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Abstract: Denoising serves as a critical preprocessing step for the subsequent analysis of the hyper-
spectral image (HSI). Due to their high computational efficiency, low-rank-based denoising methods
that project the noisy HSI into a low-dimensional subspace identified by certain criteria have gained
widespread use. However, methods employing second-order statistics as criteria often struggle to
retain the signal of the small targets in the denoising results. Other methods utilizing high-order
statistics encounter difficulties in effectively suppressing noise. To tackle these challenges, we delve
into a novel criterion to determine the projection subspace, and propose an innovative low-rank-based
method that successfully preserves the spectral characteristic of small targets while significantly reduc-
ing noise. The experimental results on the synthetic and real datasets demonstrate the effectiveness
of the proposed method, in terms of both small-target preservation and noise reduction.

Keywords: hyperspectral image; denoising; low-rank approximation

1. Introduction

A hyperspectral image (HSI) is composed of tens or hundreds of spectral reflectance
bands, providing abundant spectral information about the objects presenting in the image.
Thus, HSIs have been applied in various fields of remote sensing, such as classification [1–3]
and target detection [4–6]. In comparison to an RGB-remote-sensing image, an HSI exhibits
relatively lower spatial resolution, resulting in many interested man-made small-sized
targets in the scene being represented by only a few pixels. The detection of the targets
heavily relies on their distinctive spectral characteristic. However, HSIs are often corrupted
by noise during acquisition and transmission, which will drown out these spectral charac-
teristics and degrade the accuracy of target detection. Therefore, denoising plays a vital
role as a preprocessing step for HSI. The denoising problem is commonly addressed by
incorporating the prior knowledge [7] of the HSI signal. Existing denoising algorithms can
be broadly categorized into two groups, based on the prior knowledge they employ.

The methods in the first category [8–14] utilize the spatial-smoothness prior of the
HSI to build a restoration result. For instance, Zhao [12] proposed the spectral-recognition-
spatial-smooth-hyper-spectral filter (SRSSHF), which restores each pixel by taking a weighted
average of its neighboring pixels. The weights are determined by the correlation coeffi-
cients between the central pixel and its neighboring pixels. This method can effectively
preserve the edges in the restoration result. Considering a situation in which the noise
level varies with different bands, Yuan [10] proposed the spectral–spatial kernel (SSK),
which alleviates the influence of the bands with high noise levels on the calculation of the
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weights. Additionally, Buades [15] introduced ‘patch’, which consists of all the pixels in a
local region as the fundamental unit, and proposed the non-local-means-(NLM) method,
which determines the weights based on the distances between neighboring patches and the
central patch. Because the patch provides additional local spatial information, the NLM
method achieves improved denoising performance. Further, Maggioni [14] proposed the
block-matching-and-4D-filtering-(BM4D) method, which aggregates similar patches and
performs collaborative filtering in a transform domain. The above methods only utilize
local spatial information for denoising.

In addition, the spatial-smoothness prior also leads to many total-variation-(TV)-
regularization-based approaches [16–18] that exploit the smoothness assumption of the
entire HSI. Rudin [18] initially introduced the original TV-denoising method, with the aim
of finding a restoration image that approximated the noisy image while minimizing the
L1 norm of its spatial gradient. Aggarwal [16] observed that the spectral dimension also
adheres to the smoothness prior. He introduced gradient information along the spectral
direction, leading to the development of the spatio-spectral-total-variation-(SSTV) method.
Recently, Takemoto [17] proposed the graph-SSTV method, which can better preserve the
complex spatial structure in the restoration result. However, by this kind of method, the
signal of the small targets with only one or sub-pixel size in the image is often mistakenly
considered as noise and is removed in the restoration results.

The methods in the second category are based on the low-rank prior [19–28], and they
generally perform notable computational efficiency. Methods of this kind assume that an
HSI signal concentrates in a low-dimensional subspace, while the noise exists throughout
the space. Consequently, they generally perform denoising by projecting the noisy HSI into
the subspace identified by a certain criterion. Many of them employ the variance of the
projection components, to evaluate the signal energy present in the corresponding direction.
Based on the assumption that noise follows an independent-and-identically-distributed-
(i.i.d.) Gaussian distribution, Richards [29] used the first few principal components of the
noisy HSI matrix to construct the objective subspace. However, in real-world scenarios,
the noise in a natural HSI generally exhibits a complex distribution. Chen [30] observed
that the noise distributions of different bands have certain correlations and proposed a
non-i.i.d mixture of Gaussian-(NMoG)-noise model to fit the real noise. Xu [31] utilized the
bandwise-asymmetric-Laplacian-(BAL) distribution to model the real noise, introducing
the BAL-matrix-factorization-(BALMF) method. Additionally, Zhuang [32] and Fu [33]
assumed that real noise is a mixture of Gaussian noise and sparse noise and proposed the
FastHyMix and RoSEGS methods, respectively. In both methods, the sparse noise is first
located and masked, to avoid influencing the estimation of the signal subspace.

Moreover, researchers [26,34] have noticed that HSI signals also exhibit significant high-
order statistical features in the signal subspace. They have proposed methods that utilize
the high-order statistics of the projection components as criteria. For instance, Chiang [26]
extracted the subspace corresponding to the maximum skewness, and the projection
results achieved remarkable performance in the target-detection task. Geng [28] developed
the principal-skewness-analysis-(PSA) method, which can rapidly extract an arbitrary
number of the maximum skewness components. Wang [34] explored the application of the
independent-component-analysis-(ICA) method to HSI, utilizing a mixture of skewness
and kurtosis as the criterion.

It should be noted that existing low-rank-based denoising methods face a challenge
in simultaneously preserving the spectra of small targets and suppressing noise. As small
targets constitute only a minor portion of the overall HSI signal, they do not contribute to
significant second-order statistical characteristics. Therefore, methods relying on variance
as a criterion often struggle to identify the subspace corresponding to the small-target signal.
Consequently, the spectral characteristic of the small targets is generally eliminated in the
denoised results of the variance-based methods, severely affecting the detection of these
small targets. By contrast, high-order-statistic-based methods can effectively capture the
target signal, due to their sensitivity to minority components within the signal. However,
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the values of skewness and kurtosis are easily influenced by noise, causing these methods
to fail to accurately identify the signal subspace in noisy situations (which will be further
discussed in the subsequent section). As a result, evident residual noise generally persists
in the denoised results of high-order-statistic-based methods.

To overcome these limitations, this paper aims to investigate a new low-rank-based
denoising method that can preserve the small target signal while reducing noise. And the
pivotal factor hinges on finding a new criterion that is sensitive to the minor portion of the
signal and robust to the noise.

This paper is organized as follows. In Section 2, we briefly introduce the PSA algorithm.
In Section 3, we propose a novel denoising method. The experimental results are shown in
Section 4. Finally, we conclude this paper in Section 5.

2. Background

In this subsection, we provide a brief introduction to the principal-skewness-analysis-
(PSA) [28] algorithm that is designed to calculate the component with maximum skewness.
The commonly used symbols in this paper are summarized at the end of this paper.

Let X ∈ RN×L represent a noise-free HSI with N pixels and L bands. For simplicity, all
HSIs used in this paper have been normalized—that is:

1
N

N

∑
i=1

Xi,j = 0, ∀j = 1, 2, . . . , L. (1)

Here, Xi,j denotes the element located at the ith row and jth column of X. The PSA
algorithm initially whitens the data, using the following equation:

R = XF, (2)

where R is the whitened data; F = ED− 1
2 is the whitening operator. Here, E and D are,

respectively, the eigenvector matrix and the eigenvalue matrix of the covariance matrix of
X. Then, the PSA algorithm constructs the co-skewness tensor, calculated as

S =
1
L

L

∑
i=1

Ri ◦ Ri ◦ Ri. (3)

In this equation, Ri represents the ith column of R, ◦ represents the outer product and
S ∈ RL×L×L is the co-skewness tensor. Subsequently, the maximum skewness direction
can be determined by solving the following optimization model:

max
u

S ×1 u ×2 u ×3 u

s.t. uTu = 1,
(4)

where u ∈ RL×1 represents an arbitrary direction vector. It should be noted that the
solution of Equation (4) is the maximum skewness direction of R, and the maximum
skewness direction of X can be obtained by multiplying it by ED− 1

2 . And the PSA exhibits
effectiveness [28] on extracting the signal subspace of the noise-free HSI.

3. Method

In this section, we initially investigate the issues of the PSA algorithm in the presence
of noise. Subsequently, we exploit a new criterion that is robust to Gaussian noise, to
determine the projection subspace, and we develop a novel denoising method based on it.
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3.1. Maximum Third-Order Moment Criterion

First, we explore the impact of noise on the projection direction searched by the PSA.
Actually, the objective of the PSA algorithm is equivalent to finding a unit direction vector
u that maximizes the following function [28]:

skew(v) =
µ3(v)

(var(v))
3
2
=

1
N ∑N

i=1 v3
i

( 1
N ∑N

i=1 v2
i )

3
2

, (5)

where v = Xu represents the projection coefficients along direction u, and where vi is the
ith element of v. The third-order moment and the variance of v are, respectively, µ3(v)
and var(v). As X has been normalized, the mean of v is always zero and is eliminated in
Equation (5).

In a noise situation, the observed HSI is usually modeled as

Y = X + N, (6)

where Y represents the observed noisy HSI and where N is the zero-mean Gaussian noise
with covariance matrix C ∈ RL×L. We denote w = Yu and n = Nu as, respectively, the
projection coefficients of Y and N along direction u. And in the noisy situation, the PSA
algorithm aims to maximize the skewness of w:

skew(w) =
µ3(w)

(var(w))
3
2
=

1
N ∑N

i=1(vi + ni)
3

( 1
N ∑N

i=1(vi + ni)2)
3
2

=
1
N ∑N

i=1(v
3
i + 3v2

i ni + 3vin2
i + n3

i )

( 1
N ∑N

i=1(v
2
i + 2vini + n2

i ))
3
2

,

(7)

where ni is the ith element of n. As a linear combination of L Gaussian noise, ni is a random
sample from a Gaussian distribution with zero mean and variance σ2, where σ2 = uTCu.
According to the law of large numbers, as N increases, we have

lim
N→∞

1
N

N

∑
i

v2
i ni = 0 (8)

lim
N→∞

1
N

N

∑
i

vin2
i = 0 (9)

lim
N→∞

1
N

N

∑
i

vini = 0 (10)

lim
N→∞

1
N

N

∑
i

n3
i = 0 (11)

lim
N→∞

1
N

N

∑
i

n2
i = σ2. (12)

As a result, Equation (7) can be approximately simplified as

skew(w) =
1
N ∑N

i=1 v3
i

( 1
N ∑N

i=1 v2
i + σ2)

3
2

. (13)

Comparing Equation (13) to Equation (5), it is evident that the noise introduces an
additional term σ2 in the denominator, resulting in a reduction in skewness along direction
u. Additionally, the distribution of the HSI signal in different directions varies, leading
to changes in the values of ∑N

i=1 vi
3 and ∑N

i=1 vi
2, with respect to the projection direction.

Consequently, the extent of reduction caused by σ2 is direction-dependent, suggesting that
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the maximum skewness direction of the noisy HSI likely deviates from that of the noise-free
HSI. Therefore, the PSA algorithm is unable to accurately identify the signal subspace in
the presence of noise.

Fortunately, we find an important conclusion: that the numerator of Equation (13)—namely,
the third-order moment—is always equal to that of Equation (5):

µ3(w) = µ3(v). (14)

Equation (14) indicates that the maximum third-order-moment direction remains
unaffected by the Gaussian noise. Furthermore, it has been observed [35] that the third-
order-moment value is also sensitive to the minority components in the signal, which
implies that the third-order moment retains the property of preserving the small target.
Therefore, we consider utilizing the third-order moment as the criterion for determining
the projection subspace for denoising.

3.2. Principal Third-Order-Moment Analysis

In this subsection, we develop the principal-third-order-moment-analysis-(PTMA)
algorithm, to calculate the maximum third-order-moment directions and apply the PTMA
for denoising. The procedure of the PTMA is as follows:

Inspired by the PSA algorithm, we first construct the co-third-order-moment tensor
M as

M =
1
L

L

∑
i=1

Yi ◦ Yi ◦ Yi, (15)

where Yi is the ith column of Y. Then, the first third-order-moment direction can be
determined by solving the following optimization problem:

argmax
u

M×1 u ×2 u ×3 u

s.t. uTu = 1.
(16)

The Lagrangian function of Equation (16) is

L(u, λ) = M×1 u ×2 u ×3 u − λ(uTu − 1). (17)

Subsequently, u that maximizes Equation (16) satisfies the following equation:

M×1 u ×3 u = λu. (18)

We apply the fixed-point-iteration method [36] to solve Equation (18), and a specific
iteration step is {

u = M×1 u ×3 u
u = u/∥u∥2

. (19)

The convergence result (denoted as u1) is the first maximum-third-order-moment
direction. To obtain the second projection direction while ensuring it does not converge
to u1, we project Y into the orthogonal complement space of u1 and reconstruct the co-
third-order-moment tensor. These two operations are equivalent to directly multiplying
the projection matrix by M, as follows:

M = M× 1P⊥
u1

× 2P⊥
u1

×3 P⊥
u1

, (20)

where P⊥
u1

= I − u1uT
1 is the projection matrix onto the orthogonal complement subspace

of vector u1, and I is the L × L identity matrix. Then, the same iteration process, i.e.,
Equation (19), is applied to the updated M to calculate the second maximum-third-order-
moment direction u2, and the following process is conducted in the same manner.
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We assume r represents the estimation of the dimension of the signal subspace (many
algorithms [25,37,38] have been developed to estimate r). The restoration result is YUUT ,
where U = [u1, u2, . . . , ur]. The pseudocode of the PTMA is presented in Algorithm 1.
It should be noted that although the PTMA only takes a minor modification of the PSA
algorithm, it achieves a significant theoretical improvement in noise suppression.

Algorithm 1 PTMA algorithm
Require: Centralized Noisy HSI data Y ∈ N × L, the estimation of the dimension of the
objective subspace r
Ensure: Denoising result X̂

1: Calculate the co-skewness tensor M according to Equation (15)
2: Randomly initialize the transformation matrix U ∈ RL×r

3: for i = 1 : r do
4: Initialize ui with random unit vector
5: while stop conditions are not met do
6: ui = M×1 ui ×3 ui
7: ui = ui/∥ui∥2
8: end while
9: P⊥

ui
= I − uiuT

i
10: M = M× 1P⊥

ui
× 2P⊥

ui
×3 P⊥

ui
11: U[:, i] = ui
12: end for
13: Calculate the denoising result by X̂ = YUUT

4. Experiments

For this section, we utilized simulated and real noisy hyperspectral images (HSIs) to
assess the denoising and target-preservation capabilities of the PTMA. For comparison,
seven advanced denoising methods were used as competitors: the non-local-means-3-D
filter (NLM3D) [13], the block-matching-and-4D filter (BM4D) [14], the low-rank matrix
recovery (LRMR) [21], global local factorization (GLF) [39], the spectral–spatial kernel
(SSK) [10], the spectral-recognition-spatial-smooth-hyper-spectral filter (SRSSHF) [12] and
the PSA.

4.1. Synthetic Experiment

For this subsection, synthetic noisy datasets were generated, based on two public HSI
datasets: namely, the subregions of the Washington-DC-Mall data and the University-of-
Pavia data. The Washington data were acquired by the airborne-visible/infrared-imaging-
spectrometer-(AVIRIS) sensor, with a spectral range of 0.4 to 2.4 µm. And the Pavia data
were acquired by the reflective-optics-system-imaging-spectrometer-(ROSIS) sensor, with a
spatial resolution of 1.3 m.

To obtain relatively clean images, we first removed the bands severely corrupted by
water vapor in the atmosphere. Then, the spectral vectors of each image were projected
onto a subspace spanned by the first few principal eigenvectors of each image. And the
projection result was considered as the reference noise-free HSI. The processed Washington
dataset consisted of 200 × 200 pixels and 191 bands, whose false-color image composed
by bands 60, 27, 14 is shown in Figure 1a. The processed Pavia dataset consisted of
200 × 200 pixels and 87 bands, whose false-color image composed by bands 60, 40, 20 is
shown in Figure 1b.



Remote Sens. 2024, 16, 276 7 of 18

(a) (b)
Figure 1. (a) The false-color image composed by bands 60, 27, 14 of the Washington dataset. (b) The
false-color image composed by bands 60, 40, 20 of the Pavia dataset.

To generate noisy HSIs, four kinds of noise were added into both clean datasets (both
datasets had been normalized). And for each noise type we generated noise at two distinct
intensity levels. Specifically, the noise types were as follows.

Case 1 (i.i.d. Gaussian noise): The noise conformed to Gaussian distribution with zero
mean. And the standard deviation of the low-intensity situation and the high-intensity
situation were set as 0.03 and 0.05, respectively.

Case2 (Non-i.i.d. Gaussian noise): The noise conformed to Gaussian distribution with
zero mean and band-varying standard deviation. The standard deviation of the low-
intensity situation and the high-intensity situation were sampled from uniform distribution
U(0.01, 0.05) and U(0.01, 0.1), respectively.

Case3 (Non-i.i.d. Gaussian noise + Poisson noise): The standard deviation of Gaussian
noise in the low- and high-intensity situations were sampled from uniform distribution
U(0.01, 0.02) and U(0.01, 0.07), respectively. The Poisson noise was pixel-value correlated,
i.e., the output pixel value with Poisson noise was sampled from a Poisson distribution
with mean equal to the pixel value. We used a scale factor β to control the intensity of the
Poisson noise. For example, if an input pixel value was a, then the corresponding output
pixel would be generated from a Poisson distribution with mean of a × β and then divided
by β. The scale factor β was set as 7 × 1011 and 5 × 1012, respectively, for the low-intensity
situation and the high-intensity situation.

Case4 (Non-i.i.d. Gaussian noise + Poisson noise + Strip noise): The standard deviations
of Gaussian noise in the low- and high-intensity situations were sampled from uniform
distribution U(0.01, 0.02) and U(0.01, 0.03), respectively. β was set as 3 × 1011 and 1012.
And the number of strips in each band was set as 10 and 30, respectively.

Then, the competitors and our method were employed for denoising. The parameters
of the competitors were set as follows. For the synthetic noise, the standard deviation of
the noise, which was required as a parameter for BM4D, GLF, the SSK and the SRSSHF,
was known. For NLM3D, the search-area size, the small-similar-patch size and the big-
similar-patch size were set as 7 × 7, 3 × 3 and 5 × 5, respectively. For the LRMR, the patch
size and the upper bound of the cardinality were set to their default values, 20 × 20 and
4000, respectively, as recommended in the literature. In addition, GLF and the LRMR,
respectively, also required the rank of the signal subspace, which was estimated for each
noisy HSI according to the Akaike information criterion.

To quantitatively evaluate the denoising performance of these methods, four metrics
were counted, including the mean of the peak signal-to-noise ratio of each band (MPSNR),
the mean of the structural similarity index of each band (MSSIM), the mean of the spectral
angle mapping (MSAM) and the Erreur Relative Globale Adimensionnelle de Synthèse
(ERGAS) [40]. Higher MPSNR, MSSIM values and lower MSAM, ERGAS values generally
implied better restoration results.
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The MPSNR was calculated as follows:

MPSNR =
1
L

L

∑
b=1

PSNRb, (21)

PSNRb = 10 · log10(
MAX2

MSE2
b
) = 10 · log10(

MAX2

1
N ∥X̂:,b − X:,b∥2

2
), (22)

where PSNRb denoted the PSNR value of the bth band. MAX was the maximum-possible
pixel value of the HSI, which was set as 1 because the HSI has been normalized. X̂:,b and X:,b
represented the bth band of the denoised HSI and the reference noise-free HSI, respectively.

The MSSIM was calculated as follows:

MSSIM =
1
L

L

∑
b=1

SSIMb, (23)

SSIMb =

(
2µ(X̂:,b)µ(X:,b) + c1

)(
2σ(X̂:,b, X:,b) + c2

)(
µ(X̂:,b)2 + µ(X:,b)2 + c1

)(
σ(X̂:,b)2 + σ(X:,b)2 + c2

)
,

(24)

where SSIMb was the SSIM value of the bth band, µ(X̂:,b), µ(Xb) represented the mean of
X̂:,b and X:,b, respectively, σ(X̂:,b), σ(Xb) were the variance of X̂:,b and X:,b, respectively,
σ(X̂:,b, X:,b) represented their covariance and c1 and c2 were constants.

The calculation procedure for the MSAM was

SAM =
1
N

N

∑
i=1

arccos

(
Xi · X̂T

i

∥Xi∥2 · ∥X̂i∥2

)
, (25)

where Xi and X̂i were the ith row of X and X̂, respectively.
The calculation procedure for the ERGAS was

ERGAS = 100

√√√√ 1
L

L

∑
b=1

∥X:,b − X̂:,b∥2

µ(X:,b)
. (26)

The metrics of the Washington and Pavia datasets are shown in Tables 1 and 2, respec-
tively. It can be seen that the PTMA achieved the highest MPSNR and MSSIM for most
noise types, which indicates that the PTMA is not only applicable to Gaussian noise, but
also robust against complex mixed noise. However, considering the ERGAS metric, BM4D
obtained the best performance in most situations. It is worth noting that the value of the
ERGAS was proportional to the mean of the MSE for each band divided by the average
signal value within the respective band and that the PSNR was the inverse of the MSE of
the entire HSI. Therefore, the reason that the PTMA achieved higher PSNR and ERGAS
values compared to BM4D lay in the fact that for spectral bands with higher signal intensity
there was more residual noise in the PTMA than in BM4D, whereas for bands with lower
signal intensity, the PTMA demonstrated less residual noise.

We counted the average computation time of the PTMA and the competitors for all the
noise cases (Tables 1 and 2). It can be seen that the PTMA was the most computationally
efficient algorithm, with a computation time less than 10% of BM4D. In addition, it is
worth noting that the PTMA determined the projection direction based on M ∈ RL×L×L,
which meant that the computation complexity of the PTMA was almost uncorrelated to the
image size.
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Table 1. Performance of the proposed and competitors on Washington data.

Indexes Noisy NLM3D BM4D LRMR GLF SSK SRSSHF PSA PTMA

Case 1
Low noise level

MPSNR 30.46 42.88 46.37 44.10 37.24 37.04 41.70 45.33 48.45
MSSIM 0.65 0.97 0.99 0.98 0.93 0.92 0.93 0.94 0.99
MSAM 10.36 2.39 1.78 2.11 4.14 3.68 3.26 3.58 1.67
ERGAS 24.68 4.99 3.78 7.49 24.68 7.27 6.33 18.55 4.52

Case 1
High noise level

MPSNR 26.02 39.74 43.62 40.68 33.88 32.93 40.69 40.95 44.80
MSSIM 0.48 0.95 0.98 0.97 0.87 0.85 0.92 0.92 0.97
MSAM 16.86 3.28 2.51 3.12 6.24 6.12 3.35 4.75 2.28
ERGAS 41.31 7.10 4.90 9.17 41.31 14.28 10.72 21.11 8.26

Case 2
Low noise level

MPSNR 34.26 43.47 46.67 44.59 38.68 38.85 42.27 36.64 48.11
MSSIM 0.73 0.97 0.99 0.98 0.94 0.93 0.92 0.86 0.99
MSAM 10.23 2.42 1.88 2.33 4.10 3.67 3.53 13.96 1.67
ERGAS 24.58 4.94 3.85 7.53 24.58 7.03 9.61 55.10 7.36

Case 2
High noise level

MPSNR 32.38 39.23 40.70 43.96 37.65 37.36 42.03 32.92 46.57
MSSIM 0.82 0.94 0.94 0.98 0.94 0.95 0.94 0.74 0.99
MSAM 9.13 5.56 5.72 2.63 4.84 4.61 3.78 15.29 2.24
ERGAS 17.26 6.90 6.76 7.65 17.26 8.19 8.71 57.59 7.60

Case 3
Low noise level

MPSNR 42.80 49.02 51.98 50.21 43.75 44.23 44.03 35.87 52.15
MSSIM 0.92 0.99 1.00 0.99 0.97 0.98 0.95 0.82 1.00
MSAM 3.96 1.37 0.91 1.29 2.17 1.73 2.67 14.29 1.27
ERGAS 9.46 2.75 1.75 5.28 9.46 3.75 8.76 58.55 5.40

Case 3
High noise level

MPSNR 26.67 33.66 35.73 33.08 31.03 31.33 36.59 32.82 36.80
MSSIM 0.55 0.84 0.84 0.86 0.81 0.82 0.83 0.79 0.87
MSAM 21.24 11.63 11.41 12.09 13.11 12.57 11.63 16.65 11.34
ERGAS 35.81 13.00 12.50 14.23 35.81 17.23 12.84 29.83 11.75

Case 4
Low noise level

MPSNR 36.94 43.20 44.24 48.25 41.08 41.47 45.39 33.13 48.95
MSSIM 0.92 0.97 0.98 0.99 0.96 0.97 0.97 0.75 0.99
MSAM 5.45 3.18 3.07 1.57 3.15 2.71 2.26 15.34 1.77
ERGAS 10.49 4.36 3.24 6.48 10.49 4.92 5.09 58.55 7.12

Case 4
High noise level

MPSNR 32.63 39.22 40.47 45.05 37.86 37.69 43.09 32.94 45.24
MSSIM 0.85 0.94 0.95 0.99 0.94 0.95 0.95 0.77 0.99
MSAM 8.99 5.59 5.66 2.39 4.78 4.45 3.63 15.37 2.28
ERGAS 20.08 12.01 11.92 7.55 20.08 8.85 9.09 58.26 7.98

Average computation time (s) 0 155.9 392.6 40.7 23.7 53.6 19.8 29.9 17.1

The bold items correspond to the best denoising performance.

Furthermore, to intuitively evaluate the denoising performance, we illustrate the
restoration images of the Washington dataset with Case 1 noise type and high noise level
and the Pavia dataset with Case 4 noise type and high noise level in Figures 2 and 3,
respectively. For the Washington data, two enlarged local regions are shown on the left of
each image, to display the details clearly. The lower region contains abundant edges. In the
upper region there is a small ‘white’ vehicle with a single pixel size, labeled by the green
circle. It serves as an indicator to observe whether the signal of the small target could be
maintained after denoising.
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Table 2. Performance of the proposed and competitors on Pavia data.

Indexes Noisy NLM3D BM4D LRMR GLF SSK SRSSHF PSA PTMA

Case 1
Low noise level

MPSNR 30.46 39.52 42.63 39.83 35.59 33.00 33.45 25.14 43.04
MSSIM 0.78 0.97 0.99 0.98 0.94 0.89 0.91 0.77 0.98
MSAM 15.25 4.21 3.37 4.65 6.70 10.84 5.23 7.72 3.07
ERGAS 58.66 17.91 12.98 13.33 58.66 41.41 54.24 177.50 16.53

Case 1
High noise level

MPSNR 26.02 36.10 39.49 36.22 32.93 28.66 31.80 26.10 39.75
MSSIM 0.62 0.94 0.97 0.95 0.90 0.76 0.87 0.71 0.98
MSAM 23.11 5.66 4.50 6.82 9.64 16.74 5.76 7.89 5.68
ERGAS 98.33 25.16 18.80 21.19 98.33 77.83 74.74 162.03 23.32

Case 2
Low noise level

MPSNR 33.38 40.24 42.59 40.08 35.84 35.14 31.67 24.48 43.65
MSSIM 0.82 0.97 0.99 0.97 0.94 0.89 0.86 0.70 0.99
MSAM 15.23 4.26 3.41 5.20 6.70 11.05 5.70 11.14 3.29
ERGAS 59.97 16.96 12.73 19.42 59.97 49.24 50.08 180.30 17.38

Case 2
High noise level

MPSNR 30.97 36.90 39.03 35.08 33.41 31.75 30.57 24.15 39.98
MSSIM 0.69 0.94 0.97 0.93 0.91 0.78 0.84 0.66 0.97
MSAM 24.45 6.10 4.49 9.29 10.20 18.52 6.74 12.01 6.35
ERGAS 108.00 26.08 19.79 38.07 108.00 94.00 59.38 184.07 25.27

Case 3
Low noise level

MPSNR 43.47 45.46 47.32 45.76 39.23 42.68 34.50 24.28 49.15
MSSIM 0.96 0.99 0.99 0.99 0.97 0.98 0.93 0.66 1.00
MSAM 6.27 3.00 2.14 2.35 3.81 4.64 4.55 10.98 1.73
ERGAS 23.51 7.75 7.36 7.60 23.51 18.20 38.78 202.85 8.56

Case 3
High noise level

MPSNR 25.80 28.41 28.74 28.46 27.85 27.06 27.14 26.95 28.83
MSSIM 0.66 0.85 0.87 0.87 0.83 0.77 0.78 0.82 0.88
MSAM 21.60 6.80 5.12 8.97 9.56 15.35 6.94 8.23 4.94
ERGAS 84.83 22.53 16.44 37.58 84.83 59.47 49.93 26.03 20.50

Case 4
Low noise level

MPSNR 36.52 41.49 41.37 44.11 37.42 37.97 36.68 22.96 44.87
MSSIM 0.95 0.98 0.99 0.99 0.97 0.97 0.95 0.59 0.99
MSAM 7.99 3.55 3.29 2.68 4.73 6.09 5.00 13.93 3.09
ERGAS 25.14 8.81 7.68 8.16 25.14 21.29 30.24 213.85 11.37

Case 4
High noise level

MPSNR 32.69 37.41 37.54 39.95 35.38 34.33 34.60 23.15 43.14
MSSIM 0.90 0.96 0.97 0.98 0.96 0.94 0.93 0.65 0.99
MSAM 11.49 5.39 4.90 4.36 6.24 8.72 5.48 13.74 3.37
ERGAS 35.21 12.86 10.79 12.49 35.21 29.80 45.86 211.69 13.09

Average computation time (s) 0 53.4 169.2 17.6 12.1 40.9 13.5 3.73 2.75

The bold items correspond to the best denoising performance.

From Figure 2, it is evident that the NLM3D, GLF and the SSK caused severe blurring
of edges. And the restoration result of the LRMR showed a noticeable bias. Except for the
LRMR, the PSA and the PTMA, the small target in the HSIs restored by other methods was
not identifiable. In Figure 3, the Pavia data were contaminated by severe strip noise. And
in all the results, except for the LRMR and the PTMA, there were still noticeable residual
strips, which implies that these methods were not applicable in removing the strip noise.
The image information in the PSA result was barely perceptible, which meant that the
strip noise severely affected the signal subspace identified by the PSA. By contrast, the
PTMA achieved the best performance in removing the strip noise and preserving the image
information by applying the third-order moment as the criterion.
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Clean Image Noisy Image NLM3D BM4D LRMR

GLF SSK SRSSHF PSA PTMA

Figure 2. Restoration results of Washington data with Case 1 noise type and high noise level.

Clean Image Noisy Image NLM3D BM4D LRMR

GLF SSK SRSSHF PSA PTMA

Figure 3. The restoration results of Pavia dataset with Case 4 noise type and high noise level.

Moreover, the comparisons of the denoised spectra to the noise-free spectrum are
shown in Figures 4 and 5. For the Washington data, we display the spectra of the small
target labeled in Figure 2, to illustrate the ability of these methods to preserve the spectral
characteristic of small targets. It can be seen that the spectral shape of the NLM3D, BM4D,
GLF and the SSK significantly deviated from the original spectral shape. The LRMR, the
PSA and the PTMA could preserve the spectral characteristic of the small target well. But
the LRMR and the PSA contained more residual noise than the PTMA. In addition, Figure 5
shows the spectra of the pixel locating at (50, 50) in the Pavia data. The selected pixel
corresponded to bare soil, serving as an indicator of whether the spectral characteristics of
the background could be maintained by these methods. It can be seen that the denoised
spectrum in the PTMA was the closest to the original spectrum. But the spectrum of
the PTMA significantly differed from the clean spectrum. Therefore, by replacing the
criterion from the skewness to the third-order moment, the PTMA retained the capability
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of preserving small targets, while concurrently achieving a significant enhancement in
denoising efficacy.
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Figure 4. Comparison of the spectra of the small target in the HSIs shown in Figure 2 to the
clean spectrum.
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Figure 5. Comparison of the spectra of the small target in the HSIs shown in Figure 3 to the
clean spectrum.

4.2. Real Experiment

For this subsection, we utilized two HSIs containing real complex noise as the experi-
ment datasets to evaluate the denoising and target-preservation ability of the PTMA under
real-noise conditions. The first noisy HSI was acquired by the airborne-visible/infrared-
imaging spectrometer (AVIRIS) over the Indian Pines test site located in northwestern
Indiana. It comprised 145 × 145 pixels and 224 spectral reflectance bands within the wave-
length range of 0.4–2.5 µm. Its false-color image, composed of bands 40, 27, 14, is shown in
Figure 6a. It can be seen that there was no apparent noise in these three bands. However,
the noise level of the Indian Pines dataset varied in different bands. For instance, the image
of the second band was affected by intense noise, which is shown in Figure 6b.

The other noisy HSI was acquired by the advanced hyperspectral imager (AHSI)
aboard the GaoFen-5 (GF-5) satellite, which is the fifth satellite of a series of the China High-
Resolution Earth Observation System. The AHSI is a 330-channel imaging spectrometer
with a 30 m spatial resolution covering the 0.4–2.5 µm spectral range. The visible and near-
infrared range consists of 150 bands with a spectral resolution of 5 nm, while the shortwave
infrared range consists of 180 bands with a spectral resolution of 10 nm. However, due to
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the detector’s low responsivity, 25 bands (bands number 193–200 and 246–262) had zero
signal intensity and, thus, were removed. After preprocessing, the selected HSI consisted
of 305 bands and 256 × 256 pixels, which were acquired over the southwest region of
Beijing, China. The false-color image, composed by bands 67, 37, 20, as shown in Figure 6d,
exhibited high image quality. However, several bands contained noticeable strip noise,
such as band 305, shown in Figure 6e.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a) The false-color image of the Indian Pines dataset composed by bands 40, 27, 14. (b) The
second band of the Indian Pines dataset. (c) The mask of the target in the Indian Pines dataset. (d) The
selected GF-5 data composed by bands 67, 37, 20. (e) The image of the 305th band of the GF-5 data.
(f) The mask of the target in the GF-5 dataset.

The PTMA and all the competitors were employed to restore both of these datasets.
Through testing, it was determined that the optimal standard deviations for the noise in
these two datasets, which were required by certain competitors, should be set to 0.03 and
0.012, respectively. These values were found to yield the best denoising performance. And
the remaining parameters remained consistent with those used in the previous subsection.

To intuitively evaluate the denoising performance, the images of the restoration results
of the Indian Pines data and the GF-5 data are displayed in Figures 7 and 8. From Figure 7,
it is obvious that there was visibly residual noise in the results of NLM3D, BM4D and
the SSK. This suggests that NLM3D and BM4D, which achieved good denoising results
under the synthetic Gaussian noise, are suitable for a situation where the noise level varies
across different bands. The LRMR, GLF and the PTMA all reduced the noise well, while
preserving the edges. Comparing the results of the PSA and the PTMA, it is evident that
the PTMA achieved much better denoising performance than the PSA, which demonstrates
that the third-order moment is also robust to noise with varying variance.

According to Figure 8, it can be observed that the restoration results of NLM3D, the SSK
and the SRSSHF were still contaminated by severe stripes, which means that they were not
applicable to the strip noise. The result of BM4D was severely blurred. The PSA exhibited
some efficacy in suppressing the striping noise, but fell short of complete elimination. The
LRMR, GLF and the PTMA achieved relatively good denoising performance. It is worth
noting that the number of the residual strips in the HSI denoised by the PTMA was less
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than that in the LRMR and GLF results. Consequently, the PTMA demonstrated its ability
to accurately identify the signal subspace, even in the presence of stripe noise.

NLM3D BM4D LRMR

GLF SSK SRSSHF

PSA PTMA
Figure 7. The second band of the restoration results of the Indian Pines data.

To evaluate the target-preservation capabilities of these methods in real noisy con-
ditions, we selected two materials that were present in the datasets and that constituted
only a small fraction of the entire image signal, as the small targets to be detected. For the
Indian Pines dataset, we selected oats, which consisted of 20 pixels, as the small target. The
location of the target is shown in Figure 6c. For the GF-5 dataset, we selected a mine, which
consisted of 15 pixels, as the small target. The location of the target is shown in Figure 6f.

Considering whether the spectral characteristic of the small target maintained in the
restored HSIs directly affected the target detection accuracy, we used the target detection
accuracy to evaluate the target-preservation ability of these methods. The spectral angle
mapper (SAM) [41] was employed as the target-detection algorithm. The SAM algorithm
required the reference of the target spectrum as the input, so we used the average spectrum
of the spectra of all the small-target pixels in the noisy HSI as the reference spectrum, to



Remote Sens. 2024, 16, 276 15 of 18

minimize the noise in the reference spectrum as much as possible. The output value of the
SAM at position i was calculated as

SAM(i) = arccos

(
rT

t X̂i

∥rt∥2∥X̂i∥2

)
, (27)

in which rt and X̂i represented the reference spectrum of the target and the ith spectrum in
the denoised HSI, respectively. The output range of the SAM was [0, π/2], and it was then
normalized into [0, 1] to create the target-detection score map.

NLM3D BM4D LRMR

GLF SSK SRSSHF

PSA PTMA
Figure 8. The 305th band in the restoration results of the GF-5 data.

In assessing the target-detection accuracy, we employed the receiver-operating-
characteristic-(ROC) curve [42] and the corresponding area under the curve (AUC) as
the metric. The ROC curve was the plot of the true positive rate (TPR) against the false
positive rate (FPR) at each threshold setting. The TPR and FPR were calculated as

TPR =
TP

TP + FN,
(28)

FPR =
FP

FP + TN,
(29)
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where TP meant the true positive rate, FN was the false negative rate, FP was the false
positive rate and TN was the true negative rate. An ROC curve that lies closer to the top-left
corner indicates better target detection performance, as it maintained a high true positive
rate while keeping the false positive rate low. In addition, we calculated the area under the
curve (AUC). A higher AUC value indicates better target detection performance.

The ROC and AUC of the detection score map are presented in Figure 9 and Table 3,
respectively. It can be seen that the PTMA achieved the highest TPR values at most FPR. In
addition, the PTMA obtained the highest AUC value for both datasets. The experiment
results affirm that the PTMA is still effective under non-Gaussian noise conditions, in terms
of both noise reduction and target preservation.

(a) (b)
Figure 9. The ROC curves of the restoration results. (a) The Indian Pines dataset. (b) The GF-5 dataset.

Table 3. The AUC of the restoration results of the Indian Pines and GF-5 data.

AUC NLM3D BM4D LRMR GLF SSK SRSSHF PSA PTMA

Indian Pines 0.940 0.956 0.939 0.823 0.915 0.763 0.936 0.968
GF-5 0.963 0.949 0.958 0.962 0.968 0.959 0.973 0.979

The bold items correspond to the highest target detection accuracy.

5. Conclusions

Existing low-rank-based denoising methods often encounter challenges in simultane-
ously preserving the signal of small targets and effectively reducing noise. In this paper,
we demonstrated that the third-order-moment value remains unaffected by noise and
that it exhibits sensitivity to minor components in the signal. Consequently, we adopted
the maximum third-order moment as the criterion for identifying the signal subspace.
We introduced the principal-third-order-moment-analysis algorithm, capable of rapidly
calculating the first few maximum third-order-moment directions. Two simulated and
two real HSIs were employed to assess the effectiveness of the proposed method. We
compared the proposed denoising method to seven State-of-the-Art competitors. Our
extensive experimental results demonstrated the superiority of the proposed method, in
terms of noise removal and small-target preservation when compared to the competitors.
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Nomenclature

Notation Description
X ∈ RN×L Noise-free HSI with N pixels and L bands
Xi ∈ RN×1 ith column of X, the image vector of the ith band
Xb,: ∈ R1×L bth row of X, the spectrum vector at position b
Xi,j Scalar element located at the ith row and jth column of X
N Additive-noise matrix
Y Observed noisy HSI
X̂ Estimated noise-free HSI
u ∈ RL×1 Unit-projection direction vector
v, w, n ∈ RN×1 Projection coefficients of X, Y and N along direction u
vi, wi, ni ith element of v, w and n
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