temporal aggregation function loaded in GEE, the median value
of each pixel over the time scales was calculated separately. This generated twelve, four,
and one new image composites for Mon, Sea, and Yea, respectively. In addition, terrain
information was closely related to the vegetation distribution and was available in many
supervised classification tasks [16]. Terrain variables including elevation, slope, and aspect
derived from 30 × 30 m SRTM DEM were resampled to a 10 m resolution and selected as
auxiliary variables to participate in classification. At last, there were 171, 59, and 17 bands
contained by the Mon, Sea, and Yea input datasets, respectively.

2.2.2. Reference Data

We employed the sub-compartment data of a forest second type inventory map and
Google Earth imagery to obtain the reference data of pure and homogeneous stands of a
forest type. The sub-compartment data were a survey of forest resources and the latest
update in 2018, which was provided by the forestry service of Lushuihe in a shapefile
format. The boundary of the sub-compartment was confirmed based on topographic maps
(1:10,000 or 1:25,000) produced by the national surveying and mapping department. In the
sub-compartment, the location of inventory plots was selected through a random sampling
method. The inventory plots were designed as quadrate or circular plots with an area of
0.067 ha [42]. Each sub-compartment contained the characteristics of dominant forest types,
such as diameter at breast height (DBH), canopy density, volume/basal area per hectare,
topographic factors, and forest management type. There were 8814 forest sub-compartment
data included in this region. Combining the high-resolution imagery of Google Earth and
sub-compartment data, we only selected pure stands as the reference polygons and did not
consider mixed stands, except for Scots pine and Dragon spruce with limited pure stands.
Additionally, we segmented the high-resolution image with multi-scale segmentation and
confirmed the optimal scale through visual inspection, and we selected homogeneous
patches as reference data for Scots pine and Dragon spruce.

To further improve the quality of the reference dataset, reference polygons were
filtered based on polygon size. Small polygons tend to be prone to edge effects, so those
smaller than 5 Sentinel-2 pixels were dropped in this study. Large polygons with sizes
larger than 1000 Sentinel-2 pixels were removed from the analysis. Based on the above
operations, the forest inventory polygons for the different tree species selected had a
high representativeness. Finally, there were a total of 1392 reference polygons achieved.
Considering that the training pixels extracted from the same polygon showed a large degree
of spatial autocorrelation [16], we randomly selected points inside the reference polygons,
with a minimum distance from each other of 20 m. The final reference datasets covered a
total of 14,376 pixels. Those pixels were randomly partitioned into 50% for model training
and 50% for model validation. Moreover, our reference dataset did not contain all the tree
species that can be found in the area under investigation. Performing further classification
on the species level was not deemed as feasible, owing to the extremely small amounts of
some tree species. The main forest tree species types and detailed reference datasets are
shown in Table 2.
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Table 2. Description of reference data for the tree species.

Species No. of
Plots

No. of
Pixels Species No. of

Plots
No. of
Pixels

Dragon spruce 63 964 Aspen 274 2475
Dahurian larch 100 1014 Amur linden 229 1984

Korean pine 122 2104 White birch 170 1621
Scots pine 44 688 Manchurian ash 145 1301

Mongolian Oak 125 1206 Manchurian walnut 120 1019

2.2.3. Classification Approach

The tree species classification was performed by two non-parametric supervised
classifiers: RF and SVM. The RF classifier is an ensemble classifier and has received
highlighted interest due to its accuracy and robustness [34]. It constructs multiple full-
grown tree classifiers to vote for the most popular classes as the labeled results and yields
the class [33,43]. The performance of RF in classification is affected by internal parameters.
The two hyper-parameters, mtry (the number of predictors randomly sampled for each
node) and ntree (the number of bootstrap iterations), are most commonly considered to run
RF. In this study, the tree number varied from 5 to 200 with an interval of 5, and mtry was
the default value which was equal to the square root of the number of predictor variables
within a dataset. Lastly, tree numbers of 125, 80, and 140 were confirmed for the Mon, Sea,
and Yea datasets, respectively.

The SVM is another algorithm with high reliability and classification accuracies, espe-
cially in multidimensional data and minority class classification [44]. It is a nonparametric
distribution-free classifier defined by separating hyperplanes, of which the rationale is to
implicitly map the original feature space into a space with higher dimensionality, using the
kernel functions strategy for performing non-linear classification [44,45]. The radial basis
function (RBF) kernel was chosen in our study due to its superior performance compared to
other kernel functions [46]. The SVM can be optimized by gamma and regularization cost
parameters. The gamma parameter is a kernel width parameter that affects the shape of
the separating hyperplane, and the cost parameter determines the penalties for prediction
errors [47]. We optimized the SVM classifier by comparing different gammas and costs
based on internal performance estimations and training data. The range of gamma values
was set at 0.02–2 and the cost value at 0.5–10. Finally, we identified an optimum gamma of
1.85 and costs of 7.5, 9, and 9 for the Mon, Sea, and Yea datasets, respectively. The RF and
SVM were employed in GEE.

Before the classification, input features were selected, which was significant to the
classification objective. Feature selection helps to solve the precision difference problem
resulting from different input variables and reduces the computational burden, but also
maintains the accuracy of the results [3,26]. Mean Decrease Accuracy (MDA) as a feature
selection method is frequently used to pre-select the most important variables [34], which
was calculated in R 4.2. An MDA value of zero shows that no connection between the
predictor and the response feature exists, whereas the larger the positive MDA value, the
more important the feature is for the classification [48]. We initially trained an RF model
based on all available features and ranked the features according to their importance scores.
We then sequentially fed the top n features into the RF model for training and recorded the
changing trend of the overall accuracy (OA). We employed the subsets with a high OA for
classification.

2.2.4. Accuracy Assessment

The classification accuracy assessment was based on the validation datasets. The
confusion matrices, OA, and kappa statistics were calculated for a general evaluation.
Additionally, the F1 score providing a reasonable single measure was computed to focus on
a particular class, which was used as a harmonic mean of the producer’s accuracy (recall)
and user’s accuracy (precision) to characterize the classification performance [45,46].
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3. Results
3.1. Conditional Variable Importance Assessment

The results of the features’ importance assessment for the Mon and Sea datasets are
presented in Figure 3. Regarding the Mon datasets (Figure 3a), the most important features
were SWIR (B11 and B12), NDVI, NBR, and elevation, followed by NDII and Blue (B2),
while red edge (B6 and B7) and NIR (B8 and B8A) were relatively unimportant. The features
with higher importance in the Sentinel-2 images with different time phases were mainly
distributed in June and February, followed by July, September, and May, and the features in
October were the least important variables. Overall, Blue, SWIR, and NDVI in February,
SWIR in May, NBR, NDII, and SWIR in June, SWIR in July, and Blue and NBR in September
were beneficial for tree species separation. In terms of the Sea datasets (Figure 3b), elevation,
SWIR (B11), and NBR were the most significant features, followed by SWIR (B12), NDVI,
and Green. In the temporal component, summer and spring were the most important and
unimportant time steps, respectively. Generally, SWIR (B11), Green, red edge (B5), NBR,
NDVI, and NDII in summer, NBR and Green in fall, SWIR, NBR, and NDVI in winter,
and SWIR (B11), Blue, Green, and SWIR (B11) in spring were significant for tree species
separation. Figure 4 shows that increasing the number of variables led to an increase in
the overall accuracy of the training model. The top 30 and 25 variables were retained for
the Sea and Mon datasets as model input features to perform tree species classification.
Considering the limited features of the Yea datasets, all features of this period were selected
to identify classification.
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3.2. Tree Species Classification Accuracies

The overall accuracy and kappa coefficient of the test data were calculated to assess the
performances of the RF and SVM models, as well as the performances of different time-scale
datasets (Table 3). The OA and Kappa obtained by the RF model (OA: 81.70–87.45%, Kappa:
0.79–0.86) outperformed the SVM (OA: 72.38–83.38%, Kappa: 0.69–0.81) with the same
input datasets. For three input datasets, the Mon datasets obtained higher classification
accuracies (OA: 83.38–87.45, Kappa: 0.81–0.86) than the Sea datasets (OA: 81.39–85.91,
Kappa: 0.79–0.84), while the worst performance was achieved by the Yea datasets (OA:
72.38–81.7, Kappa: 0.69–0.79). Among the combination of input datasets and classifiers,
RF_Mon reached the highest accuracy with an OA of 87.45%, while SVM_Yea yielded the
lowest accuracies but still reached 72.38% for the OA. Moreover, the above classification re-
sults include accuracies that adding elevation and slope information improved. These were
improved by approximately 1.7% to 4.6% compared to those without topography factors.

The tree species classification accuracy was evaluated using a macro F1 score (Table 2).
Most tree species had comparable F1 scores achieved by RF_Mon and RF_Sea. We observed
a high agreement for Mongolian Oak in all combinations, with each F1 score being greater
than 90%. The highest score of Mongolian Oak reached 97.3%, followed by Korean pine
(86.94–96%) with a best score of 96%. The Manchurian walnut achieved higher scores
between 82.39 and 91.51%. Except the combination of SVM_Yea, good accuracies were ob-
tained by Dragon spruce (80–91.6%), Dahurian larch (81.8–91%), White birch (83.75–88.64%),
and Scots pine (83.82–87.38%) in five other combinations. Manchurian ash obtained the low-
est classification accuracy with the highest F1 score of only 62.99. Moreover, the coniferous
forest tree species yielded a better score in comparison with the broadleaved forest.

Confusion matrices provide an overview of the magnitude of disagreement between
the reference and predicted labels for each class (Figure 5). Mongolian Oak obtained the
best producer’s accuracy, with accuracies ranging from 91% to 97% for all combinations.
Korean pine obtained a producer’s accuracy just slightly lower than that of Mongolian Oak
when using RF_Sea and RF_Yea, while there was a relatively bigger difference when using
SVM_Yea. The three coniferous forest tree species, including Dragon spruce, Korean pine,
and Scots pine, exhibited satisfactory accuracies, which provided no significant difference
using the Mon and Sea datasets. However, there was slight confusion among Dragon
spruce, Scots pine, and Korean pine. For example, Dragon spruce (0.04%) and Scots pine
(0.08%) were identified as Korean pine using RF_Mon. Moreover, some Aspen species
were confused with White birch. Manchurian ash obtained a terrible accuracy with a best
producer’s accuracy of only 56%, which was more frequently misclassified as Amur linden.
Thus, the results of the tree species level agreement assessment are promising, although
there was confusion between related species.



Remote Sens. 2024, 16, 293 10 of 19

Table 3. Comparisons of classification accuracy for RF and SVM classifiers among three time-scale
datasets.

Metrics

RF SVM

Mon Sea Yea Mon Sea Yea

RF_Mon RF_Sea RF_Yea SVM_Mon SVM_Sea SVM_Yea

OA (%) 87.45 85.91 81.7 83.38 81.39 72.38
Kappa 0.86 0.84 0.79 0.81 0.79 0.69

F1
score
(%)

Dragon spruce 91.61 90.40 79.83 89.44 84.77 69.55
Dahurian larch 91.05 91.00 81.85 89.84 87.50 80.53

Korean pine 95.58 96.00 92.87 93.44 92.71 86.94
Scots pine 87.38 87.52 83.82 84.21 83.99 63.96

Mongolian Oak 97.04 92.21 94.95 95.80 91.84 93.37
White birch 88.64 87.33 83.75 86.0 85.64 75.04

Manchurian ash 62.99 63.37 57.86 44.49 44.60 37.01
Manchurian

walnut 90.91 91.51 88.5 89.18 89.92 82.39

Amur linden 78.55 76.34 72.62 71.91 68.45 61.43
Aspen 89.61 85.99 76.27 85.96 83.22 67.25
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Yea (f) datasets. The diagonal cells show the classification accuracy of each tree species, while the
off-diagonal cells show the percentage of classification error between them. DS, DL, KP, SP, MO, WB,
MA, MW, AL, and AS were Dragon spruce, Dahurian larch, Korean pine, Scots pine, Mongolian Oak,
White birch, Manchurian ash, Manchurian walnut, Amur linden, and Aspen, respectively.

3.3. Tree Species Mapping

According to the spatial distribution of the tree species (Figure 6), the area of the tree
species calculated by Yea had a large difference with Mon and Sea, such as Aspen and
Korean pine. There was considerable variation in the tree species area mapped, although
the classifiers with Mon and Sea had a high accuracy for mapping forest species. Moreover,
the area of Amur linden largely varied with both datasets and classifiers. The best RF_Mon
classification showed that the most abundant species were Amur linden and Manchurian
walnut, accounting for 23.61% and 21.32%, respectively. The following tree species were
Aspen (12.02%) and Korean pine (11.27%). Dragon spruce accounted for the smallest
percentage (2.36%), and other tree species accounted for a proportion ranging from 4.07%
to 7.33%.
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The tree species map reflected our understanding of the spatial distribution of species,
showing the differences in tree-specific distributions with each combination of input
datasets and classifiers (Figure 6). Tree species distributions using RF_Mon, RF_Sea,
SVM_Mon, and SVM_Sea were more coincident, while RF_Yea and SVM_Yea presented a
larger difference, especially for the distributions of Amur linden, Aspen, and White birch.
According to the consistent results in the tree species classification map, Korean pine was
mainly distributed in the southern and central parts, accompanied by other tree species.
Dragon spruce and Dahurian larch covered a small area but appeared to form small patches
in the central, southern, and western parts, while Scots pine had a fragmentary distribu-
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tion. In terms of broadleaf species, Mongolian Oak mainly occurred in regions with high
slopes but a lower elevation, which presented as small homogeneous pieces with obvious
boundaries. Manchurian walnut was concentrated in river valleys and distributed in the
north and west. Amur linden showed widespread distribution across the complete area
except the central parts. Aspen and White birch were distributed throughout the entir area.

The performance of the best accuracy achieved for the forest tree species map (Figure 7a1)
was visually compared with the forest inventory data (Figure 7a2). Results not only
revealed medium to high spatial agreements between classification and the forest inventory
map, but also showed some differences between the actual forest cover and the forest
inventory information. For example, the Figure 7b1–b3 showed a large version of the Box
in Figure 7a1,a2. Most homogeneous stands were primarily classified as single species, and
inconsistency were mostly observed in stand boundaries (Figure 7b2,b3). For mixed stands,
confusion was observed between Korean pine and Scots pine, as well as Aspen and White
birch. In terms of the distribution area of each species (Figure 7c), the results showed that
White birch, Manchurian ash, Dragon spruce, Dahurian larch, Aspen, and Amur linden had
a high consistency in proportion between the classification and inventory data. Mongolian
Oak and Scots pine had a reasonable correspondence to that from the inventory data.
Korean pine and Manchurian walnut had a large difference in distribution proportion.
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in Box; and (c) the proportion of each tree species based on inventory data and RF_Mon classification.
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4. Discussion
4.1. Monthly Dataset Was Beneficial for Tree Species Classification

In this study, Mon, Sea, and Yea composites based on the GEE platform were applied
to generate cloud-free imagery and feature datasets for classification. Attributed to the
availability of GEE, a large volume of data was processed conveniently without depending
on the local environment. More importantly, the GEE platform provided time aggregation
approaches to reduce cloud cover, which was beneficial for obtaining multi-temporal
imagery, especially in mountainous areas [23,24]. The different input images resulted
in varied classification results. This study indicated that both the Sea and Mon datasets
achieved high accuracies of over 80%, while the Yea datasets obtained the lowest accuracies.
Increasing the appropriate number of input features improved the classification accuracy [3].
Moreover, the relatively higher accuracies achieved with the Mon datasets (87.45% for RF
and 83.38% for SVM) compared to the Sea datasets (85.91% for RF and 81.38% for SVM)
were ascribed to considering subtle vegetation phenological differences between species,
which changed rapidly in spring and autumn [3]. For example, the little confusion between
the Betula species and pinus may have been due to the phenological events of the Betula
species occurring earlier than those of the pinus, with about 25 days for bud break [49].
Thus, dense time series were required to capture the rapid change in phenological events.
This result supported our hypothesis. However, our results were not entirely consistent
with [22], which concluded that seasonal data achieved a better accuracy than monthly
data in a Caspian mixed forest. The inconsistency can be attributed to the difference in tree
species and the employment of winter images. Compared with seasonal data, monthly
data, especially those in February with high importance, were beneficial for separating
the evergreen and broadleaved tree species included in this study. Since the forest was
dominated by broadleaved tree species in [22], it did not consider the effectiveness of
monthly images from winter. Other previous work has explored the effect of different input
images processed by temporal aggregation on land cover classification and proved that
monthly imagery produces a high accuracy [23]. Therefore, monthly time-scale datasets
based on GEE are highly recommended, providing the potential to map tree species in
larger areas or regions with recurrent cloud cover.

4.2. RF Outperformed SVM on Tree Species Classification

This study evaluated the impact of RF and SVM on the accuracy of forest tree species
classification. For all datasets used in the study, the RF classifier provided higher accuracies
than SVM. The classification accuracy of SVM decreased (11%) more rapidly than that of
RF (5.7%) when the input datasets changed from Mon to Yea, meaning that SVM was more
sensitive to feature numbers. Studies have reported that SVM can deal better with large
datasets containing correlated and redundant variables [3]. RF considered fewer hyper-
parameters but provided higher accuracies, confirming that RF was more straightforward
and efficient for tree species classification in this study [50]. In addition, the relatively large
and balanced reference datasets provided in our study were beneficial for RF. Furthermore,
RF was less sensitive to parameter changes and more accurate in forests [51]. Our general
conclusion indicated that RF was more efficient at identifying and mapping tree species
when Sentinel-2 multi-temporal imagery was used, similar to previous research [20,22].

4.3. Great Potential of Sentinel-2 and Topographic Variables for Tree Species Classification

The high classification accuracy demonstrated the potential of Sentinel-2 for tree
species classification due to higher spectral and temporal resolutions. B11 and B12 scored
higher variable importance than others, which proved that SWIR bands were the dominant
drivers for discriminating tree species, as SWIR bands exhibited significant absorption
features that were related to nitrogen, cellulose, and lignin [52]. The blue band had
great power to distinguish tree species, especially coniferous forest species, due to the
lower photosynthetic activity of conifer species in blue light compared to that of broadleaf
species [20,53,54]. Thus, our findings confirmed that blue bands showed a high potential
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to distinguish tree species, as four coniferous tree species (Korean pine, Dahurian larch,
Dragon spruce, and Scots pine) were included in this study. The red edge (B5) band showed
a relatively higher importance because B5 was responsive to foliage chlorophyll pigment
levels and has been related to the leaf area index at the canopy level [3,55]. NIR bands have
been reported to be important in some cases [20,26], however, this was not fully confirmed
in our case, similar to the research recorded by [1,54]. The lower importance of the NIR
could be attributed to the fact that redundant information carried by the NIR was also
presented in the NDVI [1]. In terms of vegetation index, the NBR and NDII exhibited a high
sensitivity, which may have been related to the high importance of the SWIR [52]. Moreover,
the NDVI shared a higher importance than the EVI, especially in February, September, and
December, which can be attributed to the lower canopy density in non-growing periods.

Time series Sentinel-2 imagery provided a further effective trait for species discrim-
ination. The results showed that images in February, May, June, July, and September
contributed the most. The late-spring and mid-summer images performed well for differen-
tiating species classification, not only due to vegetation phenology changing rapidly in late
spring, but also because the date of leaf flush varies from species to species in the summer
months [3,20]. Aspen and birch can be separated from other species in late spring, as the
leaves of their understory vegetation are not fully developed and are unlikely to attenuate
spectral differences observed between the upper species [56]. However, there was confu-
sion between White birch and Aspen due to mirror difference phenological trajectories that
affected class separability negatively [57]. Additionally, the RF_Mon results showed that
only 1% of larch samples were misclassified as aspen, as the larch tree species had earlier
timing of leaf expansion and a longer growing period than aspen [58]. Previous research [4]
has also reported that September images provide additional information, helping to reduce
the confusion among coniferous species. Except the similarity between tree species, the
classification errors that occurred in some species, such as Aspen and birch, Manchurian
ash, and Amur linden, may be ascribed to the image quality. Due to frequent cloud cover
resulting in insufficient observations, removing clouds and shade inevitably led to the loss
of some important information [24]. In this study, a three-year Sentinel-2 time series was
used to generate a composite image, which ensured adequate observation. The composite
image by multi-year can offset the information loss caused by cloud removal and would
not cause large deviations. The overall accuracy of our study was satisfactory. Therefore,
the approach in this study proved the potential of dense Sentinel-2 time series to conduct
tree species mapping.

Topographic factors were used as additional input features since the study area was
characterized by a relatively large terrain and higher height differences. As the elevation
and slope had higher values in the importance ranking, adding topographic information
for classification resulted in improved accuracies of approx. 1.7% to 4.6%, which showed
significant potential of the elevation and slope for discriminating among tree species. Sun
exposure and elevation zones were always marked by slope and elevation, respectively,
which largely affected the distribution and phenological development of species [27,28]. As
a result, our study exhibited a significant spatial distribution pattern, showing that elevation
and slope are beneficial for separating Manchurian walnut, Mongolian Oak, White birch,
and evergreen coniferous tree species (Figure 8). Moreover, we also found that the ability of
elevation and slope to distinguish deciduous species was better than that for conifer species,
which was consistent with the finding by [27]. In terms of deciduous species, Mongolian
Oak was mainly distributed in the area with the lowest elevation (average elevation of
620 m) and largest slope (average slope of 17.9◦), Manchurian walnut occurred with a
middling elevation and slope, and White birch typically occurred with the lowest slope. It
is difficult to separate Amur linden and Aspen only using topography due to their similar
distribution. Other studies have also reported that broadleaf species, particularly birch
and oak, depend on elevation, while birch is sensitive to slope [27,28]. For conifer species,
Dahurian larch can be separated from evergreen conifer species (Dragon spruce, Korean
pine, and Scots pine) by elevation gradient. However, the effectiveness in delineating
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evergreen conifer species was marginal. This may be attributed to the distribution of
species communities being more dependent on topography compared to the occurrence of
single species [28].
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4.4. Classification Accuracy Compared with Forest Inventory Data and Others

Except for Korean pine and Manchurian walnut, the tree species classification in this
study had a high agreement with the inventory data. Our study confirmed that the forest
inventory data had an evident advantage in evaluating homogeneous stands. However, its
limitations for evaluating mixed stands were noticeable, as species composition proportions
cannot be directly inferred from the forest inventory data, which showed the dominant
species. Moreover, there were disagreements between the inventory data and actual species.
For example, some sub-compartments in the southeastern part dominated by Korean pine
based on the inventory data (Figure 7b3) were classified as Withe birch and Dahurian larch
(Figure 7b2). The corresponding high-resolution image proved that these stands were
dominated by deciduous trees (Figure 7b1). A similar phenomenon appeared for Korean
pine in other regions. Moreover, Korean pine usually occurs with other broadleaved forests
in this region, such as Manchurian walnut, Amur linden, and Manchurian ash [36]. This
indicated that the area of Korean pine in the inventory data was larger than the actual
distribution. Although the tree species distribution of forest inventory and remote sensing
is not completely consistent, it is more important to obtain detailed tree species distribution
by combining them.

With a combination of multi-temporal Sentinel-2 and topography information, this
study obtained a highest overall accuracy of 87.45%, in line with comparable studies.
Nevertheless, most of these previous studies considered fewer tree species with mainly
4–5 classes [1,59,60]. For example, the study [1] achieved 87% for five classes using seasonal
composites, but without the separation of broad-leaved species from one other.In addition,
other studies have improved the accuracy of more diverse tree species by adding texture
features [2,61], as well as changing the classification approach [20]. We attributed our
favorable results to the high imagery acquisition density, balanced reference data, and
beneficial topography information. However, Manchurian ash had the lowest accuracy
of 63% and was confused with Amur linden at the tree species level; therefore, areas
of Manchurian ash were under-mapped and those of Amur linden were over-mapped.
Adding texture may be beneficial for discriminating them due to larger differences in their
canopy structures [2].
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5. Conclusions

This study produced a detailed mountainous tree species map by using free Sentinel-2
imagery, topography data, and open-source algorithms, and quantified the contributions of
three time-scale datasets (monthly, seasonal, and yearly) for accurate tree species mapping.
The results concluded that classification with monthly datasets achieved the highest accura-
cies compared to those obtained with the seasonal or yearly datasets, due to the benefit of
capturing rapidly changing phenological information that occurred in spring and fall. RF
always outperformed SVM when the same datasets were used. The SWIR, NDVI, and ELE
were the dominant variables for tree species classification. The topography information
improved the model accuracy for discriminating tree species distributed by height and
slope gradient.

The classification accuracy was high for tree species that form homogenous stands or
follow a topographic gradient zone, such as Dragon spruce, Mongolian Oak, and Dahurian
larch. These species distributions can be directly used for local forest government. We
recommend that the managers conduct more investigation into stands with heterogeneity
and those that are confusable, such as Amur linden, which occupied a large proportion
and had important ecological value. Moreover, this study revealed that monthly Sentinel-
2 datasets can settle the mapping problem caused by recurrent cloud cover, and thus
be qualified for accurate tree species mapping in mountainous regions. We suggest the
usage of monthly composites in situations where temporal information must be utilized
but effective observations are insufficient. Further research will particularly address the
mapping of minor species, which is important for sustainable forest management and
biodiversity conservation.
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