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Abstract: Accurate information concerning the spatial distribution of invasive alien species’ habitats
is essential for invasive species prevention and management, and ecological sustainability. Currently,
nationwide identification of suitable habitats for the highly destructive and potentially invasive weed,
Solanum rostratum Dunal (S. rostratum), poses a series of challenges. Simultaneously, research on
potential future invasion areas and likely directions of spread has not received adequate attention.
This study, based on species occurrence data and multi-dimensional environmental variables con-
structed from multi-source remote sensing data, utilized Principal Component Analysis (PCA) in
combination with the Maxent model to effectively model the current and future potential habitat
distribution of S. rostratum in China, while quantitatively assessing the various factors influencing its
distribution. Research findings indicate that the current suitable habitat area of S. rostratum covers
1.3952 million km2, all of which is located in northern China. As the trend of climate warming per-
sists, the potential habitat suitability range of S. rostratum is projected to shift southward and expand
in the future; while still predominantly located in northern China, it will have varying degrees of
expansion at different time frames. Notably, during the period from 2040 to 2061, under the SSP1-2.6
scenario, the habitat area exhibits the most significant increase, surpassing the current scenario
by 19.23%. Furthermore, attribution analysis based on PCA inverse transformation reveals that a
combination of soil, climate, spatial, humanistic, and topographic variables collectively influence
the suitability of S. rostratum habitats, with soil factors, in particular, playing a dominant role and
contributing up to 75.85%. This study identifies target areas for the management and control of
S. rostratum, providing valuable insights into factor selection and variable screening methods in
species distribution modeling (SDM).

Keywords: invasive alien species; potential suitable habitat; Maxent model; multi-source remote
sensing data; climate change; multi-scenario simulation

1. Introduction

Species invasion, often referred to as the process by which non-native and non-
indigenous organisms proliferate, expand, and establish populations in novel ecological
systems [1], represents a phenomenon that can lead to a decline in biodiversity, modifi-
cations in ecological niches, disease transmission, and, in extreme instances, disruptions
within ecological systems, perturbations in the ecological equilibrium, and significant
socioeconomic losses [2,3]. Consequently, it has emerged as a pivotal and pressing chal-
lenge within the domains of global ecology, environmental conservation, and resource
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management [4,5]. One study reveals that 58% of species extinctions are attributable to
the incursion of alien species [6]. The escalating trends in international trade and hu-
man mobility have notably facilitated the ingress of invasive species into new habitats [7].
Furthermore, climate change has improved the suitability of these novel habitats, signif-
icantly expediting the establishment of invasive species populations [8]. With sustained
global warming anticipated in the foreseeable future [9], it is projected that by 2050, the
number of invasive species on every continent will increase by 36% compared to 2005
levels. While not all of these species exhibit invasive characteristics or cause ecological
and economic losses, a proportion still encompasses invasive species, posing substantial
potential risks [10]. Consequently, the urgency and necessity of identifying and managing
existing invasive species cannot be overstated. Generally, the cost of preventing the entry
of alien invasive species is lower than that of managing the aftermath. However, in the
event of preventive measures failing, timely detection and accurate evaluation become of
paramount importance to minimize adverse impacts on ecosystems.

The identification of invasive species can be broadly categorized into four modalities,
with ground surveys representing the most traditional approach [11]. The other three
identification methods encompass approaches based on multivariate regression [12] and
remote sensing interpretation and recognition [13], as well as the utilization of Species
Distribution Models (SDMs) for simulation and prediction [5]. Remote sensing technology,
characterized by its remote, non-contact, and non-destructive features, provides an effective
means for the large-scale monitoring of invasive species. Particularly noteworthy are
the commendable achievements in invasive plant mapping through the utilization of
unmanned aerial vehicle (UAV) remote sensing imagery. Anderson et al. [14], employing
object-based image analysis and machine learning algorithms, successfully identified
Phragmites australis in various wetlands in Minnesota. Dmitriev et al. [15] achieved high-
precision identification of invasive species and weeds in agricultural ecosystems using
hyperspectral imagery. Jochems et al. [16], leveraging UAV remote sensing imagery and
employing the random forest algorithm in machine learning classifiers, produced highly
accurate distribution maps for three invasive vegetation types in wetlands. However,
invasive species identification based on remote sensing imagery encounters two main
challenges: first, it is constrained by the reliance on high spatial resolution remote sensing
images, making it difficult to implement applications on a large scale (such as at the
national or global level); second, the accurate identification of low-stature invasive plants
is hindered by occlusion from forests or other vegetation, resulting in lower precision in
remote sensing mapping.

The utilization of species distribution [13] models (SDMs) to simulate and forecast
species’ geographical distribution, extent, and dispersal trends, has become a primary
approach for studying the mechanisms of species-environment interactions and investi-
gating species conservation and management [17]. The introduction and application of
the BIOCLIM model marked the inception of species distribution model development [18].
Subsequently, researchers have explored and applied numerous statistical and rule-based
methods, including Generalized Linear Models (GLMs), Mixture Discriminant Analysis
(MDA), Generalized Boosting Models (GBMs), Classification and Regression Trees (CARTs),
Random Forest (RF), and the Maxent model, among others [19]. Huang et al. [20] con-
ducted a distribution survey of the invasive plant Ageratina adenophora in Guangxi based
on GLM. Marmion et al. [21] explored the geographic distribution of 100 butterfly species
in Europe using eight modeling techniques. They observed that the predictive accuracy
of GLM and MDA is significantly influenced by the geographical attributes of the species.
Dittrich et al. [22] employed GLM, GBM, and RF models to predict the probability of the
presence of three different beetle species. The results indicated that the Area Under the
Curve (AUC) values were consistently higher than 0.7. Dong et al. [23] successfully pre-
dicted the potential changes in seagrass habitat under current and future conditions using
GBM, RF, and Maxent models. Keyghobadi et al. [24] applied GAM and CART models to
estimate the plant species in the Khezri rangelands of the Bayaz plain in southern Khorasan,
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achieving favorable outcomes. The use of SDMs has become the predominant method in
recent years for identifying invasive species. Examples include applications to Asteraceae
plants [4], Trioza erytreae [25], Cabomba caroliniana [26], Amaranthus palmeri [27], Cassia tora,
and Lantana camara [28], as well as S. rostratum [29]. Based on the application of SDMs
in the distribution of the above-mentioned invasive species, researchers have achieved
dual objectives: on the one hand, obtaining the potential spatial distribution of species
habitats, and on the other hand, understanding the factors influencing the distribution
or spread of these species and the extent of their impact. The utilization of these models
and methods to understand potentially suitable areas and dispersal pathways of invasive
alien species is of paramount significance for maintaining ecosystem security, preventing
and managing invasive alien species, and reducing the economic losses resulting from
species invasions. The Maximum Entropy model (Maxent) is widely utilized by researchers
because it requires only a small quantity of species presence point data to function effec-
tively, has a user-friendly interface, and exhibits high predictive accuracy. Satisfactory
achievements have been made in the fields of fauna and flora conservation, particularly
concerning endangered species [30–32], pest control [33–35], and the management of in-
vasive alien species [36,37]. However, issues such as the single type of environmental
variables (with most studies solely utilizing bioclimatic and topographic variables), severe
collinearity among environmental variables, and overfitting in modeling due to a scarcity
of sample points in comparison to the number of variables have had a detrimental impact
on modeling outcomes [38]. Species distribution models implicitly assume that geographic
data points of species records are independent [39], which clearly violates the fundamental
principle of spatial autocorrelation in spatial geography. This, in turn, affects the precision
of the model’s predictions. Researchers have recognized that information redundancy
caused by variable collinearity and the spatial autocorrelation of sample points can impact
the accuracy of predictions. While methods such as Pearson correlation coefficients and
Spearman rank correlation coefficients are commonly used to mitigate highly correlated
factors from a statistical perspective, this approach does not guarantee the biological in-
terpretability of the selected variables [40]. Furthermore, the determination of correlation
thresholds in the actual implementation often varies among individuals and is influenced
by a notable degree of randomness. Decisions regarding whether to exclude highly cor-
related factors entirely or partially involve substantial subjectivity, which may introduce
additional uncertainties into SDM results.

Principal Component Analysis (PCA) is a dimension-reduction (DR) technique primar-
ily employed to reduce vast variable sets to a more concise collection, still retaining many
details from the original data [41]. In the field of remote sensing, PCA is widely utilized
for feature extraction and selection to achieve data dimensionality reduction and removal
of information redundancy, representing a classical method [42]. As a non-supervised
dimensionality reduction approach, PCA is commonly regarded as an effective preprocess-
ing step in the processing and analysis of hyperspectral remote sensing images [43]. For
instance, Uddin et al. [44] employed an enhanced PCA method, extracting top features
from hyperspectral remote sensing images, successfully accomplishing high-precision map-
ping of urban shopping centers in Washington, D.C. In the context of species distribution
studies, the challenge of data dimensionality reduction aligns with the application domain
of PCA. However, the application of PCA-generated principal components encounters
certain difficulties in identifying factors influencing species distribution. Consequently,
attempts to employ this method in this field have been relatively limited.

S. rostratum is an annual herbaceous prickly plant in the Solanum genus of the Solanum
family and is an invasive alien noxious weed [45]. Typically, its plant height ranges from
30 to 70 cm, and the entire plant is covered with conical, spiny structures, carrying toxic
properties. The flowers are yellow, and upon fruit maturation, they automatically split
open, causing the seeds to be expelled and scattered in the vicinity. Each fruit contains
between 55 and 90 seeds, and a single plant can yield an astounding number of seeds, often
exceeding 10,000 [46]. This plant exhibits an astonishing reproductive capacity, charac-
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terized by dormant seeds capable of long-distance dispersal. Originally native to North
America, it is a highly prolific, invasive, and harmful weed species. It first invaded Liaon-
ing Province in China during the 1980s [47] and has since spread to numerous provinces
and municipalities, including Inner Mongolia [48], Xinjiang [29,49], Shanxi [50], Jilin [51],
Hebei [52], Tianjin [53], and Beijing [54,55]. S. rostratum typically inhabits environments like
riverbanks, roadsides, grasslands, and agricultural fields [46]. Its secretions often exhibit
inhibitory effects on the growth of native plants. This species boasts a high reproductive
capacity and rapid growth characteristics, displaying predatory behavior as it competes
for the essential nutrients required by crops, thereby adversely affecting crop growth.
Moreover, S. rostratum serves as an ideal host for certain agricultural pests, such as the
Colorado potato beetle (Leptinotarsa decemlineata Say), intensifying the risk of crop damage
and resulting in noticeable yield losses. Additionally, the plants and fruit of S. rostratum
are thorny and contain toxic substances, making them prone to adhering to livestock and
diminishing the quality of their fur [56]. In the cases of livestock ingestion, S. rostratum
can cause mild gastrointestinal issues or even lead to severe, fatal consequences. It also
poses a certain level of harm to humans, primarily manifesting as skin redness or allergic
reactions upon contact. Therefore, S. rostratum has caused significant harm to China’s
ecological environment, agriculture, and livestock production, resulting in substantial
economic losses [57]. On 1 January 2023, the “List of Key Management of Foreign Invasive
Species” officially classified S. rostratum as a major invasive species in agriculture and
forestry under Chinese management [56]. Currently, scholars’ focus on S. rostratum is pri-
marily centered around the fields of invasion biology [58,59], reproductive strategies [60],
metabolites [61], and control techniques [47,62]. With the continuous advancement of
remote sensing technology, the use of unmanned aerial vehicle (UAV) remote sensing data
for identifying S. rostratum communities and providing guidance for manual control has
become a reality [52,63]. However, due to the relatively small stature of S. rostratum plants,
their scattered distribution, and their tendency to coexist with other plant species, combined
with the high cost of data collection, achieving large-scale, high-precision remote sensing
monitoring remains challenging. While preliminary work has been initiated for predicting
the potential distribution of S. rostratum based on species distribution models [51,64–66],
several issues remain to be addressed. First, the environmental variables used in these
studies tend to be relatively simplistic and do not fully account for diversity and complexity,
potentially limiting the accuracy of model predictions. Furthermore, the existing methods
for addressing collinearity between environmental variables often exhibit significant ran-
domness and even subjectivity, leading to conflicting simulation results across different
studies and raising doubts about the reliability of research findings. It is noteworthy that
research concerning the future invasion trends of S. rostratum is relatively lacking, making
it an area of urgent need of further investigation. Gaining deeper insights into its future
spread and ecological impacts will facilitate a better understanding and management of
this invasive species.

In summary, to address the challenges in applying species distribution models and
simulating the distribution of S. rostratum, there is an urgent need to integrate multiple
sources of remote sensing data and data dimensionality reduction techniques. This in-
tegration is crucial for accurately predicting the potential suitable habitat of S. rostratum
and guiding efforts to control and eradicate this invasive noxious weed. Principal Com-
ponent Analysis (PCA) excels in eliminating high collinearity among variables to reduce
information redundancy [40]. Additionally, the Maxent model is highly regarded for its
ability to perform species distribution predictions with only species occurrence data, dis-
playing superior predictive accuracy compared to other models. Due to the challenges
posed by attribution difficulties, the application of SDM, combining PCA methods, has
not yet been widely adopted. Hence, this study aims to predict the potential habitat of
S. rostratum in China using a combination of multiple environmental variables constructed
from multi-source remote sensing data, including climate, topography, soil, spatial, and
human activities, alongside PCA and the Maxent model. The aims of this study are: (1) to
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map the current and future potential habitat distribution of S. rostratum in China, (2) to
analyze the factors influencing the species distribution of S. rostratum, and (3) to validate
the feasibility of PCA in eliminating high collinearity among environmental factors related
to species distribution. Our study provides a methodological reference for addressing the
issue of high collinearity among environmental variables in species distribution models
and offers a scientific foundation for the selection of control and management target areas
for this pernicious invasive species within China.

2. Materials and Methods
2.1. Presence Data

The presence data of S. rostratum was collated through three distinct methods. First, we
aggregated data published in currently available research articles [46,50–52,55,58,59,61,67–75].
Second, we gathered information from the National Plant Specimen Resource Center [76]
and the Global Biodiversity Information Platform (GBIF) [77]. Thirdly, we obtained dis-
tribution information about S. rostratum from news reports [78]. For certain locations that
provided only place names without latitude and longitude values, we employed the Baidu
Coordinate Retrieval System [79] to determine the coordinates. Through these means,
we collected a total of 223 occurrence points for S. rostratum. Subsequently, we excluded
duplicate sampling sites and records with incomplete information. To mitigate potential
estimation bias caused by the clustering of densely sampled points, we utilized ArcGIS
10.5 software to generate a 1 km × 1 km grid that matched the spatial resolution of the
environmental dataset. This grid was used to filter the occurrence points, ensuring that the
minimum distance between any two points was not less than 1 km. Ultimately, we retained
178 occurrence points for S. rostratum (Figure 1 and Supplementary Table S1) and stored
them in a.csv format, compatible with the Maxent 3.4.4 software.
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2.2. Environmental Variables

We selected a total of 127 environmental factors (Table 1) classified into five categories
for predicting the potential habitat of S. rostratum. The first category encompassed climatic
variables consisting of 19 bioclimatic factors, and the data were sourced from the WorldClim
database. We conducted SDM for both current and future conditions using modern climate
data with a spatial resolution of 30 s. The future climate data were derived from the Shared
Socioeconomic Pathways (SSP) provided by the Intergovernmental Panel on Climate
Change’s (IPCC) Sixth Assessment Report (AR6) [9]. Specifically, SSP1-2.6 represents a low
forcing scenario corresponding to a sustainable development pathway, where radiative
forcing stabilizes at 2.6 W/m2 by 2100, and global temperature rise remains stable at
approximately 1.8 ◦C. In contrast, SSP5-8.5 represents a high forcing scenario characterized
by the dominance of traditional fossil fuel usage, leading to a global temperature increase of
4.4 ◦C by 2100, with radiative forcing at 8.5 W/m2. Additionally, we employed the GISS-E2-
1-G climate model, the latest iteration of the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Studies (GISS) climate model, specifically designed for
integration into the CMIP6 project. We selected two time periods (2021–2040 and 2041–2060)
and considered two scenarios, a low forcing scenario (SSP1-2.6) and a high forcing scenario
(SSP5-8.5).

Table 1. Data source of environmental variables.

Type
Number

of
Features

Year Remark Source

Climatic variables 19
Current:1970–2020;
Future:2021–2040,

2041–2060.
19 bioclimatic factors

WorldClim database
(https://www.worldclim.org/
(accessed on 3 August 2023))

Terrain variables 3 / Elevation, slope, and
aspect

WorldClim database
(https://www.worldclim.org/
(accessed on 3 August 2023))

Soil variables 98 2010–2018
Grid data for various

soil properties at
different depths

National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn (accessed on

3 August 2023))

Humanistic variables 5 2020

GDP, population,
distances to roads and
water bodies, building

density

GDP, population:
Resource and Environmental Science

and Data Center
(https://www.resdc.cn/Default.aspx

(accessed on 3 August 2023))
Roads and water bodies:

OpenStreetMap
(https://www.openstreetmap.org

(accessed on 3 August 2023)) Building:
Geoservice of the Earth Observation

Center (EOC) of the German
Aerospace Center (DLR)

(https://download.geoservice.dlr.de/
WSF2019 (accessed on 3 August 2023))

Spatial variables 2 / Longitude and latitude Extracted from Elevation

The second category of environmental factors comprised terrain variables, including
elevation, slope, and aspect, with data sourced from the WorldClim database. Slope
and aspect data were generated using ArcGIS 10.5 software based on digital elevation
models (DEMs).

The third category consisted of soil variables, comprising a total of 98 factors, such as
soil organic carbon at different depths, pH, total nitrogen, total phosphorus, total potassium,
cation exchange capacity, coarse fragment content (>2 mm), sand content, silt content, clay
content, and bulk density. These datasets were obtained from the Basic Soil Property

https://www.worldclim.org/
https://www.worldclim.org/
http://data.tpdc.ac.cn
https://www.resdc.cn/Default.aspx
https://www.openstreetmap.org
https://download.geoservice.dlr.de/WSF2019
https://download.geoservice.dlr.de/WSF2019


Remote Sens. 2024, 16, 271 7 of 31

Dataset of High-Resolution China Soil Information Grids (2010–2018) provided by the
National Tibetan Plateau Data Center.

The fourth category of environmental factors encompasses humanistic variables, in-
cluding Gross Domestic Product (GDP) grid data, population distribution grid data, dis-
tances to roads and water bodies, and a building density map, totaling five factors. The
GDP and population grid represents the GDP and population within 1 km2. Data on
distances to roads and water bodies were based on vector data from OpenStreetMap which
includes rivers and lakes. We used the Euclidean Distance tool in ArcGIS 10.5 software to
generate 1 km spatial resolution distance grid data. Building density data are based on
a 10 m spatial resolution World Settlement Footprint (WSF) dataset and were processed
using a Gaussian kernel density function to produce a residential area density map.

The fifth category of environmental factors comprises spatial variables, which include
two factors: the values of longitude and latitude. These factors are used to describe the
distribution characteristics of the species in the longitudinal and latitudinal directions.

All the aforementioned environmental variables were resampled to a spatial resolution
of 1 km, standardized to the GCS_WGS1984 projection, and converted to the ASCII format
compatible with Maxent. The names and descriptions of all the environment variables can
be found in Supplementary Table S2.

2.3. Methodology

This study commenced by utilizing presence data for S. rostratum and integrating
diverse remote sensing data sources, including meteorological, topographical, and soil
data, to construct a multidimensional environmental variable dataset. Employing Principal
Component Analysis (PCA) in conjunction with the Maxent model, we simulated the
current and future potential distribution of S. rostratum in China. Subsequently, model
accuracy was assessed through Receiver Operating Characteristic (ROC) curves. Finally,
the contribution of each environmental variable to the species’ habitat distribution was
evaluated using the contribution rates of Principal Components (PCs) derived from the
PCA inverse transformation method combined with the output of the Maxent model. The
specific process is illustrated in Figure 2.
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2.3.1. Principal Component Analysis

Principal Component Analysis (PCA) is a technique employed for the analysis and
simplification of datasets, commonly used for dimensionality reduction. Given the limited
number of sample records for species presence and the potential high correlation, informa-
tion overlap, and data redundancy among input environmental factors, this could lead to
model overfitting [80], raising concerns about the credibility of the simulation results.

(1) Environmental Factors Selection Based on PCA
In this study, we applied the PCA method to integrate all environmental variables,

creating a set of as few as possible and mutually independent new variables known as
Principal Components (PCs). These new variables efficiently retain the information from
the original data and were used for modeling the potential distribution of S. rostratum. The
PCA-based environmental factors selection process consisted of three primary steps:

1) Normalize the sample matrix: We constructed a matrix, denoted as X, comprising
species occurrence records of 177 (represented as n) and environmental variables (repre-
sented as m), resulting in an n × m matrix (Equation (1)). We normalized the matrix X and
generated a new sample matrix XN , using Equation (2).

2) To obtain the feature vector V and eigenvalues λ, we first calculated the covari-
ance (Equation (3)) of the sample matrix XN , and subsequently performed eigenvalue
decomposition based on this (Equation (4)).

3) Dimensionality reduction in the global sample data: First, each environmental vari-
able data (denoted as m) is unfolded pixel by pixel (denoted as p), forming a matrix Sglobla
with p × m. This matrix is then subjected to normalization (Equation (5)) to generate a new
sample matrix Nglobla. Subsequently, by performing the inverse operation on the feature
vectors V and multiplying them by the globally normalized sample matrix, we obtain the
projection of the global samples on the feature vectors (Equation (5)). Finally, based on the
threshold of cumulative variance explained (Equation (6)), we select the Principal Compo-
nents (PCs) to retain, achieving the dimensionality reduction in global samples. To ensure
that the rotation axis and new coordinate origin during the dimensionality reduction in
global samples remain consistent with local sample data, we continue to employ the mean
and standard deviation of the local sample data when normalizing the entire sample set.

This study used a threshold of cumulative variance explanation rate ≥90% to deter-
mine the number of PCs to be retained. The number of new variables obtained under
different simulation scenarios is summarized in Table 2. All new variables were converted
into ASCII format, compatible with Maxent 3.4.4 software.

X =

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

 (1)

XN =
SX − meanX

stdX
(2)

R =
∑n

k=1 (xki − xi)
(

xkj − xj

)
√

∑n
k=1 (xki − xi)

2∑n
k=1

(
xkj − xj

)2
(3)

λ, V = Eig(R) (4)

Nglobla =
Sglobla − meanX

stdX
(5)

PCs = V−1 × Nglobla (6)
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Vc =
∑n

k=1 λk

∑m
k=1 λk

(7)

where X is the sample matrix n is the row of the matrix, the number of samples; m is
the column of the matrix, the number of environmental variables; XN is the new matrix
generated by normalizing the sample matrix X; R is the covariance matrix of XN ; Eig(R)
represents the eigenvalue decomposition operation; λ represents the eigenvalues obtained
through eigenvalue decomposition; V signifies the eigenvectors obtained through eigen-
value decomposition; Vc denotes the cumulative variance explained; Nglobla is the new
matrix generated by normalizing the global sample matrix, where each element represents
a sample point of all environmental variable grids; PCs refer to the global principal compo-
nents selected based on the threshold of cumulative variance explained; V−1 corresponds
to the inverse operation on eigenvectors.

Table 2. The quantity of new variables derived via PCA across different simulation scenarios.

Simulation Scenario Number of Input
Variables

Number of New
Variables PCs Name

current 1 (1970–2020) 127 a 11 pc1, pc2, pc3. . .. . .,
pc11

current 2 (1970–2020) 24 b 4 pc1, pc2, pc3, pc4
future 1

(2021–2040: SSP1-2.6,
SSP5-8.5)

24 b 4 pc1, pc2, pc3, pc4

future 2
(2041–2060: SSP1-2.6,

SSP5-8.5)
24 b 4 pc1, pc2, pc3, pc4

a This means that it contains 19 climate factors + 3 terrain factors + 98 soil factors +5 humanistic factors, + 2 spatial
factors and b This means that it contains 19 climate factors + 3 terrain factors + 2 spatial factors.

Due to the absence of data on soil and human activity factors in future scenarios, to
ensure the comparability of predictions for the potential habitat suitability of S. rostratum
under current and future climate scenarios, we employed environmental variables of the
same type as those in future climate models to simulate the potential habitat of S. rostratum
under current climate conditions. Specifically, we conducted two types of distribution
predictions: one based on comprehensive environmental variables (referred to as “current
1”) and the other based on environmental variables of the same type as those in the future
climate models (referred to as “current 2”). In the end, for the climate model “current 1,”
following PCA screening, we obtained 11 PCs for environmental variable input into the
model, while for “current 2” and the future climate models, we consistently selected 4 PCs.

(2) Calculation of Factor Contributions Based on PCA Inverse Transformation
The application of PCA aids in data dimensionality reduction and the removal of

inter-factor correlations, but it also diminishes the interpretability of the original variables
concerning the outcomes [81]. However, in species distribution prediction studies, it is
crucial to understand which environmental factors influence species distribution to take
relevant actions for species conservation or control. To address this issue, the current
study employed PCA inverse transformation to calculate the mapping of each principal
component onto the original environmental variables, thereby revealing the weight impacts
of each original environmental factor on species distribution.

The Maxent model has the capability to calculate the contribution of each Principal
Component (PC) to species distribution. Subsequently, based on the contributions of
each PC generated by the Maxent model, we employed the PCA inverse transformation
method (Equation (8)) to obtain the weights (i.e., projections) of each original environ-
mental variable on the various PCs. Since each PC has a distinct direction, the weights
of environmental variables on these PCs may be either positive or negative, representing
their directional influence. However, by taking the absolute values of these weights, we
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were able to compare their relative magnitudes, thus determining the contribution of each
environmental variable.

Ci = V × W (8)

where Ci is the contribution of each environmental variable; W is the contribution matrix
of each PC to species distribution calculated by the Maxent model.

(3) K-means clustering
Due to multicollinearity among environmental factors, it is challenging to accurately

reflect their actual impacts on species distribution solely based on the individual contribu-
tions of each factor. This situation may lead to incorrect attributions. Therefore, we also
need to conduct cluster analysis based on the weights (including directional information),
contributions, and category characteristics of each factor obtained through PCA inverse
transformation. This analysis allows us to identify clusters of variables, where the factors
within each cluster share similar characteristics, have consistent weight directions, and
exhibit similar contributions.

K-means clustering stands as an iterative algorithm widely employed in cluster analy-
sis. Its foundational principle involves partitioning a dataset into a pre-specified number,
K, of distinct groups, iteratively refining the similarity of data within each group while con-
currently minimizing dissimilarity between different groups [82]. Essentially, this method
utilizes the mean values of clustered objects to generate clusters [83]. In this study, we
selected K contribution ratio data as the initial cluster centers. Subsequently, we computed
the distance between each contribution ratio and these cluster centers, assigning each
contribution ratio to the group represented by its nearest cluster center. Following this,
we recalculated the average value for each group, utilizing it as the new cluster center.
This iterative process continues until the specified termination condition is met. Through
this methodology, we can comprehensively, holistically, and effectively identify factors
influencing species distribution in our research.

We conducted PCA analysis and data processing using Python (version 3.7.4). For
factor attribution cluster analysis of environmental variables, we employed the K-Means
method available in the Scientific Platform Serving for Statistics Professional (SPSSPRO)
software (version 1.0).

2.3.2. Maxent Model

Maxent is a machine learning model based on the maximum entropy principle. What
sets it apart is its unique ability to predict species habitat suitability above a certain threshold
using only species presence data and a set of environmental variables as input [84,85],
thereby enabling the forecasting of species distribution [86]. One of the model’s significant
characteristics is its independence from the need for actual absence records, meaning it
does not rely on data when a species is known not to exist. Instead, it achieves highly
accurate simulation results using a minimal amount of known species presence records as
samples [87]. In this study, we employed the Maxent 3.4.4 model to simulate the potential
distribution of S. rostratum in China under current and future scenarios. The training data
consisted of 75% of presence points, with the remaining 25% designated for testing. We
conducted 10 repetitions of predictions using cross-validation, averaging the results for the
final outcome, which was then saved in ASCII format. The representation of probabilities
in the output grids followed the logistic model, presenting values on a scale from 0 to 1,
with values closer to 1 indicating higher habitat suitability. The potential suitable habitats
of S. rostratum were classified into four suitability categories: Unsuitable habitat (0–0.2),
low suitable habitat (0.2–0.4), high suitable habitat (0.4–0.6), and optimal suitable habitat
(0.6–1.0) [80]. Finally, the reclassification of model predictions and data analysis were
performed using ArcGIS 10.5 software.
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2.3.3. Evaluation of Model Accuracy

We employed Receiver Operating Characteristic (ROC) curves and Area Under the
Curve (AUC) values to assess the accuracy of the Maxent model’s predictions. The AUC
value represents the area under the ROC curve, ranging from 0 to 1. The magnitude of the
AUC value reflects the model’s accuracy and predictive performance. A larger AUC value
indicates more precise model simulations, with values closer to 1 signifying better predictive
performance. Model performance is categorized based on AUC values into the following
levels: random prediction (AUC = 0.5), poor (0.5 < AUC ≤ 0.6), fair (0.6 < AUC ≤ 0.7),
moderate (0.7 < AUC ≤ 0.8), good (0.8 < AUC ≤ 0.9), and excellent (0.9 < AUC ≤ 1.0) [85].
These metrics are used to evaluate the predictive accuracy of the Maxent model.

2.3.4. Spatial Geometric Center Analysis

The centroid, representing the geometric center in geographical features, provides in-
sight into spatial migration characteristics through the analysis of its spatial variations [88].
The centroid is determined by creating an approximate geometric ellipse for a geographical
feature, and the computation of this ellipse’s center (i.e., the intersection of the major and
minor axes) defines the centroid or spatial geometric center of the geographical feature.
We employed this methodology to investigate the potential spatial migration patterns of
S. rostratum habitats in the future, offering valuable insights for controlling its spread. In
this study, the spatial geometric centers of potential suitable habitats for S. rostratum were
computed using the regional geographic statistical tools in ArcGIS 10.5 software under
various simulated scenarios.

3. Results
3.1. Model Accuracy

We employed the Maxent model to simulate the potential suitable habitats of S. ro-
stratum using a total of six datasets, comprising two sets of current climatic conditions
and four sets of future climate scenarios. Accuracy assessment based on the ROC method
revealed that all six simulated datasets achieved AUC values exceeding 0.900, reaching an
excellent level of performance. Notably, under the current 1 climate scenario (incorporating
127 environmental variables), the simulation accuracy was outstanding, with a mean AUC
of 0.941 (Figure 3). The training AUC reached 0.950, and the test AUC reached 0.980.
These results underscore the high reliability of using this set of environmental variables
for predicting the geographical distribution of S. rostratum in China. Furthermore, the
simulation outcomes for current 2 and future climate scenarios also exhibited satisfactory
accuracy, with AUC values ranging from 0.915 to 0.925. In particular, the AUC value for
the current 2 scenario was notably high at 0.925, and the AUC values for the four future
climate scenarios were relatively similar.
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Figure 3. ROC curves of the Maxent model under various simulation scenarios. (a,b) represent the
prediction of current 1 and current 2, respectively; (c,d) depict projections for future 1 from 2021 to
2040 under SSP1-2.6 and SSP5-8.5 scenarios, respectively; (e,f) illustrate future 2 projections for the
years 2041–2060 under the SSP1-2.6 and SSP5-8.5 scenarios, respectively.

3.2. The Spatial and Temporal Dynamics of Potential Habitats of S. rostratum
3.2.1. Current Climate Scenarios

To ensure comparability between the potential distribution of S. rostratum under cur-
rent and future climate scenarios, given the absence of data on soil factors and humanistic
factors in future scenarios, we employed environmental variables of the same type as
the future climate models to predict the habitat distribution of S. rostratum under the
current climate scenario (current 2). Additionally, we conducted a distribution prediction
using comprehensive environmental variables, referred to as current 1. This approach
yielded two sets of simulated results for the potential suitable habitat of S. rostratum under
current conditions.

The simulation results of the Maxent model indicate that under the current climatic
scenarios, the total potential habitat area for S. rostratum in China is 1.3952 million km2 for
current 1 and 2.9920 million km2 for current 2. These areas represent 14.53% and 30.44%
of the total land area in China, respectively. The difference in the extent of these two
suitable habitat areas is substantial, with current 2 being 2.1 times larger, and the reasons
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for this difference will be discussed in detail in the discussion sections. Notably, both
suitable habitat areas are situated in northern China. current 1 is specifically designed
for static analysis of the current distribution of S. rostratum in China, while current 2 is
employed to examine the spatiotemporal dynamics of S. rostratum and compare it with
future climatic scenarios.

As shown in Figures 4 and 5a, under the current 1 scenario, the optimal suitable
habitat for S. rostratum constitutes 15.01% of the total suitable area. This habitat is most
extensive and concentrated in Xinjiang, covering an area of 98,774 km2, which accounts
for 47.17% of the national total. The suitable habitat is primarily located on the northern
slopes of the Tianshan Mountains, in the Ili River Valley, and along the northwestern edge
of the Tarim Basin. In comparison to other provinces, there is also relatively concentrated
distribution in the border regions of three provinces: Shaanxi, Hebei, and Inner Mongolia,
as well as the northwestern areas of Liaoning bordering Inner Mongolia and the north-
western regions of Jilin. The high suitable habitat constitutes 26.06% of the total suitable
area, predominantly surrounding the optimal suitable habitat, with a relatively dispersed
distribution. Inner Mongolia and Xinjiang encompass the largest areas of high suitable
habitat, with 126,041 km2 and 112,057 km2, respectively. The low suitable habitat repre-
sents pioneer areas for species dispersion, and it exhibits the most extensive distribution,
encompassing 58.93% of the total suitable area. It is primarily found in Xinjiang and in the
border regions of provinces adjacent to Inner Mongolia, including Shaanxi, Shanxi, Hebei,
Liaoning, Jilin, and Heilongjiang. In Inner Mongolia and Xinjiang, the total area covered by
low suitable habitat reaches 452,141 km2, accounting for 54.87% of the total suitable habitat
area nationwide.
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Figure 5. Map of the potential habitat suitability of S. rostratum under various simulation scenarios in
China. (a,b) represent the prediction of current 1 and current 2, respectively; (c,d) depict projections
for future 1 from 2021 to 2040 under SSP1-2.6 and SSP5-8.5 scenarios, respectively; (e,f) illustrate
future 2 projections for the years 2041–2060 under the SSP1-2.6 and SSP5-8.5 scenarios, respectively.

Under the current 2 scenario, the potential suitable habitat for S. rostratum is notably
more extensive, covering 18.07% of the total suitable area. Xinjiang and Inner Mongolia
are the provinces with the most widespread optimal suitable habitat, together accounting
for 73.83% of the national area within this category. Liaoning, Jilin, and Hebei provinces
each have distribution areas exceeding 10,000 km2, measuring 67,497 km2, 36,206 km2, and
22,993 km2, respectively. The region at the junction of Inner Mongolia, Jilin, and Liaoning
provinces forms the largest concentration of “optimal suitable habitat,” while the second-
largest concentration is located in Xinjiang’s Ili River Valley and the narrow strip on the
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northern slope of the Tianshan Mountains, extending northwards to the Tacheng Region in
the west. Several other smaller concentrated areas can be observed in detail in Figure 5b.
The total area of high suitable habitat is 0.7883 million km2, accounting for 26.98% of the
overall suitable area. It is predominantly distributed in Inner Mongolia (0.1998 million km2)
and Xinjiang (0.3565 million km2), collectively covering 70.61% of similar areas nationwide.
Xinjiang’s Gurbantünggüt Desert stands as the largest concentration area, followed by the
nearly continuous oasis region surrounding the Taklamakan Desert. In other provinces,
the distribution is relatively scattered. The low suitable habitat boasts the largest area and
a widespread distribution, covering 54.95% of the total suitable area. In the northeast,
it has already spread to Heilongjiang Province, covering almost all oasis regions in the
northwest. In Inner Mongolia, nearly every city except for the colder climate of Hulunbuir
City has areas of this habitat. Consequently, under current environmental conditions,
S. rostratum demonstrates exceptional adaptability, warranting our attention. We need to
closely monitor the potential expansion of the areas where this invasive species might cause
unforeseen harm and take preventive measures in advance.

As a result of utilizing different sets of environmental variables in the construction
of the models for current 1 and current 2, noticeable disparities exist in the simulation
outcomes. As demonstrated in Figure 6, a significant distinction in the suitable habitat of
S. rostratum under the current climate scenarios (current 1 and current 2) is apparent, with
an area difference of 1.9809 million km2. Current 2 incorporates environmental variables
mainly related to climate, topography, and spatial factors. In comparison to current 1,
it provides more relaxed constraints, resulting in broader coverage of suitable habitat
(depicted as “increased areas” in Figure 6), with a total area of 1.7507 million km2. It
is worth noting that the majority of these expanded areas are distributed within desert
regions, including the Taklamakan Desert in southern Xinjiang, the Gurbantünggüt Desert
in northern Xinjiang, the Kumtag Desert in eastern Xinjiang, the Badain Jaran Desert, the
Ulan Buh Desert, and the Kubuqi Desert in northern Inner Mongolia. Although these
regions might possess potential conditions conducive to the growth of S. rostratum in
terms of climate and topography, suitability for S. rostratum also depends on soil and
moisture conditions. Consequently, not all these areas are necessarily suitable for this
species. Conversely, regions identified as suitable for habitat by current 1 but deemed
unsuitable by current 2 (referred to as “reduced areas” in Figure 6) are relatively limited
in number, primarily located in Gansu and Inner Mongolia, covering smaller areas in
other provinces. it is notable that Xilinhot City and Hulun Buir City in Inner Mongolia,
Gansu Province, and Shandong Province are not included in the suitable habitat prediction
range of current 2. These areas are highly likely to have already experienced S. rostratum
invasion or present a significant risk of invasion. Particular attention should be directed
toward Shandong Province, which boasts abundant port resources and has records of
S. rostratum presence in the port city of Weihai. Furthermore, the prediction results of our
current 1 model also indicate extensive potential suitable habitat in Shandong Province,
emphasizing the elevated risk in this region. Hence, we strongly recommend that relevant
authorities proactively conduct on-site investigations and enhance quarantine measures
against alien invasive species in ports to eradicate S. rostratum before it spreads extensively,
thus averting more extensive harm and economic losses.
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Figure 6. The contrast map of S. rostratum’s suitable habitat in the present climate scenario (current
1 and current 2). “Increased areas” indicate regions where current 2 identifies suitability for habitation,
while current 1 does not. Conversely, “reduced areas” indicate regions that current 1 deems suitable,
but are considered unsuitable by current 2.

3.2.2. Future Climate Scenarios

The potential suitable habitat area of S. rostratum is projected to increase in the future.
However, the extent of this expansion varies across different time periods, as illustrated in
Figures 4 and 5. In the future 1 scenarios under SSP1-2.6 and SSP5-8.5, the suitable habitat
areas for S. rostratum cover 3.1971 million km2 and 3.3138 million km2, respectively. This
represents a 9.41% and 13.41% increase compared to current 2. In the future 2 scenarios
under SSP1-2.6 and SSP5-8.5, the habitat areas extend to 3.4839 million km2 and 3.3424 mil-
lion km2, respectively, indicating an additional 19.23% and 14.39% compared to current
2. Notably, the future 2 scenario under SSP1-2.6 is most conducive to the growth of S. ros-
tratum, featuring the largest total suitable habitat area and the widest distribution range.
For example, in Gansu province, the low suitable habitat area reaches its maximum in the
future 2 scenario under SSP1-2.6, with a 3.35-fold increase compared to current 2. In Inner
Mongolia, the area of high suitable habitat reaches its peak during this period, exhibiting a
1.88-fold increase compared to current 2 and covering an area of 0.3756 million km2.

3.2.3. Temporal and Spatial Dissemination Trends

Spatial geometric center analysis (Figure 7) indicates a distinct trend of southward
extension and northward expansion in the potential habitat of S. rostratum from the current
period to 2060. Specifically, both low suitable habitat and high suitable habitat exhibit
a southward migration, with the former shifting southwestward and the latter moving
southeastward. In contrast, the optimal suitable habitat demonstrates an expansion toward
the northeast. For instance, as depicted in Figure 5b,f, during the current periods (current
1 and current 2), the uninvaded province of Henan, under the SSP5-8.5 scenario for future
2, witnesses a significant southward expansion of the concentrated area of low suitable
habitat, extending approximately 300 km southward to the northern vicinity of Xuchang city.
Additionally, in Gansu and Inner Mongolia, a notable northeast-to-southwest migration
pattern is observed in low suitable habitat. Furthermore, the concentrated distribution area
of high suitable habitat in Hebei province has shifted more than 350 km to the south.
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Figure 7. Alterations in the geometric center’s position within the potential habitat suitability of
S. rostratum across multiple simulation scenarios in China. In this figure, various point shapes
represent distinct scenarios, and point colors indicate different levels of habitat suitability. The red
arrows highlight the directional shift in the geometric center of the S. rostratum habitat suitability.

The migratory trend observed in the distribution of S. rostratum within its suitable
habitat range indicates an expansion of its growth range. It is no longer confined solely to
northern regions of China but exhibits a significantly enhanced potential for dispersal into
southern regions, particularly those with more favorable climatic conditions. Simultane-
ously, the northward shift of its optimal suitable habitat reflects the successful adaptation
and consolidation of its presence in the existing northern distribution areas, especially
in regions characterized by lower temperatures and relatively impoverished soils. Taken
together, these observations raise concerns about the future development of S. rostratum. In
environments characterized by limited moisture, suboptimal temperature conditions, and
nutrient-poor soils, S. rostratum demonstrates rapid and extensive reproductive capabilities.
Therefore, in relatively favorable habitats in southern China, its adaptability and rate of
expansion may be more pronounced and rapid. This underscores the need for stricter risk
mitigation measures to alleviate potential risks.

3.3. Factors Influencing the Suitable Habitat of S. rostratum

Based on the simulation results from current 1, we assessed the contribution of each
environmental variable to the potential habitat suitability of S. rostratum. Employing the
K-Means clustering method, we identified 11 variable clusters (designated as C1–C11 in
Table 3), which collectively encompassed 91 distinct environmental factors. The combined
contribution of these variable clusters amounted to 91.21%. Specifically, soil variables
exhibited the most substantial contribution to habitat suitability, contributing a noteworthy
75.85%. Following closely were climatic variables, accumulating a total contribution of
10.98%. The remaining variable categories, in descending order of contribution, included
spatial variables (2.05%), human-related variables (1.27%), and topographical variables
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(1.06%). It is essential to emphasize that the ranking of these variable clusters takes into
account not only the overall contribution rate of the cluster but also the integrated con-
tribution rates of individual variables within each cluster. Consequently, certain clusters
with lower contribution rates may be assigned higher rankings due to the significant contri-
butions made by specific variables within those clusters. For instance, specific variables
within clusters such as C3, C4, and C7 exhibited notably high contribution rates. The
top three variable clusters collectively contributed 60.77%, with soil variables dominating
these rankings. Climatic variables occupied the fourth and fifth positions, while spatial,
humanistic variables and topographic variables were situated in the lower three positions
within the variable clusters, respectively.

Table 3. Contribution rates and composition of variable clusters.

Cluster
Names

Contribution
Rate (%) Variables Cluster

Names
Contribution

Rate (%) Variables

C1 40.99

total potassium density,
total potassium, total

nitrogen, total nitrogen
density, total phosphorus,
total phosphorus density

C7 8.80 soil organic carbon, soil organic
carbon density

C2 12.70 coarse fragment content,
sand (0.05–2 mm) C8 2.15 cation exchange capacity

C3 7.08 pH C9 2.05 geographical longitude,
geographical latitude

C4 7.14 bio3, bio6, bio11, bio12,
bio13, bio15, bio16, bio18 C10 1.27

distance from building ups,
gross domestic

product (GDP) within grid,
population count within each
grid cell (1 square kilometer)

C5 4.53 bio4, bio5, bio7, bio10 C11 1.06 elevation, aspect, slope
C6 4.12 bulk density, thickness

Bio refers to bioclimatic variables; Soil variables encompass C1, C2, C3, C6, C7, and C8; Climate variables comprise
C4 and C5; Spatial variables are represented by C9; Humanistic variables are included in C10.

The essential nutrients required by plants, such as nitrogen, phosphorus, and potas-
sium, were amalgamated into variable cluster C1, which exhibited the most pronounced
impact on the habitat suitability of S. rostratum, with a substantial contribution rate of
40.99%. Among these factors, the influence of potassium was particularly noteworthy,
especially evident in variables such as total potassium and total potassium density at vari-
ous depths (please refer to Table S1 for variable names). These variables were exclusively
clustered within C1, collectively contributing 19.66% of the total cumulative contribution,
representing a substantial 47.96% of C1’s overall influence. This outcome underscores the
significant effect of potassium elements in the soil on the habitat suitability of S. rostra-
tum. On the other hand, representing the soil texture conditions, cluster C2 contributed
12.70% to the explanatory power of S. rostratum’s habitat suitability. Notably, the factor
of coarse fragment content alone contributed significantly, at a rate of 9.06%. This result
further corroborates the plant’s ability to thrive in challenging environments, commonly
observed in areas with a high content of gravel, such as riverbanks and roadsides [52].
Furthermore, C3 primarily encompassed pH variables (comprising six factors at varying
depths), contributing 7.08% to the overall explanatory power. The relatively high individ-
ual contributions of these variables emphasize the significant impact of pH levels on the
distribution of S. rostratum.
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3.4. Impact Analysis on Model Prediction Accuracy
3.4.1. Impact of Different Combinations of Environmental Variables

In this study, we conducted an analysis under the current climate scenario aimed at
evaluating the influence of different environmental variables on the accuracy of simulating
the habitat suitability of S. rostratum. As shown in Table 4, various types of environmental
variables significantly impacted the model’s predictive accuracy for habitat suitability. The
highest predictive accuracy was achieved when all five environmental variables were used
(ID1), whereas the lowest performance was observed when soil and humanistic variables
were omitted (ID3). In the absence of soil variables (ID2), despite maintaining a relatively
high mean AUC value, there were noticeable differences between training AUC and test
AUC, particularly a decline in test AUC. This highlights the instability in the model’s
predictive accuracy when soil variables are not considered, underscoring the substantial
contribution of soil factors to the habitat suitability of S. rostratum. Emulating the approach
of other researchers, when considering only climate, topographic, and spatial variables
(ID3), the results exhibited notably inferior simulation accuracy, ranking at the lowest level
among all simulated outcomes.

Table 4. Influence of various environmental variables on model prediction accuracy.

ID The Types of Input
Environmental Variables

Training
AUC Test AUC Mean AUC Remark

1 A+B+C+D+E 0.950 0.980 0.941 current 1
2 A+B+D+E 0.943 0.895 0.934
3 A+B+E 0.934 0.929 0.925 current 2
4 A+B+C+E 0.944 0.956 0.935
5 B+C+D+E 0.948 0.971 0.933
6 A+B+C+D 0.945 0.939 0.934

A: Climatic variables; B: Terrain variables; C: Soil variables; D: Humanistic variables; E: Spatial variables. Training
AUC and Test AUC represent the AUC values acquired in the tenth model run. Mean AUC signifies the average
AUC value obtained after conducting ten consecutive model runs.

It is worth noting that the terms current 1 and current 2 in the remark represent the
results of habitat distribution predictions for S. rostratum obtained through modeling based
on different sets of environmental variables under the current climatic conditions (i.e.,
current 1 and current 2).

The simulation of the potential habitat for S. rostratum based on the current 1 scenario
not only demonstrated a high precision with AUC values but also exhibited exceptional
and detailed spatial mapping accuracy. Specifically, as illustrated in Figure 8, the simulated
distribution map of S. rostratum clearly revealed its distribution pattern in oasis areas,
including residential areas, roads, and water channels. The map distinctly identified the
correlation between the suitable habitat of YST and the oases, such as the Hetian River
traversing the Taklamakan Desert, the Keriya River oasis disappearing in the deep desert,
and other annotated oasis distributions.

In contrast, the simulation map under the current 2 scenario, which did not consider
humanistic and soil factors (see Figure 5b), not only failed to depict the distribution pattern
of S. rostratum habitat but also indicated extensive suitability in the harsh desert condi-
tions (Figure 6). This contradicts the viewpoint of Song et al. [72], who suggested that
S. rostratum remains highly dependent on water resources even in adverse environments
and is frequently found near water bodies. The oases distributed along the edges of the
deserts in Xinjiang are sustained by water, providing relatively favorable living conditions,
including abundant water resources, to support various vegetation types, including S. ro-
stratum. Therefore, the validity of the results from the current 1 scenario simulation has
been verified and supported by existing research.
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In conclusion, when conducting predictions for potential species habitat suitability,
it is advisable to integrate as many environmen014tal variables as possible, rather than
restricting the analysis to one or two types of variables, to ensure credible predictions of
habitat distribution.

3.4.2. Impact of Decorrelation Methods

To assess the impact of environmental variable decorrelation methods on the accuracy
of species distribution models, we employed the widely utilized Spearman correlation
analysis to decorrelate environmental factors [29]. Subsequently, the refined set of envi-
ronmental variables was input into the Maxent model for simulating the potential habitat
of the S. rostratum. Following this, we compared the predictive accuracy of the model
obtained through this approach with that of the PCA method employed in this study to
evaluate the feasibility of our method. The results (refer to Table 5) reveal a significantly
lower number of variables (11 PCs) after applying the PCA decorrelation method compared
to the results of Spearman correlation analysis (70 and 62 original environmental variables,
respectively), especially when the correlation coefficient threshold is low, yielding fewer
variables in the Spearman method. In terms of model simulation accuracy, the PCA method
demonstrated a precision of 0.941, markedly surpassing the Spearman correlation analysis.
Comparative analysis indicates that a reduced number of variables after decorrelation
corresponds to higher model accuracy. In summary, our utilization of the PCA-based envi-
ronmental variable decorrelation approach substantially enhances the predictive accuracy
of potential habitats for the S. rostratum, presenting a distinct advantage over methods
based on correlation coefficients.

Table 5. Impact of environmental variable decorrelation methods on model accuracy.

ID Method Number of input
Variables

Number of Variables
after Decorrelation

Training
AUC Test AUC Mean AUC Remark

1 PCA 127 11 0.950 0.980 0.941 /
2

Spearman
Correlation 127

73 0.811 0.874 0.763 0.75 [29]
3 70 0.897 0.911 0.861 0.6
4 62 0.889 0.947 0.866 0.4

The values 0.6 and 0.4 in the footnote respectively denote the correlation coefficient thresholds employed in the
decorrelation of environmental variables; Training AUC and Test AUC are the AUC values obtained during the
tenth run of the model; mean AUC is the average AUC value obtained after the model has been run consecutively
ten times.
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4. Discussion

In the process of model construction, particularly when dealing with a large number
of independent variables, limited sample data, and high intercorrelation among those
variables, the risk of encountering a severe overfitting issue is pronounced. This can sub-
stantially distort the predictive outcomes of the model. To address this challenge, our study
adopted the PCA method in conjunction with the Maxent model to project the current
and future potential habitat suitability for S. rostratum. This was achieved despite the
constraints of limited sample data and a diverse array of environmental variables, focusing
on the incorporation of robust modeling techniques. This approach not only effectively
mitigated overfitting concerns but also enhanced the model’s predictive accuracy. Further-
more, it underscored the combined impact of multiple factors on species distribution. The
study comprehensively considered the intertwined influence of natural and human-related
factors on habitats. Various factors, including climate, topography, soil composition, spatial
structure, and human activities, were integrated into the predictive model as environ-
mental variables to produce precise distribution maps for both the current and future
habitat suitability zones of S. rostratum. The results yielded highly satisfactory levels of
simulation accuracy.

4.1. The Distribution of Potential Suitable Habitats under Contemporary Climate Scenarios

Zhong et al. [64–66], based on global occurrence records, climate, and topographic
factors, employed species distribution models to predict the global distribution of S. ro-
stratum, ultimately mapping it onto the Chinese region. They contended that excluding
Tibet, Qinghai, and Hainan, as well as the southern parts of Guangdong and Guangxi, all
other regions in China are highly suitable areas for S. rostratum, particularly in North, Cen-
tral, and East China. This conclusion differs somewhat from our study’s findings, which
project that the primary potential suitability zones for S. rostratum in the current and future
40 years remain concentrated in northern China. We posit that this discrepancy primarily
arises because their study only considered climate and topographic factors as predictive
variables, likely resulting in an overestimation of S. rostratum’s suitability in China. Plant
reproduction and growth depend not only on climatic conditions but also on soil, which
provides essential nutrients and substrate. Ignoring this crucial limiting factor inevitably
leads to unreasonable judgments about its potential habitat. We particularly emphasize
the importance of comprehensively considering multiple environmental factors for the
suitability of S. rostratum habitat, extending beyond climate and topographic factors alone.
To further validate the reliability of our study results, we conducted a comparative analysis
between the simulated potential habitat of S. rostratum and global distribution points.

Despite the broad adaptability of this invasive species, it appears that the southern
regions of China are less susceptible to its invasion. This might be partly attributed to the
hot and humid climate and acidic soils prevalent in the southern regions, conditions that
may be less conducive to the growth of S. rostratum. As depicted in Figure 9, based on the
latest data from the GBIF [77], distribution records for S. rostratum are widespread across
North America and Europe, with relatively more records in southern Oceania, and sporadic
records in southern Africa and Asia. In the Northern Hemisphere, the northernmost
recorded distribution point is at approximately 67.87◦ North latitude (central Norway),
while the densest distribution area extends to about 60◦ North latitude (southeastern
Norway). The southernmost sporadic distribution point is located at approximately 14.1◦

North latitude (southwestern Honduras), with the southernmost concentrated distribution
area at about 17◦ North latitude (southern Mexico). The native range of S. rostratum
encompasses the United States and Mexico, with a total of 10,996 known distribution
points, representing 89.8% of global distribution records. This region’s north–south span is
comparable to that of China, and its climate and topography in the east-west direction are
also relatively similar. Theoretically, from a climate suitability perspective, the distribution
span of S. rostratum in southern China should be similar to its range in the United States and
Mexico, which aligns with the conclusions of Zhong et al.’s research [64–66]. However, as of
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now, the region between 32◦N and 25◦S (excluding North America) appears to manifest as a
void in the distribution of S. rostratum, with much of southern China precisely falling within
this range (Figure 9). It is noteworthy that 99% of the observed S. rostratum occurrences and
our predictions for both current and future scenarios do not extend beyond the north–south
demarcation line of China, represented by the Qinling-Huaihe line. The only exception is
an individual specimen independently discovered in the southern part of Zhejiang [78].
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From the perspective of the spread of invasive species, similar to many other alien
invasive species, it is primarily believed to have entered China through the importation of
cereals and seeds [11], with coastal ports being the most likely entry points [4]. Statistically,
China’s grain imports have increased elevenfold since 2000, reaching 170 million tons in
2021 [89], with a significant portion passing through coastal ports for domestic distribution.
However, to date, there have been no records of S. rostratum invasion in southern Chinese
port cities. The interpretation of this unique phenomenon may stem from two aspects.
First, it could indicate an enhanced awareness within the Chinese government regarding
the potential threat posed by the invasion of S. rostratum, leading to a reinforcement
of quarantine measures for imported goods. Second, it may further substantiate the
perspective that the southern regions of China are indeed unsuitable for the habitat of the
S. rostratum.

4.2. The Spatial Distribution of S. rostratum Is Influenced by Multiple Factors

Plant habitats constitute ecological systems formed by a combination of various
elements, including but not limited to moisture, climate, topography, soil characteristics,
and biodiversity. With the increasing intensity of human activities, human influence has
gradually become one of the pivotal factors affecting habitat suitability for plants [90].
The Global Climate Project offers standardized environmental variables related to global
climate and topography. Recently, an increasing number of studies have utilized all or a
subset of the 19 “bioclimatic variables” for species distribution predictions [40]. However,
relying solely on single-factor prediction methods may exhibit certain limitations because,
in complex and diverse ecosystems, the interactions among various factors have a more
pronounced impact on habitat suitability.

Our assessment of environmental variable contributions (Table 3) reveals that soil is
the most significant determinant of the factors influencing the distribution of S. rostratum,
followed by climatic factors. Spatial, human, and topographical factors also have some
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influence on its habitat suitability. These findings account for the primary reasons behind
the disparities in our study results compared to previous potential habitat suitability
predictions for S. rostratum. According to Lin [46], S. rostratum thrives in various soil
types, showing particular adaptability in sandy and alkaline soils. Our research results
validate this perspective. Within our environmental variable clusters (see Section 3.3 for
details), C1 contains information on all soil nutrients, C2 emphasizes the characteristics
of sandy soils, and C3 pertains to soil pH. These three top-ranking factors collectively
contribute 60.77% of the total contribution rate. Hamit et al. [29] also recognized the
importance of soil in the habitat suitability of S. rostratum, being the only study among
current research on this invasive weed that considers soil elements. Our research results
show that environmental variables such as C1, C2, and C7 make a certain contribution to
S. rostratum’s distribution, which is consistent with our consensus. However, it is worth
noting that Hamit places more emphasis on the impact of human disturbance on the
distribution and spread of S. rostratum, with her research indicating that the intensity of
human activities has the highest contribution rate to the plant’s suitable area. Surprisingly,
her study excludes the potassium factor within soil nutrient variables. In contrast, our
research results indicate that potassium has the most significant influence among soil
factors, with cumulative contribution rates reaching 19.66% for total potassium and total
potassium density. Additionally, we believe that soil bulk density (C6), soil thickness (C6),
and cation exchange capacity (C8) also influence the habitat suitability of S. rostratum.

Climate has a crucial impact on the habitat suitability of S. rostratum, a conclusion
consistent with prior research findings. In our study, climatic factors contributed 10.98% to
the habitat suitability of S. rostratum. Specifically, temperature annual range (bio7), tem-
perature seasonality (bio4), and precipitation seasonality (bio15) each exhibited significant
effects on suitability, contributing 1.31%, 1.19%, and 1.07%, respectively. Among all climatic
variables, these three were the most pronounced factors. Sharim [74] noted that S. rostratum
seeds enter a dormant state in low-temperature, arid conditions and awaken with rising
temperatures and sufficient moisture in spring, a pattern conducive to its reproduction.
The optimal germination temperature for S. rostratum seeds falls between 25 and 35 ◦C [91],
and during the summer growing season, high temperatures and ample moisture favor its
growth and competitiveness. Therefore, bio7, bio4, and bio15 provide ideal conditions
for the reproduction and growth of S. rostratum. Given that climatic factors contribute
differently to various PCs, we categorized their contributions into two clusters, namely C4
and C5, encompassing distinct climatic variables.

Spatial, humanistic, and topographical variables collectively contributed 4.38% to
the habitat suitability of S. rostratum. Although this value may appear relatively small, it
should not be disregarded. Typically, latitude and longitude substantially encompass the
variations in multiple environmental factors. As latitude increases, the mean temperature
and rainfall in January tend to decrease, while the frost-free period (a major factor influ-
encing the distribution of alien species) gradually extends [12]. In China, the east-west
direction (longitude) primarily reflects variations in precipitation, which equally impacts
species’ habitats. Topography, including elevation, slope, and aspect, plays a pivotal role in
redistributing light, temperature, and precipitation. It transforms the effects of longitude
and latitude on habitats from a two-dimensional plane into a three-dimensional scenario,
thus integrating the influence of these factors comprehensively.

The exchange of personnel and trade is recognized as one of the primary pathways
for the spread of invasive species [7]. For instance, a flour processing factory in Chaoyang
City, Liaoning Province, China, was the initial site where the invasion of S. rostratum was
first observed. Importation of wheat from the United States has been identified as a likely
medium for its propagation [11]. Similarly, instances of S. rostratum discovered in Urumqi
County and Changji City in Xinjiang are likely due to the introduction of sheep from
Australia. This scenario can be attributed to the fruit adhering to the wool of these animals,
inadvertently introducing the species [46]. Intensive transportation networks, waterway
systems, thriving economies, and high population densities are recognized as key drivers
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for the rapid expansion of invasive species in new habitats [12]. The interconnectedness of
water systems and road networks links various ecosystems, including human communities.
These conduits also serve as pathways for the dispersal of S. rostratum, enabling the seeds
to be transported by water currents, thus facilitating population expansion. Road systems,
in particular, play a significant role as primary transportation routes for goods. Invasive
species are often inadvertently transported as they hitch rides on grain and livestock hides
during the transportation process, increasing the likelihood of seed scattering and escape,
thereby creating opportunities for further spread. The intensity of human activities, con-
sidering these factors holistically, is deemed a pivotal determinant in the propagation and
diffusion of S. rostratum in Xinjiang [47], a conclusion with which we concur. Further-
more, our investigation posits that human activities exert a crucial influence on the spatial
distribution of potential habitats for S. rostratum.

4.3. The Future Development of Potential Suitable Habitats for S. rostratum

Climate change is expected to accelerate the invasion of alien species and expand
their current territories [10]. Our research findings align with this viewpoint. Over the
next 40 years, the potential suitable habitat for S. rostratum in China is projected to ex-
hibit an expanding trend, displaying characteristics of southward migration (as illustrated
in Figure 10). Specifically, during the period 2041–2060 under the SSP1-2.6 shared path-
way scenario, the maximum expansion of the suitable habitat area is projected to reach
0.7218 million km2 (as shown in Figure 10e). In contrast, under the SSP5-8.5 shared pathway
scenario for the same period, the suitable habitat is expected to extend to the southern-
most region (as depicted in Figure 10d). Between 2021 and 2040, the expansion of the
suitable habitat will predominantly concentrate in western Inner Mongolia, central Shaanxi,
southern Hebei, northern Henan, and northern Shandong, while the reduction in suitable
habitat will mainly occur in the northeastern three provinces and Xinjiang. Under the
SSP5-8.5 shared pathway scenario for this period, the widest reduction in suitable habitat
is anticipated, covering an area of 0.2088 million km2.

Lv [65] suggests that under future environmental conditions, with the continuous
increase in greenhouse gas emissions leading to elevated CO2 concentrations and tempera-
tures, the high and mid-suitability zones for S. rostratum will disappear, leaving only the
low-suitability zone. Moreover, the more greenhouse gases are emitted, the less suitable
the conditions become for the survival of S. rostratum. We hold a different perspective
on this point. We contend that excluding artificial control and other potential mutational
factors, it is challenging for this species to naturally diminish due to its broad adaptive
capacity. Furthermore, in future environments, it may further adjust its survival strategies
through self-evolution to cope with progressively deteriorating conditions, and it might
even expand its ecological niche. Therefore, we should not be overly optimistic about this
matter and must remain vigilant to prevent the widening invasion range of S. rostratum.
Particularly in regions such as Shaanxi, Henan, and Shandong, preparations should be
made to prevent its southward spread.
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4.4. The Advantages of Using the PCA Method in Species Distribution Modeling

Collinearity refers to the situation in a model where two or more predictor variables
are linearly correlated. Typically, SDM based on large datasets of correlated environmental
variables may lead to multicollinearity. This issue can magnify the variance of predicted
values for the response variable and the variance of estimated parameters, resulting in
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the misidentification of predictor variables in the model [38]. Spatial proximity of species
occurrence records often results in unavoidable spatial autocorrelation, causing biases in
variables or model coefficients during SDM [39]. Due to the limited number of species
records available for comprehensive research, coupled with a lack of a priori knowledge
regarding which predictive environmental variables should be included in the model,
researchers are compelled to provide a plethora of environmental variables for model
selection. This not only activates the aforementioned issues but also introduces new chal-
lenges, such as model overfitting, subsequently leading to severe prediction errors [92].
The Maxent model exhibits relative sensitivity to collinearity in response variables, and
consensus on how spatial autocorrelation affects model predictive performance is yet to be
reached [93]. Therefore, addressing these issues revolves around three key aspects: (1) in-
creasing the number of species occurrence points, (2) incorporating ecological knowledge
to selectively optimize and reduce the number of environmental variables, and (3) utilizing
decorrelation and redundancy elimination algorithms to mitigate variable collinearity and
reduce information redundancy. However, the former two methods are often challenging to
implement [94], while the third method is gaining increasing attention among researchers
and continues to be explored [93].

Methods commonly used to address collinearity include correlation coefficient analy-
sis, variable inflation factor (VIF), and PCA [38]. In our study, we employed both correlation
coefficient analysis and PCA to decorrelate and reduce the dimensionality of the environ-
mental variable set. Subsequently, these processed variables were input into the model
for predicting the suitable habitat of the S. rostratum. The results indicated a significant
improvement in both dimensionality reduction (number of variables post-reduction) and
model accuracy when utilizing PCA compared to correlation coefficient analysis (refer to
Table 5). We attribute this improvement primarily to:

(1) The method based on correlation coefficients addresses collinearity by solely
considering the numerical information of correlation coefficients, neglecting ecological a
priori knowledge and spatial correlations. This oversight may result in the removal of
variables containing crucial information about species distribution, subsequently affecting
the precision and predictive outcomes of the model.

(2) PCA stands out as a valuable tool for eliminating inter-variable correlations and re-
ducing collinearity within variable sets. Specifically, the collinearity among environmental
variables containing biogeographic information exhibits spatial scale characteristics [95]. In
our improved PCA method, local PCA transformations consider the ecological characteris-
tics of species distribution points, while global PCA transformations adequately account
for the spatial information in the multidimensional and extensive environmental variable
dataset. This ensures that the PCs generated by PCA encompass rich content containing
information about ecological mechanisms. Additionally, the new variables (PCs) produced
by PCA transformations represent loads of environmental variables on orthogonal axes,
ensuring the effective removal of collinearity and information redundancy.

Additionally, previous research has commonly held the view that conducting an attri-
bution analysis of influencing factors is challenging when utilizing PCA for dimensionality
reduction in SDM. For instance, Cruz-Cárdenas et al. [96] explored the feasibility of using
PCA-derived PCs as predictor variables in SDM. They demonstrated superior species distri-
bution prediction accuracy compared to other methods by inputting PCs obtained through
PCA transformation into the model. However, they fell short of achieving attribution
analysis based on original variables. Our study addresses this limitation with the proposed
PCA inverse transformation method, enabling species distribution models to utilize PCs
generated by PCA for prediction and subsequent attribution analysis. This bridges the gap
in the comprehensive application of PCA dimensionality reduction techniques in the entire
process of SDM.

Therefore, our proposed PCA dimensionality reduction technique, along with the PCA
inverse transformation attribution analysis method, not only enhances and innovates upon
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classical algorithms but also, as a remote sensing data processing algorithm, demonstrates
significant advantages and high applicability in the field of SDM.

4.5. Limitations and Suggestions
4.5.1. Limitations

First, due to the absence of soil and human variables data for future scenarios, our
predictions of S. rostratum’s suitable habitat under future climate scenarios considered only
climate, topography, and spatial variables. This limitation may have reduced the reliability
of our predictions for future climate scenarios, even though the evaluation accuracy (AUC)
for our future scenario results all reached an excellent level. Second, the current population
density of S. rostratum is crucial for its spread and expansion. However, the lack of such
data in our study on biotic variables, using only abiotic variables, might have had some
influence on the accuracy of our predictions.

4.5.2. Suggestions

(1) Priority should be given to quarantine measures for food, live animals, or animal
products imported from abroad, especially from countries where S. rostratum is known to
be present. This is a crucial pathway for the invasion of S. rostratum. During the trade of
these goods between provinces and regions within the country, special attention should
be paid to the presence of S. rostratum fruit or seeds. Additionally, the collection and
distribution centers of these goods, such as food processing facilities, livestock pens, and
fur processing factories, should also receive thorough scrutiny, with regular inspections
in the surrounding areas. If fruit, seeds, or plants of S. rostratum are detected, immediate
removal should be undertaken to prevent further spread and propagation at the new
location. These locations may include the suitable habitats predicted by the models for
both the future scenarios (future 1 and future 2) as well as areas in southern China where
S. rostratum has not been observed.

(2) The predictions from current 1 can be used to identify priority regions for the
current control of S. rostratum. Meanwhile, the predictions from future 1 and future
2 models can guide preventive and control measures for the species’ future spread and
help identify key areas for defense.

5. Conclusions

To address the challenge of remote sensing target recognition and image interpretation
methods that are difficult to identify the suitable areas of S. rostratum, which is short
stature, scattered distribution, and coexistence with other plants, on a large scale, and with
high accuracy. In our study, we utilized species occurrence data and multi-dimensional
environmental variables constructed from various remote sensing sources, applying PCA
in combination with the Maxent model to effectively model the current and future potential
habitat distribution of S. rostratum in China. Our models demonstrated excellent accuracy,
as indicated by AUC values exceeding 0.9. In the present period, the suitable habitat area
for S. rostratum is estimated at 139.52 × 104 km2. Projections indicate an expanding trend
in habitat area in future scenarios, with the period 2041–2060 under SSP1-2.6 presenting the
most significant change, showing a 19.23% increase in the suitable habitat area compared
to the current scenario. While the suitable habitat for S. rostratum is generally shifting
southward in the upcoming period (in contrast to the optimal zone), it predominantly
remains distributed in northern China. The potential suitable habitat for S. rostratum results
from the combined influence of various environmental factors, with soil factors emerging
as the predominant driver, contributing at a rate of 75.85%. Our proposed PCA-based
dimensionality reduction method, which aims to eliminate the multicollinearity among
multidimensional environmental factors and obtain the contribution of original variables
through PCA inverse transformation, provides new ideas for future research on species
distribution prediction, especially for solving the problem of redundant information from
highly autocorrelated variables. Our study holds the promise of providing reliable support
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for the current control and future prevention efforts concerning S. rostratum. Furthermore,
it offers valuable scientific insights for the early warning, management, and biodiversity
conservation of invasive species spread.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16020271/s1, Table S1: Coordinates of species occurrence records
of S. rostratum. used for modeling in this study. Table S2: List of environment variables used in
this study.
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