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Abstract: Cross-Resolution Person Re-Identification (re-ID) aims to match images with disparate
resolutions arising from variations in camera hardware and shooting distances. Most conventional
works utilize Super-Resolution (SR) models to recover Low Resolution (LR) images to High Resolution
(HR) images. However, because the SR models cannot completely compensate for the missing
information in the LR images, there is still a large gap between the HR image recovered from the
LR images and the real HR images. To tackle this challenge, we propose a novel Multi-Scale Image-
and Feature-Level Alignment (MSIFLA) framework to align the images on multiple resolution scales
at both the image and feature level. Specifically, (i) we design a Cascaded Multi-Scale Resolution
Reconstruction (CMSR2) module, which is composed of three cascaded Image Reconstruction (IR)
networks, and can continuously reconstruct multiple variables of different resolution scales from
low to high for each image, regardless of image resolution. The reconstructed images with specific
resolution scales are of similar distribution; therefore, the images are aligned on multiple resolution
scales at the image level. (ii) We propose a Multi-Resolution Representation Learning (MR2L)
module which consists of three-person re-ID networks to encourage the IR models to preserve the
ID-discriminative information during training separately. Each re-ID network focuses on mining
discriminative information from a specific scale without the disturbance from various resolutions.
By matching the extracted features on three resolution scales, the images with different resolutions
are also aligned at the feature-level. We conduct extensive experiments on multiple public cross-
resolution person re-ID datasets to demonstrate the superiority of the proposed method. In addition,
the generalization of MSIFLA in handling cross-resolution retrieval tasks is verified on the UAV
vehicle dataset.

Keywords: cross-resolution; super-resolution; multi-branch network; person re-identification

1. Introduction

The goal of Person Re-Identification [1–3] is to match the identity of the target image
across non-overlapping surveillance cameras. Recently, person re-ID has attracted attention
from both the community and the industry due to its practical value in public safety and
private property security. With the development of deep neural networks [4], great progress
has been made in person re-ID and most of the existing studies focus on challenges from
camera settings [5–7], occlusions [8,9], viewpoints [10–12], illumination-adaptive [13–15],
modalities [16–18] and cloth-changing [19,20]. Although these methods have achieved
inspiring matching accuracy on public benchmarks [21,22], they have a common limitation
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in that they are designed based on a prerequisite that the images captured by different
cameras are of the same resolution.

However, due to the difference in hardware and shooting distance between cameras,
this prerequisite is hard to meet in practical applications. Therefore, the application of
these methods is limited in real-world scenes because they cannot adapt to images with
various resolutions. The practical task of matching images of the same individual but
with different resolution scales is referred to as Cross-Resolution Person Re-Identification.
As shown in Figure 1, the challenge of cross-resolution person re-ID is two-fold: First,
the query and gallery sets are composed of low-resolution (LR) and high-resolution (HR)
images, respectively, and the matching accuracy of re-ID models will decrease if their
features are matched directly because the LR and HR images are of different distribution.
Second, resolution disparity also exists between LR query images, resulting that matching
LR query images with various resolutions and HR gallery images with unified resolution
becomes harder. From the analyses above, we can conclude that the main difficulty lies in
cross-resolution person re-ID because the distribution of images with different resolutions
is not aligned, so the model is disturbed to learn discriminative information and is forced
to establish the connection between the distribution of different resolutions.

Figure 1. The challenge of cross-resolution person re-ID. (a) The resolution misalignment problem
not only exists between LR query and HR gallery images, (b) but it also exists between LR query
images with different resolution scales.

To tackle the resolution mismatch challenge in person re-ID, some approaches have
been made in recent years and they can be broadly classified into two categories. The
methods of the first category [23,24] aim to learn resolution-irrelevant feature represen-
tations in order to map features to a common space. However, these methods force the
images with higher resolutions which contain more appearance details to align with the
images with lowest resolution which contain the least identity clues, and the results show
that the additional information that lies in images with higher resolutions is lost. The
re-ID models suffer from very limited discriminative semantic, so their performance is
not optimal. The methods of the second category [25,26] are based on super-resolution
algorithms. The primary idea of these methods is that the SR models can recover part
of the person description which is missing in LR images, so the disparity between the
amount of identity semantic contained in the images with different resolutions is reduced.
However, because the SR model cannot fully complete the missing clues in LR images,
and the amount of information in reconstructed LR images also varies, cross-resolution
challenges still exist. The re-ID models are forced to construct the connection between
reconstructed LR images and HR images, which distracts the attention of the model in
learning discriminative clues.

The intrinsic discrepancy between images with different resolutions lies in the amount
of discriminative clues contained in the images, and the LR and HR images cannot be
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aligned well at the HR scale because the SR model cannot fully recover the missing infor-
mation in LR images. HR images contain more person descriptions, making alignment
at the LR scale easier to achieve. However, when only LR scale alignment is performed,
the model cannot benefit from the additional information in HR images. Based on these
analyses, we propose a novel Multi-Scale Image- and Feature-Level Alignment framework
(MSIFLA) for cross-resolution person re-ID, as exhibited in the conceptual diagram in
Figure 2. Specifically, we first reconstruct all images into LR images, regardless of their
resolution, so the amount of information contained in images with different resolutions is
aligned. Then, we reconstruct LR images to higher resolution scales and eventually align all
images at the HR scale, so the model can also benefit from the discriminative clues that lie in
HR images. The proposed framework consists of two modules: (i) a Cascaded Multi-Scale
Resolution Reconstruction (CMSR2) module which gradually reconstructs each image from
the IR scale to the HR scale without distinguishing the resolution scale, so the images
with different resolutions are aligned first on the LR scale and then on higher resolution
scales. (ii) a Multi-Resolution Representation Learning (MR2L) module which consists
of three-person re-ID networks to extract feature representations from the reconstructed
images with different resolutions separately. Each re-ID network focuses on the feature
learning of specific resolution scale images to extract identity-relevant features. By utilizing
the discriminative semantic lies in each resolution scale for supervised training, the images
are further aligned at the feature level.

Figure 2. The illustration of image- and feature-level alignment.

The contribution of this paper can be summarized as follows:

• We propose a Cascaded Multi-Scale Resolution Reconstruction module (CMSR2) to
align the images with different resolutions at the image level. Specifically, we first
reconstruct all images into LR images, regardless of their resolution, so all images
are aligned on the LR scale. Then, we reconstruct and align these images on higher
resolution scales, so the model can also benefit from the discriminative clues that lie in
HR images.

• We design a Multi-Resolution Representation Learning module (MR2L) to align the
images with different resolutions at the feature level. Specifically, we utilize the image-
level aligned person images for supervised training to encourage the features of the
reconstructed images to be aligned on each resolution scale.

• Experimental results on five cross-resolution person re-ID datasets demonstrate the
superiority of the proposed method compared to other state-of-the-art methods. In
addition, the generalization of the proposed method is verified on a UAV simulation
cross-resolution vehicle dataset.
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2. Related Work
2.1. Deep Learning Person Re-Identification

Person re-ID aims to retrieve the person of interest from surveillance systems consisting
of multiple disjoint cameras. The key challenge of person re-ID lies in the style disparities
between cameras due to different camera settings, viewpoints, backgrounds, illuminations
and resolutions [27,28]. Recently, thanks to the development of advanced network structure
and deep learning [29–32], person re-ID has achieved remarkable progress. Zhu et al. [10]
addressed the challenge of viewpoint variation by projecting the features of people with
different viewpoints into a unified space and modeling the representations on identity-
and viewpoint-level. Zhong et al. [5] proposed to transfer each image in the training
set to the styles of other cameras by CycleGAN-based image translation functions, the
transferred images smoothed the domain gap between different cameras. Tian et al. [33]
studied the interference of backgrounds to the accuracy of re-ID models and proposed a
person segmentation-guided model to learn representations that are robust to background
variation. Zeng et al. [14] tacked the illumination variation challenge by disentangling the
illumination-invariant information from identity-relevant information, so the model can
learn illumination-irrelevant representations. Miao et al. [34] deal with the Visible Infrared
re-ID task by bridging the modality gap via two intermediate modalities. However, these
works ignored the problem of resolution variation between cameras caused by hardware
and shooting distance, so their effectiveness in real-world scenarios is limited.

2.2. Cross-Resolution Person Re-Identification

Cross-resolution person re-ID attempts to tackle the resolution mismatch issue be-
tween images with different resolutions. Recently, remarkable achievements have been
made [25,26,35–37] for addressing this challenging task. These methods can be broadly
categorized into two groups: (1) learning resolution-invariant features [23,24] and (2) uti-
lizing super-resolution models [25,26,35]. In the first group, Li et al. [24] minimized the
heterogeneous class mean discrepancy to align the distribution of person images with
different resolutions. Chen et al. [23] proposed aligning the feature representations across
resolutions via adversarial learning. However, these approaches face a limitation in that
the fine-grained information lies in the HR images are lost due to aligning the features of
HR and LR images. In the second group, Jiao et al. [25] proposed exploiting person identity
signals to supervise the training of the super-resolution model and train the person re-ID
and super-resolution model in an end-to-end manner, so the SR model learned to retain
the discriminative semantic essential for person re-ID tasks. Wang et al. [26] cascaded
three SR-GANs to recover LR images with three different resolution scales to HR images,
so the model can adapt to LR images with various resolutions. Li et al. [36] employed
adversarial learning to extract both resolution-invariant and high-resolution features; there-
fore, the model can adapt to varying resolutions. However, these methods ignore the fact
that the images with different resolutions contain different levels of information and the
information learned from different resolutions is complementary.

3. The Proposed Method
3.1. Overview

In this paper, we propose a Multi-Scale Image- and Feature-Level Alignment (MSIFLA)
framework for cross-resolution person re-ID. Different from previous methods which aim
to align images on the LR scale by learning resolution-irrelevant representations or align
them on the HR scale by recovering LR images to their HR versions, we take advantage
of both ideas and align the images not only at the LR scale but also at the HR scale. The
framework consists of two modules, a Cascaded Multi-Scale Resolution Reconstruction
(CMSR2) model which consists of three IR networks to reconstruct each image to three
variants with different resolution scales and a Multi-Resolution Representation Learning
(MR2L) module which consists of three-person re-ID networks, each dedicated to learning
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discriminative information from reconstructed images at specific resolution scales. Figure 3
illustrates the overall framework of our proposed method.

Figure 3. The overall architecture of our proposed method.

Assuming that XH = {xh, l} is an HR image set, where xh denotes a HR image and l
is corresponding identity label. In order to train the IR networks, we down sample each xh
in the image set XH to three variants with different resolution scales using down-sampling
rate randomly picked from {4, 3, 2}, and we denote the resolution scales as LR1/4, LR1/3
and LR1/2, respectively. Then the down-sampled images are resized back to their original
size via bilinear up-sampling and denoted as x1/4, x1/3, x1/2. The identity label information
remains unchanged in the process of down-sampling and resizing. The down-sampled
images are only used in the training phase of the proposed framework. IR networks are
trained using images with different resolutions generated by HR image subsampling. In
this way, each IR network focuses on image reconstruction with specific resolutions and
can adapt images with different resolutions as input.

3.2. Cascaded Multi-Scale Resolution Reconstruction Module

Extracting and matching the features of LR and HR images directly will yield poor
results because the images are of different distribution. In order to achieve higher retrieval
accuracy, the images needed to be aligned at the image level. However, if the images are
aligned on the LR scale, the additional information lies in HR images that are abandoned.
If we recover LR images to the HR scale by adopting SR models, the reconstructed images
cannot fully recover the missing information, so the recovered LR images are still different
from genuine HR images.

Motivated by the analysis above, instead of solely aligning them on the LR or HR scale,
we propose a Cascaded Multi-Scale Resolution Reconstruction (CMSR2) module which
consists of three IR networks to align the images on three resolution scales. Specifically, each
input image, regardless of its resolution, goes forward through all image reconstruction
networks consecutively and generates three reconstructed images with three specific reso-
lution scales. Because each original image is reconstructed into three different resolution
scales, alignment is achieved at the image level.

Each IR network consists of two components, an encoder and a decoder. The encoder
is used to extract feature representations from the images, and it consists of two parts. Each
part contains four convolutional layers. The decoder consists of two deconvolutional layers
followed by a convolutional layer for image reconstruction. Three IR networks are of the
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same architecture but without weight sharing. To alleviate the data loss caused by image
reconstruction, residual connections are used between the two components of the encoder,
and between the encoder and the decoder.

Note that CMSR2 is different from previous cascaded SR model-based methods [26]
on two major aspects: First, we aim to reconstruct images to three variants with different
resolution scales while the idea of [26] is to recover images to HR scale. Second, the input
images go forward through all IR networks in CMSR2, while they go forward through
different numbers of SR networks according to their resolution in [26].

In the training phase, the down-sampled images (i.e., x1/4, x1/3, x1/2) and their HR
version xh are fed to the IR-Network1/3, and the outputs are denoted as x1

1/4, x1
1/3, x1

1/2
and x1

h. We expect IR-Network1/3 to reconstruct images on LR1/3 scale and the generated
images are similar to x1/3, so we adopt MSE loss to narrow the distance between the outputs
of IR-Network1/3 and the down-sampled images with LR1/3 scale, which is formulated as:

LIR1/3 =
∥∥∥x1

1/4 − x1/3

∥∥∥2

2
+

∥∥∥x1
1/3 − x1/3

∥∥∥2

2
+

∥∥∥x1
1/2 − x1/3

∥∥∥2

2
+

∥∥∥x1
h − x1/3

∥∥∥2

2
(1)

After that, x1
1/4, x1

1/3, x1
1/2 and x1

h go forward through the IR-Network1/2 and the
IR-Network1 consecutively. We denote the outputs of the IR-Network1/2 as x2

1/4, x2
1/3, x2

1/2
and x2

h and the outputs of the IR-Network1 as x3
1/4, x3

1/3, x3
1/2 and x3

h. Similarly, the loss
function for the IR-Network1/2 can be formulated as:

LIR1/2 =
∥∥∥x2

1/4 − x1/2

∥∥∥2

2
+

∥∥∥x2
1/3 − x1/2

∥∥∥2

2
+

∥∥∥x2
1/2 − x1/2

∥∥∥2

2
+

∥∥∥x2
h − x1/2

∥∥∥2

2
(2)

Then, the loss function for the IR-Network1 can be formulated as:

LIR1 =
∥∥∥x3

1/4 − xh

∥∥∥2

2
+

∥∥∥x3
1/3 − xh

∥∥∥2

2
+

∥∥∥x3
1/2 − xh

∥∥∥2

2
+

∥∥∥x3
h − xh

∥∥∥2

2
(3)

The overall loss function for the IR networks is written as:

LIR = LIR1/3 + LIR1/2 + LIR1 (4)

3.3. Multi-Resolution Representation Learning Module

Although the CMSR2 module aligns the person to be matched at the image level by
reconstructing each original image to three variants with different resolution scales, they
are still not aligned at the feature level. The main reason is that by adopting a single-person
re-ID network, the discriminative information lies in reconstructed images with different
resolution scales mixed together, so the person to be matched cannot be aligned on different
scales separately. We not only expect the reconstructed images with each resolution scale to
be of similar distribution, but we also expect the extracted features to contain discriminative
information related to the corresponding resolution scales.

To this end, we propose a Multi-Resolution Representation Learning (MR2L) mod-
ule which utilizes three-person re-ID networks to learn feature representations from the
reconstructed images with three resolution scales separately. By extracting and matching
the features on each scale, the person to be matched is aligned at the feature level. All
person re-ID networks share the same architecture, but there is no weight sharing between
them. Thus, each network can focus on extracting discriminative clues from images with a
specific resolution scale, avoiding interference from other scales.

The architecture of the person re-ID network is depicted in Figure 4. We adopt ResNet-
50 [38] as the backbone network and the extracted tensor T of an input image is partitioned
into 4 horizontal parts [39] through an average pooling layer. The features of these parts
are concatenated to form the output of the re-ID network.
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Figure 4. The architecture of person re-ID network.

For an input image (denoted as y), three variants of reconstructed images (denoted as
y1/3, y1/2 and y1) generated by MR2L module go forward through three re-ID networks,
and the extracted features are denoted as f1/3, f1/2 and f1, respectively. Thus, the final
feature representation of an input image is written as:

f = [ f1/3, f1/2, f1] (5)

where the lower scripts represent the corresponding resolution scales.
For a reconstructed image yi, i ∈ {1/3, 1/2, 1}, the extracted feature of each person

re-ID network can be expressed as:

fi = [ f 1
i , f 2

i , f 3
i , f 4

i ] (6)

where the upper scripts represent the indexes of horizontal parts. Then, Formula (5) can be
re-written as:

f =[ f 1
1/3, f 2

1/3, f 3
1/3, f 4

1/3, f 1
1/2, f 2

1/2, f 3
1/2, f 4

1/2, f 1
1 , f 2

1 , f 3
1 , f 4

1 ] (7)

Then, we define the loss function of person re-ID network1/3. We adopt cross-entropy
loss with label smoothing regularization (LSR) [18] and triplet loss for supervised raining.
For a given reconstructed image y1/3, the cross-entropy loss is formulated as:

LCross1/3 = −
4

∑
h=1

C

∑
c=1

qh
1/3(c)log(ph

1/3(c)) (8)

where ph
1/3(c) is the logits of class which is predicted using feature representation f h

1/3 . We
denote C as the total number of identities in the training set. The ground-truth distribution
is recorded as qh

1/3(c), and it can be expressed as:

qh
1/3(c) =

{
1 , l = c

0 , l ̸= c
(9)

where l is the ground truth person identity label of the given image. We adopt label
smoothing regularization to assign less confidence on the ground truth label, and thus the
label distribution can be written as:

qLSRr
1/3(c) =


1 − ε +

ε

C
, l = c

ε

C
, l ̸= c

(10)

where ε ∈ [0, 1]. Then, we define the cross-entropy loss with label smooth regularization as:

LLSR1/3
= −

4

∑
h=1

(1 − ε)log(ph
1/3(l)) +

ε

C

C

∑
c=1

log(ph
1/3(c)) (11)



Remote Sens. 2024, 16, 278 8 of 15

For a batch with M identities, and N images for each identity, given a feature repre-
sentation f a

1/3 = [ f a,1
1/3, f a,2

1/3, f a,3
1/3, f a,4

1/3] of an anchor image, the triplet loss is formulated as:

Ltriplet1/3
=

4

∑
h=1

[m +
∥∥∥ f a,h

1/3 − f p,h
1/3

∥∥∥− ∥∥∥ f a,h
1/3 − f n,h

1/3

∥∥∥]
+

(12)

where the feature of the hardest positive sample and the feature of the hardest negative
sample are denoted as f p,h

1/3 and f n,h
1/3, respectively. The margin is denoted as m, [z]+ =

max(z, 0), and || f1 − f2|| indicates the Euclidean distance between two features.
The loss function for person re-ID network1/3 can be formulated as:

LReID1/3 = LLSR1/3 + Ltriplet1/3
(13)

The overall loss function for person re-ID networks can be expressed as:

LReID = LReID1/3 + LReID1/2 + LReID1 (14)

where LReID1/2 and LReID1 are the loss function for re-ID network1/2 and re-ID network1,
respectively. Similar to some multi-task learning methods, we do not add LIR and LReID
together and backward them separately.

4. Experiments
4.1. Datasets

Our experiments are based on five public cross-resolution person re-ID datasets,
comprising one real-world dataset (i.e., CAVIAR) and four synthetic datasets (i.e., MLR-
Market-1501, MLR-CUHK03, MLR-VIPeR and MLR-SYSU).

(1) The CAVIAR dataset [40] consists of images captured by 2 cameras, which contains
1220 images with 72 identities. The person images captured by the two cameras are
of different resolutions because the shooting distance of the two cameras is different.
Following the experiment setting in [25], we exclude 22 identities that appear in only
one camera. For the remaining 50 identities, we randomly select 10 HR and 10 LR
images for each identity to construct the dataset.

(2) The MLR-Market-1501 dataset is constructed based on Market-1501 [21] which con-
tains images captured by 6 cameras. The dataset includes 3561 training images with
751 identities and 15,913 testing images with 750 identities. We adopt the same
strategy as described in [25] to generate LR images with 3 resolution scales. Specif-
ically, we randomly pick one camera and down-sample each image in the picked
camera by randomly picking a down-sampling rate, and the images of other cameras
remain unchanged.

(3) The MLR-CUHK03 dataset is constructed based on CUHK03 [41] which contains
14,097 images with 1467 identities captured by 5 cameras. The training set includes
images with 1367 identities, and the other 100 identities are used for testing. The
down-sampling strategy is the same as for MLR-Market-1501.

(4) The MLR-VIPeR dataset is constructed based on VIPeR [42] which contains 1264 im-
ages with 632 identities captured by 2 cameras. We randomly partition the dataset
into two non-overlapping parts for training and testing according to the identity label.
The down-sampling strategy is the same as for MLR-Market-1501.

(5) The MLR-SYSU dataset is constructed based on SYSU [43] which contains 24,446 im-
ages with 502 identities captured by 2 cameras. For each identity, we randomly choose
3 images from each camera. We separate the dataset into two non-overlapping parts
for training and testing according to the identity label. The down-sampling strategy
is the same as for MLR-Market-1501.
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As shown in Figure 5, unlike images captured by conventional cameras, images taken
by UAVs exhibit more variations in viewpoints and are characterized by more pronounced
background noise.

Figure 5. Comparison of vehicle images captured by surveillance cameras and UAVs.

To validate the generalization of our method, we constructed a synthetic cross-
resolution dataset (MLR-VRU) based on the UAV-captured vehicle re-ID dataset VRU [44].
We select 1415 vehicle IDs, totaling 14,611 images for the training set, and each image
undergoes downsampling with an equal probability or remains unchanged to simulate
resolution changes. The test set is composed of 486 vehicle IDs, totaling 5549 images. For
each identity ID, one image is randomly chosen to form the gallery set, while the other
images are downsampled to create the query set. The down-sampling strategy is the same
as for MLR-Market-1501.

4.2. Experiment Settings

Our code is implemented based on PyTorch, and all experiments are performed on
a single RTX 3090 GPU. All images are resized to 256 × 128, and a total of 60 epochs are
trained. The batch consists of a total of 20 images for 5 identities, we pick 2 HR images
and 2 LR images for each identity ID. Note that only HR images are used to train the IR
networks. For the CMSR2 module, the kernel size for the encoder is set to 3. The starting
learning rate is settled at 3 × 10−3 for the first 30 epochs and decreased to 3 × 10−4 for the
remaining epochs. For the MR2L module, we adopt ResNet-50 [38], which is pre-trained
on ImageNet [45] as the backbone architecture of each person re-ID network. The initial
learning rate is set to 3 × 10−4 and decreased to 3 × 10−5 for the remaining epochs. The
margin for the triplet loss is configured as 0.5.

The Cumulative Matching Characteristic (CMC) curve and mean average precision
(mAP) are used to evaluate our method.

4.3. Comparison with State-of-the-Art

We compare our method with some state-of-the-art methods, including JUDEA [24],
SLD2L [46], SDF [47], SING [25], CSR-GAN [26], CAD-Net [36], INTACT [37], PRI [35]
and APSR [48]. The comparison results are reported in Table 1. In the real-world dataset
(i.e., CAVIAR), we can see that our method achieves 62.4% in Rank-1 and outperforms all
other methods by a very large margin. In particular, we achieve an 18.1% performance
boost in Rank-1 over the best competitor (i.e., PCB + PRI). From Table 1, we can also see
that the proposed method achieves the best results in Rank-1 on four synthetic datasets.
Our method outperforms the compared methods by 0.9%, 6%, 10.6% and 9.5% in Rank-
1 on MLR-Market-1501, MLR-CUHK03, MLR-VIPeR and MLR-SYSU, respectively. The
experiments demonstrate the superiority of our proposed method.
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Table 1. Comparisons of our method with state-of-the-art methods on CAVIAR, MLR-Market-1501,
MLR-CUHK03, MLR-VIPeR and MLR-SYSU. Rank-1 (%) and Rank-5 (%) are reported.

Methods CAVIAR MLR-Market-1501 MLR-CUHK03 MLR-VIPeR MLR-SYSU
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

JUDEA [24] 22.0 60.1 - - 26.2 58.0 26.0 55.1 18.3 41.9
SLD2L [46] 18.4 44.8 - - - - 20.3 44.0 20.3 34.8

SDF [47] 14.3 37.5 - - 22.2 48.0 9.3 38.1 13.3 26.7
SING [25] 33.5 72.7 74.4 87.8 67.7 90.7 33.5 57.0 50.7 75.4

CSR-GAN [26] 32.3 70.9 76.4 88.5 70.7 92.1 37.2 62.3 - -
CAD-Net [36] 42.8 76.2 83.7 92.7 82.1 97.4 43.1 68.2 - -
INTACT [37] 44.0 81.8 88.1 95.0 86.4 97.4 46.2 73.1 - -

PRI [35] 43.2 78.5 84.9 93.5 85.2 97.5 - - - -
PCB + PRI [35] 44.3 83.7 88.1 94.2 86.2 97.9 - - - -

APSR [48] 44.0 77.6 - - 84.1 97.5 48.8 73.2 63.7 83.5

Ours 62.4 81.2 89.6 95.6 92.4 96.2 60.3 85.7 75.4 88.1

4.4. Ablation Study

We conduct a series of experiments to evaluate the effectiveness of each component of
our proposed method, and the results are listed in Table 2. The baseline is similar to the
traditional cross-resolution re-ID method which reconstructs the LR images to HR images
for comparison. The CMSR2 module constructs each image to three resolution scales and
all reconstructed images go forward through the same re-ID network for feature extraction.
From Table 2, we can see that the CMSR2 module slightly improves the performance over
baseline in Rank-1 on all five datasets. However, the performance decreases in Rank-5 on
CAVIAR, MLR-VIPeR and MLR-SYSU. The main reason is that three IR networks aim to
reconstruct images of different resolution scales, so the images constructed by different IR
networks can be considered as different domains. The person re-ID network is disturbed
to learn discriminative information from learning to reduce the domain gap between
the reconstructed images. When combined with the MR2L module, the performance is
improved by a large margin in both Rank-1 and Rank-5 in all five datasets. By feeding the
images reconstructed by different IR networks to different person re-ID networks, each
network can focus on extracting feature representations of a specific resolution scale, so
the network will not be disturbed from trying to reduce the domain gap between different
variants of reconstructed images.

Table 2. Comparisons of different variants of the proposed method on CAVIAR, MLR-Market-1501,
MLR-CUHK03, MLR-VIPeR and MLR-SYSU. Rank-1 (%) and Rank-5 (%) are reported.

Methods CAVIAR MLR-Market-1501 MLR-CUHK03 MLR-VIPeR MLR-SYSU
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

Baseline 50.4 76.0 87.7 94.3 88.8 94.7 55.2 83.2 68.7 86.1
Baseline + CMSR2 51.6 71.2 88.0 94.9 90.5 94.8 55.9 81.3 70.0 85.3

Baseline + CMSR2 + MR2L 62.4 81.2 89.6 95.6 92.4 96.2 60.3 85.7 75.4 88.1

We also conduct experiments to evaluate the performance of utilizing recovered
images of different resolution scales, and the results are shown in Table 3. The notation IR1
denotes that all images are reconstructed to HR images for comparison which is similar to
traditional cross-resolution person re-ID methods. Specifically, we remove IR-Network-1/3,
IR-Network-1/2 from CMSR2 module and remove ReID-Network-1/3, ReID-Network-
1/2 from MR2L module. Similarly, the notation IR1 + IR 1

2 denote that each image is
reconstructed by IR-Network-1/2 and IR-Network-1. Then, the features extracted by
ReID-Network-1/2 and ReID-Network-1 are concatenated for comparison. The notation
IR1 + IR 1

2 + IR 1
3 denotes the full version of the proposed method. From Table 3, we can

see that the performance of IR1 + IR 1
2 improves over IR1 in Rank-1 because the images
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are aligned on two resolution scales instead of solely aligned on HR scale. We can also see
that IR1 + IR 1

2 + IR 1
3 further improves the performance and achieves the best results in

both Rank-1 and Rank-5 on all five datasets compared to IR1 and IR1 + IR 1
2 . The notation

IR1 + IR 1
2 + IR 1

3 + IR 1
4 denotes that all images are first reconstructed to the resolution

scale of IR 1
4 , then gradually recover to the scale of HR. Specifically, we add an additional

IR network named IR-Network-1/4 and a re-ID network named ReID-Network-1/4 to the
framework. We can see that the results are worse than IR1 + IR 1

2 + IR 1
3 on CAVIAR, MLR-

Market-1501, MLR-CUHK03 and MLR-SYSU, which cannot demonstrate the superiority
of IR1 + IR 1

2 + IR 1
3 + IR 1

4 . The main reason is that the images of IR 1
4 contain too little

discriminative information which is not enough for person matching. Aligning all images
to such a low-resolution scale causes the images with higher resolutions to lose too much
information, so adding IR 1

4 to the framework does not yield better re-ID performance.
Above all, we adopt IR1 + IR 1

2 + IR 1
3 as our final method from the perspective of both

performance and simplicity.

Table 3. Comparisons of using different configurations of resolution scales on CAVIAR, MLR-Market-
1501, MLR-CUHK03, MLR-VIPeR and MLR-SYSU. Rank-1 (%) and Rank-5 (%) are reported.

Methods CAVIAR MLR-Market-1501 MLR-CUHK03 MLR-VIPeR MLR-SYSU
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

IR1 50.4 76.0 87.7 94.3 88.8 94.7 55.2 83.2 68.7 86.1
IR1 + IR 1

2 52.0 74.4 88.9 95.4 89.0 94.4 57.5 84.0 72.0 86.3
IR1 + IR 1

2 + IR 1
3 62.4 81.2 89.6 95.6 92.4 96.2 60.3 85.7 75.4 88.1

IR1+ IR 1
2 + IR 1

3 + IR 1
4 61.6 77.6 89.1 95.5 90.5 95.2 61.3 88.0 74.2 87.1

As shown in Table 4, with only 14611 training samples, we achieve a rank-1 accuracy
of 65.7% and an mAP score of 75.7% on the MLR-VRU dataset. We achieve excellent
performance even with a small number of training samples, significant background noise,
complex visual variations, and a large number of similar vehicles. Under the same ex-
perimental settings, increasing the number of training samples significantly improves the
performance of cross-resolution retrieval. This indicates that increasing sample diversity
can promote the model to acquire more discriminative semantics but also lead to a notable
escalation in training time. As the number of training samples reaches a certain extent,
the performance presented in the same training epochs is lower than in the case of fewer
samples. This is partly because handling larger datasets requires more training epochs for
the model to converge. Additionally, IR is a lightweight image reconstruction network that
converges quickly and might not adapt well to significant variations in the dataset. For
easier deployment, cross-resolution matching models should excel with limited data and
remain relatively lightweight. Therefore, we chose to construct the training set with only
1415 IDs for reference in future work.

Table 4. The performance of the proposed method on the MLR-VRU dataset and the sensitivity to
variations in training data volume.

Identities/Images Rank-1 Rank-5 Rank-10 mAP

1415/14,611 65.7 88.4 92.9 75.7
2418/27,918 74.1 92.0 94.5 82.1
4413/52,172 79.6 97.7 99.5 87.4
7086/80,532 74.6 95.8 98.5 83.8

4.5. Visualization

We are the first to evaluate cross-resolution matching performance on the MLR-VRU
dataset. Additionally, since there is limited open-source code available for cross-resolution
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re-ID and the absence of fair comparative strategies, we validate the effectiveness of our
proposed method through visualization.

During the visualization experiments, we apply rotation and size scaling to the re-
trieval results to ensure easy comparison with the query image. Specifically, when the
aspect ratio is more than 1, the image is rotated 90 degrees clockwise; otherwise, it remains
unchanged. Then, we resize the image to 288 × 144 pixels.

Figure 6 presents some retrieval results, which can accurately match the correct sam-
ples in the gallery set even when the resolution of the query images is low. The first and
fourth rows show results that are highly similar in appearance to the query images. This
indicates that MSIFLA can extract the overall structure of vehicles and generate sufficiently
discriminative features, enabling accurate matching in categories with minor visual dispar-
ity. The second and third rows of query images are significantly degraded, lacking detailed
vehicle information, making it quite challenging for humans to accurately discern the
category to which these images belong. However, the proposed method can still accurately
match solely based on the overall vehicle contour.

Figure 6. Visualizations of partial retrieval results of the proposed method on the MLR-VRU dataset.
The first column shows low-resolution query images, while the following five columns display the
top five retrieval results from high-resolution gallery images. The bounding boxes are used to indicate
correct (green) or incorrect (red) retrieval results.
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5. Conclusions

In this paper, we have proposed the Multi-Scale Image- and Feature-Level Alignment
(MSIFLA) framework for cross-resolution person re-ID by learning feature representations
from reconstructed images with three resolution scales. Specifically, we first propose a
Cascaded Multi-Scale Resolution Reconstruction (CMSR2) module which consists of three
IR networks to reconstruct each image regardless of its resolution to three variants with
different resolution scales from low to high consecutively. Thereby, the distribution gap
between images with different resolutions is reduced and the images are aligned on three
resolution scales at the image level. We further propose a Multi-Resolution Representation
Learning (MR2L) module which consists of three-person re-ID networks to supervise the
training of IR networks and learn feature representations from the reconstructed images.
Each person re-ID network focuses on learning representations from images with a specific
resolution scale, avoiding the disturbance from resolution variation. By matching the
features on three resolution scales, the images with different resolutions are also aligned at
the feature level. Extensive experiments affirm the superiority of our proposed method. In
addition, performing multi-scale down-sampling on high-resolution images to simulate
various low-resolution images collected in real-world scenarios enhances the robustness of
the model to resolution changes, enabling it to generalize to other scenarios for improved
performance on tasks related to resolution variations.

This study has some limitations. The design of the image reconstruction network is
relatively simple, and it tends to converge prematurely when the dataset is large, which is
not conducive to improving the quality of reconstructed images. In future work, we will
refine the structure of the image reconstruction network.
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