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Abstract: Weather radar is a useful tool for monitoring and forecasting severe weather but has limited
coverage due to beam blockage from mountainous terrain or other factors. To overcome this issue, an
intelligent technology called “Echo Reconstruction UNet (ER-UNet)” is proposed in this study. It
reconstructs radar composite reflectivity (CREF) using observations from Fengyun-4A geostationary
satellites with broad coverage. In general, ER-UNet outperforms UNet in terms of root mean square
error (RMSE), mean absolute error (MAE), structural similarity index (SSIM), probability of detection
(POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill score (HSS). Additionally,
ER-UNet provides the better reconstruction of CREF compared to the UNet model in terms of the
intensity, location, and details of radar echoes (particularly, strong echoes). ER-UNet can effectively
reconstruct strong echoes and provide crucial decision-making information for early warning of
severe weather.

Keywords: severe weather; deep learning; composite reflectivity; geostationary satellites

1. Introduction

Severe weather can lead directly to dangerous weather phenomena that manifest in
strong convection, rainstorms, typhoons, and so on, causing significant economic losses
and endangering human lives [1,2]. With the intensification of climate change, severe
weather events have become more frequent, causing serious impacts worldwide [3]. There-
fore, the accurate monitoring of severe weather is very important for disaster prevention
and mitigation.

Currently, weather radar with a high spatiotemporal resolution is one of the main
tools for monitoring severe weather [4]. Reflectivity factors of weather radars can indicate
the intensity of meteorological targets and, therefore, are widely used in the meteorological
field. For example, when the reflectivity is greater than 35 dBZ, it usually signals the
occurrence of strong convection [5]. The reflectivity can be converted into rainfall through
the Z–R relationship for monitoring rainfall intensity [6]. The reflectivity maps (also known
as radar echo maps) play an important role in in identifying different weather conditions.
Furthermore, the radar reflectivity factor has also been applied to data assimilation, short-
term and impending weather forecasts, and other fields [7,8]. However, deploying and
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operating weather radars in complex terrains, such as mountainous areas, is extremely
challenging [9]. This makes it extremely hard to accurately monitor severe weather over
large regions like the entirety of Asia using weather radars.

In comparison, the Earth observation technique can access global information for
monitoring and collecting data on weather, hydrology, vegetation growth, and human ac-
tivities. Remote sensing satellites play a crucial role in earth observation, and these satellites
provide globally comprehensive data, capturing information in various spatial, spectral,
and temporal resolutions [10,11]. In terms of the scope of observation, the geostationary
(GEO) satellite has been deployed in terrestrial equatorial orbits and is not affected by
topography, thus providing meteorological information on a global scale, which is advanta-
geous. The convective system can be tracked by utilizing the visible light, infrared channel,
and brightness temperature difference of the GEO satellite [12–15]. With the advancement
of remote sensing technology, the new generation of GEO meteorological satellites, such
as Fengyun-4A (FY-4A) from China and Himawari-8 from Japan, have improved their
spatial and temporal resolutions and radiometric accuracy [16,17]. GEO satellites can
improve severe weather monitoring, compensating for radar deficiencies during convective
systems over remote and mountainous regions and oceanic areas. Due to limitations in
the wavelength, GEO satellites can only provide information about cloud tops and not the
three-dimensional structure of convective scales [18]. Consequently, expanding the use of
GEO satellites for disaster monitoring can be achieved by converting GEO satellite data
into radar reflectivity. This will provide a wider range of radar observations. However,
the traditional physical retrieval algorithm has limitations in satellite data and can only
provide a maximum optical thickness roughly equivalent to a radar reflectivity factor of
20–25 dBZ [19].

In recent years, deep learning (DL) has achieved better results than traditional methods
in many fields [19–21]. Due to its data-driven nature, deep learning can efficiently handle
large and complex datasets, and it has become a crucial tool in remote sensing [22]. For
instance, many researchers utilize DL techniques to effectively incorporate spatiotemporal
information in short-term forecasting. Constructing forecasting models can yield superior
forecasting results compared to the optical flow method in terms of accuracy and time
efficiency [23–26]. Studies have shown that DL methods can efficiently establish the
complex nonlinear relationship between meteorological observations and precipitation
for quantitative precipitation estimation (QPE). As a result, a more precise QPE product
can be obtained [27–29]. Additionally, DL can also be utilized for disaster monitoring, e.g.,
landslide extraction [30].

In the above studies, a CNN-based model called UNet was widely employed. UNet
has a fully convolutional architecture with an encoder–decoder structure, initially designed
for semantic segmentation tasks [31]. Since the model has achieved remarkable results in
the field of semantic segmentation, it has also been gradually used to solve the problem
of image-to-image in other fields. This study aims to develop a reconstruction model that
takes satellite data as input and produces the radar echo map as output. As a solution
for reconstructing the radar reflectivity factor, UNet is being utilized. For instance, Duan
employed the UNet model to reconstruct radar CREF from Himawari-8 satellite data,
resulting in better reconstruction when inputting multi-band satellite observations as
opposed to single-channel satellite observations [32]. By using UNet, Hilburn conducted
the reconstruction of radar CREF with GOES-R satellite observations [19], while Sun et al.
used the FY-4A satellite observations to reconstruct radar CREF [33]. Yu et al. focused on the
reconstruction of radar CREF in an ocean area based on Himawari-8 satellite observations
and UNet [34]. While GEO satellite observations can be used for CREF reconstruction
through UNet, accuracy and overall underestimation issues remain, particularly for strong
echoes. In addition to the differences in detection principle between the two types of
observation data, the issue is also caused by the limitation of UNet’s structure. Specifically,
the fixed receptive field of UNet poses a challenge in effectively perceiving objects at
various scales and gathering enough feature information. As a result, UNet has limited
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representation capabilities [35,36]. Moreover, continuous downsampling leads to the loss
of spatial information [37–39].

To address these issues, this research proposes an intelligent technology that uses
the UNet backbone network to reconstruct radar CREF. The technology extracts different
features on different scales using hybrid convolutional (conv) modules with various sizes of
receptive fields. Then, it utilizes the properties of a discrete wavelet transform to construct
an enhanced pooling module that compensates for the lost spatial information in the
downsampling process. To address data imbalance, data augmentation and weighted
loss functions are employed. Compared to UNet, this model achieves the reconstruction
of reflectivity with smaller errors and can accurately capture stronger echoes (35 dBZ).
Additionally, the model can use GEO satellite observations to provide radar CREF in areas
where radar coverage is limited, thus enhancing the monitoring capabilities for severe
weather conditions in those regions.

The rest of this study is as follows: Section 2 introduces the data source and the data
processing. Section 3 presents the overall structure of the model and the information of
the designed modules. The statistical results and case analysis are described in Section 4.
The discussion of the result is presented in Section 5. Section 6 draws the summary of this
experiment and future prospects.

2. Data and Data Processing
2.1. Satellite Observations

The FY-4A GEO satellite observations used in this study were downloaded from
Fengyun Satellite Remote Sensing Center (http://satellite.nsmc.org.cn/PortalSite/Data
(accessed on 10 March 2023)). The FY-4A GEO satellite was launched on 11 December
2016, positioned at 104.7◦E in May of the following year, and entered operational service in
September. As a comprehensive atmospheric observation satellite, the FY-4A GEO satellite
is equipped with the Lightning Mapping Imager (LMI), the Advanced Geosynchronous
Radiation Imager (AGRI), and the Geostationary Interferometric Infrared Sounder (GIIRS).
The observation area covers East Asia, Australia, and the Indian Ocean. The primary role
of the AGRI is to acquire satellite imagery with 14 bands, including the visible (VIS) bands,
near-infrared (NIR) bands, and infrared (IR) bands. It can collect satellite imagery of the
China region every 5 min and a full disk scan every 15 min. The spatial resolution of the
collected data ranges from 0.5 km to 4 km, and all bands include data with a resolution of
4 km [40].

Referring to the recent study by Sun et al. [33] and the physical interpretation between
remote sensing data and weather systems such as convection, this study uses some bands
related to cloud microphysical properties and hydrometeors, and the brightness temper-
ature differences (BTDs) between bands, as shown in Table 1. The VIS and NIR bands
contain more information about clouds but are only available during the daytime, while
the IR bands enable all-day observation. Therefore, according to the different input data,
this study constructs the Model (VIS) with VIS and NIR band observations as input and the
Model (IR) with IR band observations as input. These two models are used to discuss the
influence of different data on the accuracy of radar CREF reconstruction. In this study, the
observation data selected from the L1-level Chinese regional data at the 4 km resolution
of the FY-4A satellite are mainly used. According to Table 1, the study only retains seven
bands of satellite observations. In addition to L1-level observation data, the study also
employs the L2-level products Cloud Mask (CLM) and lightning mapping imager (LMI)
products for data preprocessing and data augmentation.

http://satellite.nsmc.org.cn/PortalSite/Data
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Table 1. The central wavelength and physical meaning of input bands for different models.

Input Bands Central Wavelength Physical Meaning Model Index

Band02 0.65 µm cloud optical thickness

Model (VIS)Band05 1.61 µm cloud phase, cloud effective particle radius

Band06 2.225 µm cloud phase, aerosol

Band07 3.725 µm clouds, moisture

Model (IR)
Band13 10.8 µm mid-level water vapor

cloud top temperature

Band14 12.0 µm cloud top temperature

BTDs 10.8 µm–6.2 µm cloud top height relative to tropopause

2.2. CREF

The CREF is a volume scanning product generated by the algorithm based on the radar
base reflectivity factor, which can show the maximum base reflectivity factor distribution
of the entire detectable atmospheric space. Compared with the base reflectivity factor, the
CREF can reflect the structural characteristics and intensity changes of the storm in more
detail and can judge the thickness and height of the cloud, which provides a good reference
for the identification, monitoring, and forecasting of strong convective weather such as
rainfall and storms [41].

The radar data used in this study are derived from the China Next Generation Weather
Radar (CINRAD) network, which can be downloaded from the National Meteorological
Science Data Center (http://data.cma.cn (accessed on 22 November 2022)). Figure 1 shows
the topographic features, the study area (red box), and the radar distribution. The dots of
different colors represent different bands of radar. From Figure 1, it is evident that there are
more radars in the eastern plains, with fewer located in the higher-elevation areas of the
western and northern regions. Radar coverage is not complete across China, particularly
in the Qinghai–Tibet Plateau, Xinjiang, and Inner Mongolia. Considering the temporal
distribution of precipitation, the observed radar CREF from April to October 2022 was
downloaded, and we initially obtained the CREF maps with a time resolution of 6 min and
a spatial resolution of 2 km.
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2.3. GPM Data

The Global Precipitation Measurement (GPM) mission is a collaborative satellite
program between NASA and JAXA [42]. Its objective is to generate accurate precipitation
data by integrating various satellite data with ground cover and surface temperature data.

The GPM products are categorized into three types based on the inversion algorithms.
Specifically, the late product with a temporal resolution of 30 min and a spatial resolution
of 10 km for the China regions was selected for verification, which can be downloaded
from the following website: https://disc.gsfc.nasa.gov/data (accessed on 20 June 2023).

To evaluate the performance of the model in areas without radar observations, GPM
precipitation data is utilized in the experiment to assess the model’s reconstruction of
CREF. This was primarily because the precipitation is moderately correlated with radar
reflectivity; although GPM cannot fully quantify the effectiveness of CREF reconstruction, it
can serve as supplementary information to indicate the distribution of radar reflectivity in
the absence of radar coverage [34,43]. Additionally, the precision of GPM precipitation data
is relatively high compared to other satellite precipitation products due to the integration
of multiple satellites and rain gauge data [44,45].

2.4. Data Processing

According to the radar distribution, we selected the geographical coordinates of the
research area within the range of 25.4◦N to 42◦N and 106.12◦E to 124◦E, as shown in
Figure 1. Before data processing (see Figure 2), the unreadable samples in the downloaded
data were deleted.
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First, spatiotemporal matching is performed to construct data pairs. Due to the
different time sampling intervals, different types of data with a difference of less than
3 min were paired in this experiment. Next, to align with the spatial resolution of satellite
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observations, the CREF, CLM, and LMI data were resampled using the nearest neighbor
interpolation algorithm to attain a 4 km resolution. Then, the resampled data were extracted
based on the latitude and longitude information of the study area. After spatiotemporal
pair matching, the size of matched samples became 416 × 448.

Second, to ensure accurate training of the CNN model, we employed CLM products to
eliminate satellite observations and CREF in clear sky pixels. The CLM products comprise
values of 0 and 1, denoting clear sky and cloudy pixels, respectively. By multiplying the
CLM data with satellite and radar data, only the value of the data corresponding to cloud
pixels was retained, reducing the impact of clear sky pixels on the model.

Third, to reduce the impact of sparse data on model training, all input data were
filtered before training based on the proportion of non-zero reflectivity. If the proportion
was less than 0.6, the corresponding matched sample was deleted.

Fourth, to speed up model convergence, maximum and minimum normalization were
applied to the matched samples, ensuring data values were between 0 and 1, as expressed
in Equation (1).

x′i =
xi −min

max−min
(1)

where xi denotes the i-th sample, min denotes the min values of all samples, max denotes
the max values, and x′i denotes the i-th normalized sample.

Fifth, all processed data were split into a training set and a testing set with an 8:2 ratio
for model training and testing.

To address the issue of imbalanced distribution of radar CREF, the matched samples
were expanded during training. If the observed radar CREF was greater than 20 dBZ
and exceeded 10%, horizontal flipping and rotating 180◦ were applied to expand the
corresponding matched sample data. Additionally, since most lightning occurs in strong
echoes between 35 dBZ and 50 dBZ [46], the same expansion operation was performed
based on LMI data. The final result comprised 5910 training samples and 1204 testing
samples. Each sample retains seven channels. For the VIS model, it inputs bands 1–3, and
for the IR model, it inputs bands 4–7.

3. Method

In this section, a hybrid conv block (HCB) and an enhanced pooling module (EPM)
are adopted. The newly proposed reconstruction model is introduced, including the
framework, loss function, and test indicators.

3.1. Hybrid Conv Block

The process of convolution involves extracting feature information within a specific
area known as the receptive field [47]. The UNet model utilizes a single convolutional
sequence in each encoder stage to perform feature extraction (Figure 3a), which restricts the
receptive field and makes it difficult for the model to accurately perceive objects of varying
sizes [48,49]. To address this issue and improve feature extraction capabilities, the HCB is
developed to replace the original conv block in UNet. The HCB allows for different sizes
of receptive fields in each stage, which enables the model to effectively extract features at
various scales.

In Figure 3b, the block is depicted as having three branches: b2 extracts small-scale
features, while b3 achieves a large receptive field and extracts large-scale features. Instead
of using the convolution of the larger receptive field, HCB expands the receptive field
through cascading 3 × 3 convolutions. It is more efficient to expand the receptive field by
stacking more layers rather than using a large kernel, and the extracted feature information
is enriched by adding intermediate scale features. The b3 branch employs different types
of convolutions, such as depthwise separable convolution (DSC) and dilated convolution
(DC), to broaden the variety of features. DSC has fewer parameters and calculations
than regular convolution [50], while DC can achieve a larger receptive field by setting the
expansion rate [51]. Branch b1 concatenates input features with the feature maps from other
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branches, making the network easier to train [52]. In HCB, all convolutions have the same
number of filters, and the resulting feature maps undergo sequential batch normalization
(BN) and activation function (AF) to alleviate gradient vanishing or exploding. This study
uses the activation function called Leaky ReLU.
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3.2. Enhanced Pooling Module

When UNet downsamples data, it loses some spatial information. Merging hierarchical
features using skip connections is not enough to recover this information [53]. To combat
this, our study created the EPM, inspired by discrete wavelet transform. Figure 4 shows
the structure of the EPM.
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Discrete Wavelet Transform (DWT) is a signal processing algorithm that breaks a
signal down into different frequency components by calculating the inner product between
the signal and wavelet function [54]. The two-dimensional DWT has a low-pass filter (LL)
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and three high-pass filters (LH, HL, and HH) that act as convolution operations with fixed
parameters and a step size of 2. For this study, we utilize the Haar wavelet as the wavelet
function, with the following parameters for the Haar wavelet filter:

fLL =

(
1 1
1 1

)
, fLH =

(
−1 −1
1 1

)
, fHL =

(
−1 1
−1 1

)
, fHH =

(
1 −1
−1 1

)
(2)

After performing DWT, the input signal can be divided into four sub-components, each
half the size. These sub-components represent low-frequency and high-frequency informa-
tion in different directions. The feature maps have the same size after both pooling and
wavelet transformation. The low-frequency sub-component contains the main information
of the signal, while the high-frequency sub-component mainly contains noise informa-
tion [55]. EPM utilizes Haar wavelet transformation on feature maps to extract frequency
components and reduces spatial information lost during max pooling operations. However,
to avoid adding noise, this module only retains the low-frequency sub-components of the
feature maps. Since the low-frequency sub-component and the features after max pooling
represent different domains of information with distinct feature characteristics, they are
not directly merged. Instead, the channel attention mechanism is utilized to integrate them.

The channel attention mechanism is a technique used in computer vision to re-
duce irrelevant information and increase the relevance of useful information. This is
achieved by assigning varying weights to feature vectors [56,57]. As a result, EPM can im-
prove model performance by adjusting the weights of components and gaining additional
adaptive information.

The module is calculated with the following equations:

Fpool = MaxPool(Finput) (3)

FLL = DWT(Conv3×3(Finput)) (4)

Fc = concat(Fpool , FLL) (5)

The module obtains the pooled features and low-frequency components of the same
size through Equations (3) and (4). In Equation (4), Conv3×3 represents the 3× 3 convolution
layer that mainly extracts the features initially and reduces the number of channels of the
input features by setting the number of convolution kernels to prevent excessive parameters.
In the study, the number of convolution kernels is half of the input. The mixed features
resulting from concatenation are obtained by using Equation (5).

Wc(Fc) = σ(Conv′′1×1(AvgPool(Fc)) + Conv′′1×1(MaxPool(Fc))) (6)

Foutput = Wc(Fc)⊗ Fc (7)

In the above equations, Conv′′1×1 represents two successive 1 × 1 convolution layers,
σ represents the sigmoid function, and ⊗ represents the Hadamard product. Equation (6)
is used to calculate the weight matrix of mixed feature maps Fc ∈ RH/2×W/2×C2 . The
weighted matrix in Equation (7) is Hadamard multiplied by the original feature map,
resulting in the weighted feature maps.

3.3. ER-UNet

Our model, Echo Reconstruction UNet (ER-UNet), is an improved UNet that utilizes
GEO satellite observations to reconstruct the radar CREF. ER-UNet follows the basic
framework of UNet, with encoding stages on the left, decoding stages on the right, and the
bottleneck layer in the middle. The feature extraction capability is enhanced by improving
the encoding stages in ER-UNet. See Figure 5 for a visual representation.
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Figure 5. The diagram of ER-UNet.

In order to extract potential physical relationships between satellite z and radar CREF,
the encoding stages are utilized primarily for feature extraction. The HCB and EPM
replace the convolutional block and max pooling, respectively. The HCB extracts scale
information to enable the model to obtain more feature information during encoding. The
EPM, on the other hand, reduces the loss of feature information during downsampling.
These two methods work together to facilitate the transmission of more useful feature
information within the model, ultimately leading to improved performance. The input
sample size of ER-UNet (VIS) is (416, 448, 3); that of ER-UNet (IR) is (416, 448, 4); the
number of convolution kernels for each encoding stage is 16, 32, 64, and 128, respectively;
and the size of its feature maps is halved in order. The number of convolution kernels in
the bottleneck layer is 256.

The final feature information from the encoding stages is sent to the decoding stages
via the bottleneck layer. Using the deconvolution operation, the decoder first upsamples
the feature information and then merges it with the low-level information sent through the
skip connection. The merged feature information is then gradually restored and improved
using BN, convolution operations, and other operations until the original size of the feature
map is regained. The feature maps representing CREF information are mapped to the radar
echo map of (416, 448, 1) through 1 × 1 convolution as the model aims to output the radar
echo map. The number of convolution kernels in each stage of the decoding process is 128,
64, 32, and 16, and the final 1 × 1 convolution has only one convolution kernel.

3.4. Loss Function and Optimizer

The loss function determines the optimization direction of the model. The experiment
uses the weighted MAE as the loss function. The weighted loss function incorporates
weights into the standard loss function, enabling the assignment of varying importance to
different sample categories during model training. The weight determines the importance
of the sample, and a larger weight means the model will focus more on the accuracy of that
sample during training. When reconstructing the reflectivity, we focus on the reconstruction
of strong echoes. Therefore, we elevate the weight value when the reconstructed CREF
is below the actual CREF and the actual CREF corresponds to strong echoes. Finally, the
weight values of a, b, and c are set to 1, 2, and 3, respectively. Through this loss function, the
model optimizes the reconstruction of strong echoes. In Equations (8) and (9), yr

i represents
the i-th reconstructed CREF map, yt

i represents the truth, and n is the number of samples.



Remote Sens. 2024, 16, 275 10 of 19

In addition, the model uses Adam [58] as the optimizer, the batch size is set to 32, and the
initial learning rate is 0.0005.

loss =
1
n

n

∑
i=1

w(yr
i ) ·
∣∣yr

i − yt
i
∣∣ (8)

w(yr) =


a, yr ≥ yt

b, yr < yt ∩ yt < 30
c, yr < yt ∩ yt ≥ 30

(9)

3.5. Evaluation Function

In this study, different evaluation measures are used to gauge the performance of
the models. The RMSE and MAE are standard error metrics for regression tasks. Smaller
values indicate that the reconstructed results are closer to the actual observations.

RMSE =

√
1
n

n

∑
i=1

(yt
i − yr

i )
2 (10)

MAE =
1
n

n

∑
i=1

∣∣yt
i − yr

i
∣∣ (11)

where yt
i and yr

i represent the i-th pixel in the observed and reconstructed CREF maps, respectively.
The SSIM is a quality assessment metric used to measure the similarity, with a range

of values from 0 to 1.

SSIM =
(2µtµr + c1)(2σtr + c2)

(µ2
t + µ2

r + c1)(σ
2
t + σ2

r + c2)
(12)

where µr and µt are the mean value of the reconstructed CREF maps and the observed
maps, respectively; σr and σt represent the standard deviation of the reconstructed CREF
maps and the observed maps; and σtr is the covariance. c1 and c2 are constants.

POD, FAR, CSI, and HSS are classification metrics commonly used in meteorology
to assess the performance of weather products at different radar echo intensities. Higher
POD and lower FAR indicate better model performance. However, relying solely on POD
and FAR is not a comprehensive evaluation of the result. Therefore, the composite metric
CSI is used in this study since it provides a combined score for POD and FAR [59]. HSS,
similar to CSI, is another composite metric that also reflects overall model performance,
where a higher value is preferred. Table 2 shows the meaning of the parameters of the
categorical indicators.

POD =
TP

TP + FN
(13)

FAR =
FP

FP + TP
(14)

CSI =
TP

TP + FP + FN
(15)

HSS =
2× (TP× TN − FN × FP)

FN × 2 + FP× 2 + 2× TP× TN + (FN + FP)× (TP + TN)
(16)

Table 2. The table of the classification score parameters.

Ground Truth

True False

Reconstruction
True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)
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4. Results

Four models, i.e., ER-UNet (VIS), ER-UNet (IR), UNet (VIS), and UNet (IR), were
used to reconstruct CREF maps over China during three heavy precipitation storms and
calculate the score of metrics. The first storm was a strong local convective storm that
occurred on 12 April 2022. The second storm had two large convective cells and a number
of small local convective cells distributing a line from north to south. Those scattering
cells moved eastward and finally merged to form a long squall line. The third one was a
heavy precipitation storm caused by the severe Typhoon Muifa, which made first landfall
at Zhoushan Island, then passed over Hangzhou Bay, and eventually went ashore in
Shanghai. The above three cases were selected from the test dataset. Additionally, to ensure
the fairness of the comparison, these models use the same activation function, loss function,
optimizer, batch size, and initial learning rate.

4.1. Case Study

To illustrate the performance of the ER-UNet, the reconstructed CREF maps are
compared to the observed CREF during two heavy precipitation storms. On 12 April 2022,
a heavy rainfall storm swept several provinces in China, including Chongqing and Hubei,
due to the southwest vortex. Some areas experienced torrential rain. As can be seen from
Figure 6b–e, all four models can reconstruct the distribution of the radar CREF. ER-UNet
(VIS) produces the best reconstruction results for intensity, shape, position, and texture
information of echoes, followed by ER-UNet (IR) and UNet (VIS). The overall quality of
reconstructed CREF maps by UNet (IR) have low resolution with few texture details and
contain a number of false CREFs.

On 28 July 2022, China experienced another heavy precipitation storm with an in-
tensive rain belt moving from north to south. Figure 6f shows that there was a large and
complex distribution of strong echoes. While the UNet model was able to reconstruct the
strong echo center, the intensity of the reconstructed CREF was low. The ER-UNet model
outperformed UNet in terms of positioning and reconstructing the intensity of the scattered
strong echoes in the southern region, making it closer to the observed radar CREF.

For a more thorough examination of the model’s capabilities, a severe typhoon was
selected for further comparison between the performance of ER-UNet and UNet in Case 3.
Specifically, Figure 6k depicts Typhoon Muifa as it made landfall in Zhejiang Province on
14 September 2022, bringing much heavier rainfall to various regions than expected. The
reconstructed CREF of ER-UNet (VIS) in Figure 6l is in good agreement with the observed
radar CREF. On the other hand, the ER-UNet (IR) in Figure 6m slightly underestimates
the intensity but still captures the strong CREF area, like the eyewall on the west side of
the typhoon eye. However, UNet exhibits a significant loss in both intensity and detail. In
addition to being influenced by the UNet structure, this problem is also due to the strong
intensity of the typhoon, which aggravates the blurry effect [60] and makes reconstruction
of the convolutional model more challenging, and the rapid movement of the typhoon,
leading to increased data matching errors that affect the accurate training of the model.
Despite some deficiencies in intensity and detail shown by all four models, the ER-UNet
effectively captures the center of the severe convective cells and aligns well with the
observed radar CREF. In all the three cases, the improved reconstruction model, ER-UNet,
can produce results that are closer to the actual observations than UNet.

The reconstruction performance of the model is tested in radar-deficient regions
through application cases using two precipitation events—which occurred in the northeast-
ern part of Inner Mongolia at 02:00 UTC on 17 August 2022 and at 02:00 UTC on 31 August
2022—as instances. This area is situated on the Mongolian Plateau at a high elevation
and has a sparse distribution of weather radars (see Figure 1). Therefore, the inversion of
radar reflectivity in this area has practical significance. By comparing the subgraphs in
Figure 7, the observed radar CREF fails to accurately capture the precipitation area due to
limited radar coverage. However, the distribution of reconstructed CREF can match the
precipitation pattern in terms of precipitation area and intensity. This indicates the practical
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value and strong generalization capability of our model, as it was not trained on data from
this specific area, but it could still reconstruct the radar CREF.

Figure 6. The comparison of these case studies. The first column (Case 1) (a–e) represents the
comparison between the observed CREF and the reconstructed CREF for the heavy precipitation
storm on 12 April 2022. The second column (Case 2) (f–j) represents the comparison between the
observed CREF and the reconstructed CREF for the heavy precipitation storm on 28 July 2022.
The third column (Case 3) (k–o) represents the comparison between the observed CREF and the
reconstructed CREF for the severe Typhoon Muifa.
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Figure 7. The cases of practical application. The first column (a,d) represents actual radar observation.
The second column (b,e) represents reconstructed CREF. The third column (c,f) represents GPM
precipitation distribution. The first row shows the precipitation event that occurred at 2:00 (UTC)
on 17 August 2022. The second row shows the precipitation event that occurred at 2:00 (UTC) on
31 August 2022.

4.2. Statistical Results on Testing Data

The following are statistics from four models that use all testing data with thresholds at
15, 25, 35, and 45 dBZ. Figure 8 shows the descending order of the POD for each threshold,
with ER-UNet (VIS) having the highest POD, followed by ER-UNet (IR), UNet (VIS), and
UNet (IR). ER-UNet (VIS) still achieves a POD of 0.64 at the strong convection threshold of
35 dBZ. Overall, the POD of each model decreases as the threshold increases, with UNet
(IR) falling the most dramatically and ER-UNet (VIS) having the slowest decreasing trend,
followed by ER-UNet (IR) and UNet (VIS). UNet (IR) has the highest FAR at all thresholds,
indicating that it was the worst performer among the four models. UNet (VIS) follows as
the second worst. At thresholds of 15 and 25 dBZ, ER-UNet (VIS) outperforms ER-UNet (IR)
in terms of POD and FAR, while ER-UNet (VIS) shows a slightly higher FAR than ER-UNet
(IR) at 35 and 45 dBZ. It is noted that ER-UNet (VIS) shows a more substantial improvement
than ER-UNet (IR) in POD at 35 and 45 dBZ, by 0.14 and 0.11, respectively. Therefore, on
balance, ER-UNet (VIS) performs better than ER-UNet (IR). This is also reflected in the
composite metrics, CSI and HSS, where ER-UNet (VIS) outperforms ER-UNet (IR), UNet
(VIS), and UNet (IR) at all thresholds. Both CSI and HSS values decrease as the threshold
increases, indicating that the performance of the models deteriorates with stronger echoes.
It is worth nothing that using VIS and NIR bands yields better results than using IR bands,
and the improved model (ER-UNet) shows better performance than the original UNet.

Figure 9 presents the skills of the four models based on the statistics of RMSE, MAE,
and SSIM. For the ER-UNet (VIS), the values of RMSE, MAE, and SSIM are 0.69, 2.58,
and 0.88, respectively. For the ER-UNet (IR), the corresponding values are 0.80, 2.86, and
0.86. UNet (VIS) has values of 0.96, 3.22, and 0.85 for RMSE, MAE, and SSIM, respectively.
UNet (IR) has values of 1.33, 4.00, and 0.80 for the corresponding metrics. Similar to the
classification metrics, the improved model ER-UNet can effectively reduce reconstruction
errors and produce radar CREF that closely matches with the ground truth. The results
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show that the ER-UNet demonstrates significant improvement over UNet. The results
obtained with inputs from VIS and NIR bands are superior to those obtained with inputs
of IR bands.

Figure 8. The evaluation scores of four models: (a) POD, (b) FAR, (c) CSI, and (d) HSS.

Figure 9. The regression metrics of four models. (a) RMSE. (b) MAE. (c) SSIM.

Overall, based on the aforementioned statistics, the four models rank as follows from
high to low: ER-UNet (VIS), ER-UNet (IR), UNet (VIS), and UNet (IR). Despite some
deficiencies in the reconstruction of strong echoes by each model, the ER-UNet model
shows significant improvement in this area compared to the original UNet model.
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4.3. Ablation Analysis of ER-UNet

To validate the effectiveness of each module in ER-UNet separately, two models were
used for validation, i.e., UNet with only HCB (HCB-UNet) and UNet with only EPM
(EPM-UNet). These models are validated using inputs from different spectral bands of
FY-4A. Table 3 shows the comparison results of the selected indicators of all models, and the
thresholds of CSI and HSS are 35 dBZ (strong convection). With input data from different
bands, HCB-UNet and EPM-UNet show superior performance over UNet in terms of
metrics, indicating the effectiveness of each module. Additionally, the ER-UNet achieves
the highest score, demonstrating the effectiveness of combining HCB and EPM to enhance
model performance.

Table 3. Ablation analysis of ER-UNet.

Input Data VIS + NIR IR

Metrics RMSE MAE SSIM CSI HSS RMSE MAE SSIM CSI HSS

UNet 3.22 0.96 0.85 0.37 0.54 4.00 1.33 0.80 0.21 0.34

HCB-UNet 2.80 0.78 0.87 0.51 0.68 3.10 0.90 0.85 0.33 0.49

EPM-UNet 2.99 0.87 0.86 0.43 0.60 3.61 1.10 0.84 0.42 0.59

ER-UNet 2.58 0.69 0.88 0.55 0.71 2.86 0.80 0.86 0.44 0.61

To further demonstrate the differences between the results of different models, a
visual analysis of a heavy precipitation event on 13 April 2022 is conducted. Comparing
Figure 10g, Figure 10h, and Figure 10i with Figure 10a, the reconstructed CREF of EPM-
UNet (VIS) and HCB-UNet (VIS) are closer to the real CREF in texture details than UNet
(VIS), and can reconstruct strong echoes above 45 dBZ. Similarly, the results of EPM-UNet
(IR) and HCB-UNet (IR) are also better than those of UNet (IR), as observed by comparing
Figure 10d, Figure 10e, and Figure 10f with Figure 10a, respectively. According to Figure 10,
the reconstructed CREF of ER-UNet is the closest to the real radar observation. Overall, the
comparison illuminates the effectiveness of both modules proposed in this study.

Figure 10. The ablation analysis by case study. (a) The ground truth of CREF; the other subfigures
(b–i) represent the reconstructed CREF from different models.
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5. Discussion

The experimental results show that all deep-learning-based methods can reconstruct
radar reflectivity from satellite observations, indicating the feasibility of deep learning
models. This is mainly because satellite observations and radar observations are not iso-
lated but exhibit a nonlinear relationship. Generally, as the radar reflectivity increases, the
atmospheric development strengthens and the cloud top elevates, while the brightness
temperature observed by satellite infrared decreases. Simultaneously, considering the
differences in the detection principles of the two methods, this study utilizes multi-band
inputs (see Table 1) to represent cloud and water vapor features, which can reflect the
state of atmospheric development and provide the model with more information, thereby
facilitating a comprehensive exploration of the nonlinear relationship between them. Fur-
thermore, in adjacent areas of satellite cloud imagery, there is a related distribution. For
example, low brightness temperatures in satellite imagery are accompanied by moderate
values in the surrounding areas. The convolution operation can extract spatial information
within the neighborhood, adding the spatial characteristics for model reconstruction. This
allows the model to nonlinearly fit two types of observed numerical values in space rather
than in a point-to-point manner.

However, there are also some issues with the accuracy, mainly evident in the weak
intensity and blurred texture details of the reconstructed CREF. From a modeling perspec-
tive, this is largely due to the fixed convolution kernels used in each layer of UNet, making
it difficult to effectively extract features of cloud clusters of different sizes from satellite
observations. This results in the loss of certain information. Furthermore, UNet uses
multiple downsampling layers to extract global features, which also leads to information
loss. As a result, UNet’s captured features are insufficient, leading to deficiencies in the
intensity and shape of the inverted CREF.

The main goal of ER-UNet is to improve the accuracy of CREF reconstruction for
practical applications. ER-UNet achieved superior results, as indicated by its scores for
metrics such as POD, FAR, CSI, HSS, RMSE, MAE, and SSIM. In addition, case studies
show that ER-UNet’s reconstruction of CREF exhibits better detailed texture and intensity
results compared to UNet, despite some discrepancies with real radar observations. This
improvement is mainly attributed to HCB and EPM. HCB provides scale information for
cloud clusters, while EPM addresses the issue of information loss from downsampling
using wavelet transformations, allowing more feature information to flow through the
network, thus enhancing the model’s reconstruction capability.

Additionally, using VIS and NIR instead of IR may lead to more accurate reconstruction
results, possibly due to their higher resolution and capacity to contain optical thickness
information about the cloud. This information can better reflect the evolution of the cloud
and the convective system.

6. Conclusions

This study presents a deep learning model that reconstructs radar CREF. In this study,
FY-4A satellite observations were used as input to reconstruct radar CREF over eastern
China. Two models, UNet and ER-UNet, were constructed to rebuild radar CREF. The
impact of various input data on the models was examined with a range of statistical metrics
and three cases of heavy precipitation storms. The results show that the ER-UNet is superior
to the UNet in terms of echo intensity, location, and detail. This is due in part to UNet’s
structure, which affects reconstruction accuracy. The ER-UNet, can effectively enhance
reconstruction skills, making it more practicable and generalizable. Furthermore, using
VIS and NIR bands can reconstruct better radar CREF than using IR bands. Additional
experiments were conducted to confirm the effectiveness of the improved module ER-UNet
over northeastern Inner Mongolia. In practical applications, ER-UNet (VIS) can be used for
CREF reconstruction during the daytime and ER-UNet (IR) can be used for radar CREF
reconstruction during the nighttime.
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In the future, more efforts are needed to optimize the model structure and incorporate
additional GEO meteorological satellite data for radar CREF reconstruction. a more detailed
analysis of the reconstruction effect of the model should be conducted, and the impacts
of different precipitation types should be discussed. Then, it is expected to create a global
reflectivity product that combines various geostationary meteorological satellite data and
provides valuable reference information for global disaster monitoring.

Author Contributions: Conceptualization, J.T. and S.C.; data curation, J.T. and S.C.; funding ac-
quisition, S.C., L.G., Y.L. and C.W.; investigation, J.Z. and J.T.; methodology, J.Z. and J.T.; project
administration, J.Z. and Q.H.; resources, J.T. and S.C.; software, J.Z. and J.T.; supervision, S.C., L.G.,
Y.L. and C.W.; validation, Q.H.; visualization, J.Z.; writing—original draft, J.Z. and J.T.; writing—
review and editing, S.C., L.G., Y.L. and C.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Guangxi Key R&D Program (Grant No. 2021AB40108,
2021AB40137) and by Guangxi Natural Science Foundation (2020GXNSFAA238046), and Key Laboratory
of Environment Change and Resources Use in Beibu Gulf (Grant No. NNNU-KLOP-K2103) at Nanning
Normal University, Shenzhen Science and Technology Innovation Committee (SGDX20210823103805043),
and the National Natural Science Foundation of China (52209118, 52025094).

Data Availability Statement: The FY-4A satellite observations were obtained from http://satellite.
nsmc.org.cn/PortalSite/Data (accessed on 10 March 2023). The radar CREF data can be downloaded
at http://data.cma.cn (accessed on 22 November 2022). The GPM precipitation products were
obtained from https://gpm.nasa.gov (accessed on 20 June 2023). The code is available at https:
//github.com/bobo-zz/ER-UNet (accessed on 6 January 2024).

Acknowledgments: We would like to express our gratitude to the NSMC (National Satellite Meteo-
rological Center), the National Meteorological Data Service Center, and NASA (National Aeronautics
and Space Administration) for providing downloadable data for this study. We thank the anonymous
reviewers for their valuable feedback.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, H.; Chen, G.; Lei, H.; Wang, Y.; Tang, S. Improving the Predictability of Severe Convective Weather Processes by Using

Wind Vectors and Potential Temperature Changes: A Case Study of a Severe Thunderstorm. Adv. Meteorol. 2016, 2016, 8320189.
[CrossRef]

2. Fang, W.; Xue, Q.Y.; Shen, L.; Sheng, V.S. Survey on the Application of Deep Learning in Extreme Weather Prediction. Atmosphere
2021, 12, 661. [CrossRef]

3. Dahan, K.S.; Kasei, R.A.; Husseini, R.; Said, M.Y.; Rahman, M.M. Towards understanding the environmental and climatic changes
and its contribution to the spread of wildfires in Ghana using remote sensing tools and machine learning (Google Earth Engine).
Int. J. Digit. Earth 2023, 16, 1300–1331. [CrossRef]

4. Yeary, M.; Cheong, B.L.; Kurdzo, J.M.; Yu, T.-Y.; Palmer, R. A Brief Overview of Weather Radar Technologies and Instrumentation.
IEEE Instrum. Meas. Mag. 2014, 17, 10–15. [CrossRef]

5. Roberts, R.D.; Rutledge, S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Weather Forecast. 2003, 18,
562–584. [CrossRef]

6. Alfieri, L.; Claps, P.; Laio, F. Time-dependent Z-R relationships for estimating rainfall fields from radar measurements. Nat.
Hazards Earth Syst. Sci. 2010, 10, 149–158. [CrossRef]

7. Han, D.; Choo, M.; Im, J.; Shin, Y.; Lee, J.; Jung, S. Precipitation nowcasting using ground radar data and simpler yet better video
prediction deep learning. Gisci. Remote Sens. 2023, 60, 2203363. [CrossRef]

8. Sokol, Z. Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high
resolution. Atmos. Res. 2011, 100, 201–212. [CrossRef]

9. Dinku, T.; Anagnostou, E.N.; Borga, M. Improving radar-based estimation of rainfall over complex terrain. J. Appl. Meteorol. 2002,
41, 1163–1178. [CrossRef]

10. Farmonov, N.; Amankulova, K.; Szatmari, J.; Urinov, J.; Narmanov, Z.; Nosirov, J.; Mucsi, L. Combining PlanetScope and
Sentinel-2 images with environmental data for improved wheat yield estimation. Int. J. Digit. Earth 2023, 16, 847–867. [CrossRef]

11. Guo, H.D.; Liu, Z.; Zhu, L.W. Digital Earth: Decadal experiences and some thoughts. Int. J. Digit. Earth 2010, 3, 31–46. [CrossRef]
12. Mecikalski, J.R.; Bedka, K.M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES

imagery. Mon. Weather Rev. 2006, 134, 49–78. [CrossRef]

http://satellite.nsmc.org.cn/PortalSite/Data
http://satellite.nsmc.org.cn/PortalSite/Data
http://data.cma.cn
https://gpm.nasa.gov
https://github.com/bobo-zz/ER-UNet
https://github.com/bobo-zz/ER-UNet
https://doi.org/10.1155/2016/8320189
https://doi.org/10.3390/atmos12060661
https://doi.org/10.1080/17538947.2023.2197263
https://doi.org/10.1109/MIM.2014.6912194
https://doi.org/10.1175/1520-0434(2003)018%3C0562:NSIAGU%3E2.0.CO;2
https://doi.org/10.5194/nhess-10-149-2010
https://doi.org/10.1080/15481603.2023.2203363
https://doi.org/10.1016/j.atmosres.2010.09.008
https://doi.org/10.1175/1520-0450(2002)041%3C1163:IRBEOR%3E2.0.CO;2
https://doi.org/10.1080/17538947.2023.2186505
https://doi.org/10.1080/17538941003622602
https://doi.org/10.1175/MWR3062.1


Remote Sens. 2024, 16, 275 18 of 19

13. Mecikalski, J.R.; Mackenzie, W.M., Jr.; Koenig, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective
Initiation as Measured by Meteosat Second Generation. Part II: Use Visible Reflectance. J. Appl. Meteorol. Climatol. 2010, 49,
2544–2558. [CrossRef]

14. Mecikalski, J.R.; Rosenfeld, D.; Manzato, A. Evaluation of geostationary satellite observations and the development of a 1-2h
prediction model for future storm intensity. J. Geophys. Res. Atmos. 2016, 121, 6374–6392. [CrossRef]

15. Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F. Improving Satellite-Based Convective Cloud Growth Monitoring with Visible Optical
Depth Retrievals. J. Appl. Meteorol. Climatol. 2014, 53, 506–520. [CrossRef]

16. Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An
Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94,
151–183. [CrossRef]

17. Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4.
Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [CrossRef]

18. Zhou, Q.; Zhang, Y.; Li, B.; Li, L.; Feng, J.; Jia, S.; Lv, S.; Tao, F.; Guo, J. Cloud-base and cloud-top heights determined from a
ground-based cloud radar in Beijing, China. Atmos. Environ. 2019, 201, 381–390. [CrossRef]

19. Hilburn, K.A.; Ebert-Uphoff, I.; Miller, S.D. Development and Interpretation of a Neural-Network-Based Synthetic Radar
Reflectivity Estimator Using GOES-R Satellite Observations. J. Appl. Meteorol. Climatol. 2021, 60, 3–21. [CrossRef]

20. Xiang Zhu, X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A review. arxiv
2017, arXiv:1710.03959.

21. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote
sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]

22. Wang, Z.; Li, Y.; Wang, K.; Cain, J.; Salami, M.; Duffy, D.Q.Q.; Little, M.M.M.; Yang, C. Adopting GPU computing to support
DL-based Earth science applications. Int. J. Digit. Earth 2023, 16, 2660–2680. [CrossRef]

23. Ayzel, G.; Scheffer, T.; Heistermann, M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting.
Geosci. Model Dev. 2020, 13, 2631–2644. [CrossRef]

24. Pan, X.; Lu, Y.; Zhao, K.; Huang, H.; Wang, M.; Chen, H. Improving Nowcasting of Convective Development by Incorporating
Polarimetric Radar Variables Into a Deep-Learning Model. Geophys. Res. Lett. 2021, 48, e2021GL095302. [CrossRef]

25. Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective Precipitation Nowcasting Using U-Net Model. IEEE Trans. Geosci.
Remote Sens. 2022, 60, 4103508. [CrossRef]

26. Trebing, K.; Stanczyk, T.; Mehrkanoon, S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture.
Pattern. Recogn. Lett. 2021, 145, 178–186. [CrossRef]

27. Chen, W.; Hua, W.; Ge, M.; Su, F.; Liu, N.; Liu, Y.; Xiong, A. Severe Precipitation Recognition Using Attention-UNet of
Multichannel Doppler Radar. Remote Sens. 2023, 15, 1111. [CrossRef]

28. Pfreundschuh, S.; Ingemarsson, I.; Eriksson, P.; Vila, D.A.; Calheiros, A.J.P. An improved near-real-time precipitation retrieval for
Brazil. Atmos. Meas. Tech. 2022, 15, 6907–6933. [CrossRef]

29. Zhang, Y.; Chen, S.; Tian, W.; Chen, S. Radar Reflectivity and Meteorological Factors Merging-Based Precipitation Estimation
Neural Network. Earth Space Sci. 2021, 8, e2021EA001811. [CrossRef]

30. Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A landslide extraction method of channel attention
mechanism U-Net network based on Sentinel-2A remote sensing images. Int. J. Digit. Earth 2023, 16, 552–577. [CrossRef]

31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany,
5–9 October 2015; pp. 234–241.

32. Duan, M.; Xia, J.; Yan, Z.; Han, L.; Zhang, L.; Xia, H.; Yu, S. Reconstruction of the Radar Reflectivity of Convective Storms Based
on Deep Learning and Himawari-8 Observations. Remote Sens. 2021, 13, 3330. [CrossRef]

33. Sun, F.; Li, B.; Min, M.; Qin, D. Deep Learning-Based Radar Composite Reflectivity Factor Estimations from Fengyun-4A
Geostationary Satellite Observations. Remote Sens. 2021, 13, 2229. [CrossRef]

34. Yu, X.; Lou, X.; Yan, Y.; Yan, Z.; Cheng, W.; Wang, Z.; Zhao, D.; Xia, J. Radar Echo Reconstruction in Oceanic Area via Deep
Learning of Satellite Data. Remote Sens. 2023, 15, 3065. [CrossRef]

35. Jia, Z.; Shi, A.; Xie, G.; Mu, S. Image Segmentation of Persimmon Leaf Diseases Based on UNet. In Proceedings of the 2022 7th
International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 2036–2039.

36. Wang, D.; Liu, Y. An Improved Neural Network Based on UNet for Surface Defect Segmentation. In 3D Imaging Technologies—
Multidimensional Signal Processing and Deep Learning; Springer: Singapore, 2021; pp. 27–33.

37. Weng, W.; Zhu, X. INet: Convolutional Networks for Biomedical Image Segmentation. IEEE Access 2021, 9, 16591–16603.
[CrossRef]

38. Wang, D.; Hu, G.; Lyu, C. FRNet: An end-to-end feature refinement neural network for medical image segmentation. Vis. Comput.
2021, 37, 1101–1112. [CrossRef]

39. Wen, S.C.; Wei, S.L. KUnet: Microscopy Image Segmentation with Deep Unet Based Convolutional Networks. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ,
USA; pp. 3561–3566.

https://doi.org/10.1175/2010JAMC2480.1
https://doi.org/10.1002/2016JD024768
https://doi.org/10.1175/JAMC-D-13-0139.1
https://doi.org/10.2151/jmsj.2016-009
https://doi.org/10.1175/BAMS-D-16-0065.1
https://doi.org/10.1016/j.atmosenv.2019.01.012
https://doi.org/10.1175/JAMC-D-20-0084.1
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1080/17538947.2023.2233488
https://doi.org/10.5194/gmd-13-2631-2020
https://doi.org/10.1029/2021GL095302
https://doi.org/10.1109/TGRS.2021.3100847
https://doi.org/10.1016/j.patrec.2021.01.036
https://doi.org/10.3390/rs15041111
https://doi.org/10.5194/amt-15-6907-2022
https://doi.org/10.1029/2021EA001811
https://doi.org/10.1080/17538947.2023.2177359
https://doi.org/10.3390/rs13163330
https://doi.org/10.3390/rs13112229
https://doi.org/10.3390/rs15123065
https://doi.org/10.1109/ACCESS.2021.3053408
https://doi.org/10.1007/s00371-020-01855-z


Remote Sens. 2024, 16, 275 19 of 19

40. Xia, X.; Min, J.; Shen, F.; Wang, Y.; Xu, D.; Yang, C.; Zhang, P. Aerosol data assimilation using data from Fengyun-4A, a
next-generation geostationary meteorological satellite. Atmos. Environ. 2020, 237, 117695. [CrossRef]

41. Antonini, A.; Melani, S.; Corongiu, M.; Romanelli, S.; Mazza, A.; Ortolani, A.; Gozzini, B. On the Implementation of a Regional
X-BandWeather Radar Network. Atmosphere 2017, 8, 25. [CrossRef]

42. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global
precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]

43. Yang, L.; Zhao, Q.; Xue, Y.; Sun, F.; Li, J.; Zhen, X.; Lu, T. Radar Composite Reflectivity Reconstruction Based on FY-4A Using
Deep Learning. Sensors 2023, 23, 81. [CrossRef]

44. Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite
precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [CrossRef]

45. Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Hong, Y.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation
estimates. J. Hydrol. 2020, 581, 124376. [CrossRef]

46. Liu, D.; Qie, X.; Xiong, Y.; Feng, G. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale
convective system over Beijing. Adv. Atmos. Sci. 2011, 28, 866–878. [CrossRef]

47. Gupta, A.; Harrison, P.J.; Wieslander, H.; Pielawski, N.; Kartasalo, K.; Partel, G.; Solorzano, L.; Suveer, A.; Klemm, A.H.;
Spjuth, O.; et al. Deep Learning in Image Cytometry: A Review. Cytom. Part A 2019, 95A, 366–380. [CrossRef]

48. Liu, J.; Zhang, F.; Zhou, Z.; Wang, J. BFMNet: Bilateral feature fusion network with multi-scale context aggregation for real-time
semantic segmentation. Neurocomputing 2023, 521, 27–40. [CrossRef]

49. Zhou, Y.; Kong, Q.; Zhu, Y.; Su, Z. MCFA-UNet: Multiscale Cascaded Feature Attention U-Net for Liver Segmentation. IRBM
2023, 44, 100789. [CrossRef]

50. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

51. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122.
52. Zhu, Y.; Newsam, S. Densenet for Dense Flow. In Proceedings of the 2017 IEEE International Conference on Image Processing

(ICIP), Beijing, China, 17–20 September 2017; pp. 790–794.
53. Zhao, Z.; Xia, C.; Xie, C.; Li, J. Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection. In Proceedings

of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4967–4975.
54. Versaci, F. WaveTF: A Fast 2D Wavelet Transform for Machine Learning in Keras; Springer International Publishing: Cham, Switzerland,

2021; pp. 605–618.
55. Yin, X.-C.; Han, P.; Zhang, J.; Zhang, F.-Q.; Wang, N.-L. Application of Wavelet Transform in Signal Denoising. In Proceedings of

the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China, 5 November
2003; Volume 431, pp. 436–441.

56. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention
mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

57. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

58. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
59. McKeen, S.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E.Y.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R.; et al.

Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys.
Res. Atmos. 2005, 110, D21307. [CrossRef]

60. Huang, Q.; Chen, S.; Tan, J. TSRC: A Deep Learning Model for Precipitation Short-Term Forecasting over China Using Radar
Echo Data. Remote Sens. 2023, 15, 142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.atmosenv.2020.117695
https://doi.org/10.3390/atmos8020025
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.3390/s23010081
https://doi.org/10.1016/j.jhydrol.2016.01.029
https://doi.org/10.1016/j.jhydrol.2019.124376
https://doi.org/10.1007/s00376-010-0001-8
https://doi.org/10.1002/cyto.a.23701
https://doi.org/10.1016/j.neucom.2022.11.084
https://doi.org/10.1016/j.irbm.2023.100789
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1029/2005JD005858
https://doi.org/10.3390/rs15010142

	Introduction 
	Data and Data Processing 
	Satellite Observations 
	CREF 
	GPM Data 
	Data Processing 

	Method 
	Hybrid Conv Block 
	Enhanced Pooling Module 
	ER-UNet 
	Loss Function and Optimizer 
	Evaluation Function 

	Results 
	Case Study 
	Statistical Results on Testing Data 
	Ablation Analysis of ER-UNet 

	Discussion 
	Conclusions 
	References

