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Abstract: The Lhasa to Nyingchi Expressway in Xizang made efforts to protect the ecological environ-
ment during its construction, but it still caused varying degrees of damage to the fragile ecosystems
along the route. Accurately assessing the process of change in the ecological environment quality
in this region holds significant research value. This study selected the Linzhi-to-Gongbo’gyamda
section of the Lhasa-to-Nyingchi Expressway as the research area. Firstly, based on the remote sensing
ecological index (RSEI), this study constructed an ecological environmental quality evaluation system
for the Xizang region. Subsequently, using the Google Earth Engine (GEE) platform, sub-indicators
were extracted, and the combination weighting method of game theory was employed to determine
indicator weights. This process resulted in the calculation of the MRSEI for the study area from
2012 to 2020. Finally, by utilizing the spatial distribution of the MRSEI, monitoring the level of
MRSEI changes, and employing the transition matrix, this study analyzed the changing trend of the
ecological environmental quality from 2012 to 2020. The results indicate that the MRSEI are 0.5885,
0.5951, 0.5296, 0.6202, 0.59, 0.5777, 0.5898, 0.5703, and 0.5987, showing a gradual increasing trend
with an initial decrease followed by an ascent. This trend is mainly attributed to concentrated road
construction and subsequent ecological restoration, leading to an improvement in the restoration
effect. Simultaneously, the ecological environmental quality remains relatively stable, with 69.5%
of the region showing no change, and the remaining 30.5% experiencing improvement exceeding
degradation. Specifically, there were significant improvements in the land with ecological quality
levels categorized as poor, fair, moderate, and good. The types of degradation primarily involved
lands originally classified as excellent and good degrading to good and moderate levels, respec-
tively. The above results serve as a theoretical reference for the ecological restoration project of the
Lhasa-to-Nyingchi Expressway.
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1. Introduction

The Xizang region is an important ecological security zone in China, with natural
protected areas accounting for one-third of the total area. The Lhasa–Nyingchi Motorway
in the Xizang region not only benefits local economic development and the development
and utilization of natural resources but also contributes to border stability and the common
prosperity of all ethnic groups. However, on one hand, transportation construction will
destroy the permafrost environment that has existed for many years. For example, the
heat absorption of asphalt on the road and the exhaust emissions of vehicles along the
corridor will increase the surface temperature of the area, thereby accelerating the melting
of permafrost [1–3]. On the other hand, it will damage the surface vegetation and topsoil,
accelerating soil erosion [4]. Due to the limited carrying capacity of resources and the
environment in the Xizang region, it is difficult to restore the ecological environment once
it is damaged [5]. Therefore, coordinating the construction of transportation infrastructure
with the quality protection of the local ecological environment is a necessary path for the
development of the Xizang region’s economy. Timely evaluation of changes in the quality
of the ecological environment in the area where linear engineering is located can help
improve the negative impact of human activities on the environment [6].

In 2006, the Chinese Ministry of Environmental Protection proposed the ecological
environment index (EI) for ecological environment assessment, but this index also has
many issues in its application process, such as subjective weighting and lack of visualizable
evaluation results [7]. Remote sensing technology has become an indispensable means of
ecological monitoring and assessment [8]. Taking advantage of the spatial and temporal
coverage of satellite data, Xu H Q [7] proposed an improved method called the remote
sensing ecological index (RSEI) [7] based on the EI index. The evaluation indicators in
this method mainly come from remote sensing indices. This method has been widely
used in ecological environmental quality assessment research and has a high level of
credibility [9–11]. For example, RSEI [7] has been applied in the evaluation of the surface
water ecological environment in Freetown [11], the assessment of ecological environmental
quality in the Samara region of Russia [12], and the evaluation of ecological conditions
during the rainy and dry seasons in Kota Semarang [13]. In addition, researchers have also
improved the evaluation algorithms and indicators based on the RSEI [7] from different
perspectives. In terms of algorithm models, the RSEI initially mainly used the first principal
component (PC1) of the principal component analysis (PCA) to construct the ecological
index. However, the variance contribution rate of PC1 extracted in different studies varies
greatly, which cannot guarantee a high contribution rate. In other words, the interpretation
of the evaluation indicators obtained after dimensionality reduction is more unstable
compared to the original indicators. Therefore, some scholars have made improvements to
the model, such as using a modified remote sensing ecological index (MRSEI) to evaluate the
ecological environment of the Xilingol League Grassland in China [14]. Machine learning
has also been introduced, and the RSEI [7] time series data for Beijing, China, has been
calculated using PCA combined with the random forest algorithm [15]. In terms of indicator
systems, Karimi [16] used the land surface ecological status composition index (LESCI)
based on the vegetation-impervious-soil triangle model to assess the surface ecological
conditions in Iran, as well as some cities in Europe and North America [16]. Xing et al.
used net primary productivity, vegetation index, and light index to construct an enhanced
remote sensing ecological index for an ecological environment assessment of Hainan Island,
China, based on local characteristics [17].

Determining appropriate indicator weights is essential in ecological environmental
quality assessment. There are two types of weight determination methods: objective
weight determination methods (OW) based on data mining and statistics [18], including
entropy weight method (EWM) [19], random forest (RF) [20], and support vector machine
(SVM) [21], and subjective weight determination methods (SW) based on prior knowledge
or expert opinions, including analytic hierarchy process (AHP) [22], multi-criteria decision
analysis (MCDM) [23], and fuzzy mathematics (FM) [24], among others. The subjective
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weight method is influenced by prior knowledge, leading to higher subjectivity in the
final evaluation results, while using only PCA for each indicator’s weight assignment is
too objective and may cause biased results due to the large amount of information [25].
Game theory (GT) is a mathematical model of strategic interaction between rational and
irrational agents, which can effectively use SW and OW weight information to obtain
combined weights (CW) [26]. Therefore, this study uses game theory (GT) to calculate
weights, with PCA used as the objective weight assignment method and AHP as the
subjective weight assignment method, to obtain optimal weights by balancing subjective
and objective weights.

The Lhasa–Nyingchi Motorway from Nyingchi to Gongbo’gyamda section was put
into use in September 2015, meeting the requirements for ecological environment assess-
ment of highways (generally 3 to 5 years after completion and acceptance). Therefore, this
study takes the Lhasa–Nyingchi Motorway from Nyingchi to Gongbo’gyamda section as
an example, using a modified remote sensing ecological index to evaluate the ecological
environmental quality within a 5 km range on both sides of the highway from 2012 to
2020, studying its change trends and analyzing the reasons for the change in order to
provide reference and basis for the ecological environment restoration work after highway
construction in the Xizang region.

2. Study Area and Materials
2.1. Study Area

The Lhasa–Nyingchi Motorway, also known as the Lhoka–Lhasa Expressway, has a
total length of 409.2 km and is the first phase project of the “12th Five-Year Plan” key project
in the Xizang region of China. The Nyingchi to Gongbo’gyamda section of the highway
is 114.3 km long and runs parallel to the Lhasa to Nyingchi section of National Highway
318. It is primarily designed as a dual-carriageway with four lanes, and construction
began in late May 2013. The section was officially opened to traffic on 15 September 2015.
This section is located in the southeastern part of the Xizang region, in the northwest
of Nyingchi Prefecture, with coordinates ranging from 29◦31′N to 29◦54′N and 93◦10′E
to 94◦27′E. It is situated in the central part of Bayi District and the southeastern part of
Gongbo’gyamda (Figure 1). Vegetation is the main component of the ecosystem in this
region. The Nyang River valley area is mostly wetlands and water bodies, while the land
use types around the highways are mainly forests and shrubs. Influenced by the warm
and humid air currents of the Indian Ocean, the vegetation in the study area belongs to the
semi-humid temperate mountain vegetation and has a clear vertical distribution pattern.
The land use of the residential area is mainly farmland, with no obvious impervious areas.
The region has a large range of elevation, a complex and diverse climate, and significant
local climate differences, making it prone to natural disasters such as hailstorms, drought,
or floods [27–30]. The highways mainly traverse the middle and lower reaches of the
Nyang River valley, which is characterized by a wide valley landform with flat terrain,
facilitating the implementation of linear engineering. However, there are risks of collapse
and debris flows on the mountainsides on both sides of the Nyang River valley [31].
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Figure 1. Location of Nyingchi to Gongbo’gyamda section of Lhasa–Nyingchi Motorway.

2.2. Data Source and Preprocessing

The remote sensing data used in this study mainly come from the MODIS (moderate-
resolution imaging spectroradiometer) data provided by the Google Earth Engine (GEE)
platform. MODIS is a remote sensing product carried by the Terra and Aqua satellites; it is
used to observe global climate change and biological activities. The MODIS data products
used in this study are processed and analyzed synthetic images, with imaging time ranging
from July to September between 2012 and 2020. This period represents the peak growing
season for vegetation in the Xizang region and helps distinguish vegetation areas from bare
land and snow-covered areas. Five types of MODIS data products (Table 1) were used in
this study. These data products have high quality and have undergone radiometric and
atmospheric corrections. However, due to geometric distortions, geometric correction was
performed using the reproject and resample functions in the GEE platform. Other data
processing tasks, such as mosaicking, mask extraction, and uniform resolution, were also
implemented by coding in the GEE platform. Finally, the indicator data for the study area
could be calculated.

Table 1. Data details.

Index Product Spatial Resolution (m) Time Resolution (d) Time

NDVI/FVC MOD13Q1 250 16 2012–2020
LAI MCD15A3H 500 8 2012–2020
GPP MOD17A2H 500 8 2012–2020
LST MOD11A2 1000 8 2012–2020
Wet MOD09A1 500 8 2012–2020

2.3. Method

In recent years, vegetation changes have dominated ecological research in the Xizang
region of China. The original RSEI (remote sensing ecological index) [6] only used vegeta-
tion indices (VI) to represent vegetation. However, in this study, considering the extremely
limited ecological carrying capacity and increased sensitivity to greenhouse effects in the
Qinghai-Xizang Plateau, detecting short-term vegetation changes becomes particularly
important [32,33]. Therefore, this study incorporates the leaf area index (LAI), which re-
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flects vegetation growth quality, and the gross primary productivity (GPP) index, which
reflects vegetation carbon sequestration capacity, to improve the vegetation index in the
evaluation system. Soil wetness can be used as an important indicator for monitoring
soil degradation. Additionally, Yijin Wu [34] found that the land surface temperature
(LST) in the Xizang region is positively correlated with vegetation growth; specifically, this
abnormal phenomenon is manifested as follows: the larger the aridity index, the better the
ecological environment. Therefore, this study uses the LST and the wetness (Wet) to replace
the original TVDI(Temperature Vegetation Dryness Index). Finally, the five indicators of
greenness (FVC, LAI, and GPP), warmth (LST), and wetness (Wet) were used to construct
an improved RSEI [7] (MRSEI).

2.3.1. Indicator Calculation

(1) Greenness

FVC (Fractional Vegetation Cover) is the percentage of the area covered by vegetation
in relation to the total surface area. It is a simple measure of vegetation coverage and
growth and a key factor in soil and water conservation and ecological assessment [35]. FVC
can be used to estimate shrub biomass in high mountain or subalpine environments [36].
In this study, FVC is derived using the normalized difference vegetation index (NDVI)
and pixel-based binary method [37]. The NDVI is primarily derived from MODIS data
products, as shown in the following formula:

NDVI = NDVIveg × FVC + NDVIsoil × (1 − FVC) (1)

NDVIveg and NDVIsoil represent the NDVI values in areas with complete vegetation
coverage and areas with complete bare soil or no vegetation coverage, respectively. The
calculation formulas are as follows:

NDVIsoil =
FVCmax × NDVImin − FVCmin × NDVImax

FVCmax − FVCmin
(2)

NDVIveg =
(1 − FVCmin)× NDVImax − (1 − FVCmax)× NDVImin

FVCmax − FVCmin
(3)

Since the MODIS data used in this study were acquired from July to September,
which is the period of the year with the best vegetation growth in the study area, we can
approximate that FVCmax = 100% and FVCmin = 0%. Based on the pixel-based binary
method, the vegetation coverage model is defined as follows:

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(4)

In the equation, NDVImax represents the normalized difference vegetation index value
of pixels with vegetation coverage, while NDVImin represents the normalized difference
vegetation index value of pixels with complete bare soil. Since the study area is mostly
inaccessible and obtaining extensive field measurements is challenging, this study uses
the confidence interval values of the cumulative frequency of NDVI at 5% and 95% as the
NDVImin and NDVImax values.

The leaf area index (LAI) is a dimensionless parameter that measures the amount
of foliage in the canopy and is used to reflect the vegetation growth quality in the study
area [38]. In this study, the MODIS data product MOD15A3H is used to obtain LAI data
for the study area. The calculation formula is as follows [39]:

LAI = 0.1 × DNA (5)

DNA represents the gray value of the leaf area index image except for bare land,
glaciers, or water areas.
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Gross primary productivity (GPP) refers to the total amount of organic carbon fixed by
vegetation through photosynthesis in a unit of time. The accumulation of organic carbon
by vegetation is a driving force for multiple ecosystems and a key component of land
carbon balance, mainly reflecting the carbon source-sink status of vegetation in the study
area [40]. In this study, the MOD17A2H product of GPP is extracted at the grid level and
dimensionless processing is applied to obtain the distribution of GPP in the study area.

(2) Heat

The thermal index utilizes land surface temperature (LST), which refers to the surface
temperature of the Earth’s land surface that has been corrected for emissivity. It is measured
in degrees Celsius (◦C) and is an important surface parameter that controls the energy
balance between the atmosphere and the land surface. The process of extracting LST
involves converting the digital number (DN) values from the MOD11A2 product data into
Celsius to represent the distribution of land surface temperature in the study area. The
calculation formula is as follows:

LST = 0.02 × DNS − 273.15 (6)

(3) Wet

This study utilizes a modified tasseled cap transformation (Kauth–Thomas, K–T)
formula [41] to extract the wetness index. The K–T transformation is a method based on
image physical characteristics, which uses a linear orthogonal transformation to project
and transform multi-spectral remote sensing images into three-dimensional space. This
method is used to reflect the degree of plant growth and withering, as well as changes in
land information.

We use the MOD09A1 surface reflectance product, which is sensitive to land moisture
information in certain bands, to calculate the humidity of the study area. The formula is
as follows:

Wet = 0.1147ρ1 + 0.2489ρ2 + 0.2408ρ3 + 0.3132ρ4 − 0.3122ρ5 − 0.6416ρ6 − 0.5087ρ7 (7)

ρ1 ∼ ρ7 The seven bands of reflectance in the MOD09A1 surface reflectance product
are red, NIR1, Blue, Green, NIR2, SWIR1, and SWIR2.

2.3.2. Weight Determination

(1) Principal component analysis (PCA)

Principal component analysis (PCA) is a commonly used statistical analysis method
that can combine several correlated indicators into a mutually independent composite
index through a linear transformation. The advantage of PCA is that it can reduce the
dimensionality of the indicators while retaining the maximum principal components, and
the determination of weights is objective. The steps for determining weights based on PCA
are as follows: 1⃝ Standardize the original data. 2⃝ Calculate the correlation coefficient
matrix of each indicator. 3⃝ Calculate the eigenvalues, contribution rates, and cumulative
contribution rates of each principal component. 4⃝ Calculate the loading values of each
principal component. 5⃝ Obtain the scores of each principal component. 6⃝ Calculate the
weight of each indicator; the formula is as follows:

PC =
i

∑
i=1

pci × ei√
ki × E

(8)

where PC represents the score coefficient of each indicator, pci represents the load of
each principal component, ei represents the variance contribution rate of each principal
component, ki represents the eigenvalues of each principal component, and E represents
the cumulative contribution rate of the extracted principal components. Finally, the weights
of each indicator can be obtained by normalizing the PC.
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(2) Combination weight method based on game theory

Game theory (GT) can effectively utilize the combined information of subjective
weights (SW) and objective weights (OW) and obtain the most balanced weights, also
known as combined weights (CW). Supposing that the weight set generated by using a
weighting method for m basic indicator vectors is ω1, the weight vector obtained by n
empowerment methods is then ωi:

ω1 = [ω11, ω12, ω13, . . . , ω1m] (9)

ωi = [ωn1, ωn2, ωn3, . . . , ωnm] = [ω1, ω2, ω3, . . . , ωn], i = 1, 2, . . . , n (10)

The arbitrary linear combination W of the n vectors is as follows:

W =
n

∑
i=1

γiω
T
i , i = 1, 2, . . . , n (11)

Solving the optimal combination coefficient γi to minimize the deviation between the
combination weight and the weight involved in optimization can be achieved through the
following function:

min||
n

∑
i=1

γiω
T
i − ωT

i ||, i = 1, 2, . . . , n (12)

Solving the first derivative of the above equation for optimization yields the following
equivalent linear equations:

n

∑
i=n

γiωiω
T
i =



γ1
γ2
.
.
.
γn

×



ω1 × ωT
1 ω1 × ωT

2 . . . ω1 × ωT
n

ω2 × ωT
1 ω2 × ωT

2 . . . ω2 × ωT
n

. . . .

. . . .

. . . .
ωn × ωT

1 ωn × ωT
2 . . . ωn × ωT

n

 =



ω1 × ωT
n

ω2 × ωT
2

.

.

.
ωn × ωT

n

 (13)

The process of calculating the combined weight (γ1, γ2,. . ., γn), and then standardizing
it to obtain the optimal combination weight ω∗, can be expressed as follows:

ω∗ =
n

∑
i=1

γi × ωT
i , i = 1, 2, . . . , n (14)

Finally, we use the comprehensive index method to calculate the comprehensive
value of the ecological environment, the MRSEI, which can be expressed by the following
formula:

MRSEI =
P

∑
i=1

ω∗
i ∗ xi (15)

where xi represents the standardized value of the i-th indicator, ω∗
i represents the optimal

combined weight of the i-th indicator, and P represents the number of evaluation indicators.

3. Results and Analysis
3.1. PCA and Combination Weights

This study utilized IBM SPSS Statistics 25.0 to perform a principal component analysis
on the indicator data. Table 2 presents the results of the principal component analysis
for the years 2012 and 2020. It can be observed that the cumulative contribution rates of
the first three principal components are all greater than 85%, indicating that these three
components capture the majority of the characteristics of the five indicators. Specifically,
PC1 has high loading values for FVC, LAI, and GPP, PC2 has a high loading value for Wet,
and PC3 has a high loading value for LST. Therefore, we can summarize the extracted
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principal components as follows: PC1 represents the vegetation factor, represented by FVC,
LAI, and GPP; PC2 represents the humidity factor, represented by Wet; and PC3 represents
the thermal factor, represented by LST.

Table 2. Results of PCA in 2012 and 2020.

Index
2012 2020

PC1 PC2 PC3 PC1 PC2 PC3

FVC 0.847 −0.201 −0.066 0.858 −0.241 0.056
LAI 0.909 −0.005 −0.002 0.894 −0.134 −0.128
GPP 0.86 −0.095 0.25 0.882 −0.103 −0.24
Wet 0.081 0.806 0.572 0.226 0.88 −0.404
LST 0.293 0.65 −0.693 0.496 0.439 0.745

Eigenvalues 2.375 1.123 0.874 2.61 1.053 0.794
Variance Contribution

Rate (%) 47.5 22.454 17.479 52.201 21.059 15.884

Total Contribution
Rate (%) 47.5 69.954 87.433 52.201 73.26 89.144

Based on the principal component analysis results, the weights for each indicator can
be calculated for each year from 2012 to 2020. These weights are then combined with the
weights obtained from the analytic hierarchy process (AHP) to calculate the composite
weight coefficients. Taking 2012 and 2020 as examples, the final weights are shown in
Table 3.

Table 3. Index weight in 2012 and 2020.

Index
2012 2020

OW SW CW OW SW CW

FVC 0.1750 0.3178 0.2412 0.1884 0.3178 0.2575
LAI 0.2367 0.1761 0.2086 0.1890 0.1761 0.1821
GPP 0.2477 0.1761 0.2145 0.1752 0.1761 0.1757
Wet 0.2570 0.165 0.2143 0.1439 0.165 0.1552
LST 0.0836 0.165 0.1214 0.3036 0.165 0.2295

3.2. Analysis on the Overall Change Trend of Ecological Quality

As shown in Table 4, the MRSEI values for the Lhasa–Nyingchi Motorway segment
from Nyingch to Gongbo’gyamda in the years 2012–2020 are as follows: 0.5885, 0.5951,
0.5296, 0.6202, 0.59, 0.5777, 0.5898, 0.5703, and 0.5987. Overall, compared to before the
construction of the highway in 2012, the MRSEI value in 2020 has slightly increased,
but there is significant fluctuation in the MRSEI values each year. The MRSEI values
showed a noticeable decrease from 2013 to 2014, which is closely related to highway
construction. The MRSEI values then increased significantly from 2014 to 2015, mainly
due to the implementation of ecological restoration projects. From 2015 to 2017, there was
a slow decline in the MRSEI values, but from 2017 to 2020, the MRSEI values showed a
stair-step growth trend, indicating that the ecological restoration work was challenging but
that the ecological environmental quality was improving overall.

Table 4. MRSEI from 2012 to 2020.

2012 2013 2014 2015 2016 2017 2018 2019 2019

MRSEI 0.5885 0.5951 0.5296 0.6202 0.59 0.5777 0.5898 0.5703 0.5987

Figure 2 shows the spatiotemporal changes in the ecological environmental quality of
the study area. The MRSEI values were divided into five categories: poor, fair, moderate,
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good, and excellent, with intervals of 0.2. It can be observed that in 2015, the ecological
environmental quality was rated as good, while the rest of the years were rated as moderate.
In terms of the spatial distribution of the MRSEI values in the nine periods, the ecologi-
cal environmental quality gradually decreased from the eastern segment to the western
segment. The areas with good and excellent ecological quality were mainly located in the
southeastern part of the study area, where the humidity and temperature conditions were
favorable and the vegetation coverage was relatively high. The areas with poor, fair, and
moderate ecological quality were primarily located in the road area and the peripheral
areas of the central and western segments. This is mainly due to the higher altitude and
colder, drier climate in these areas, resulting in relatively lower vegetation coverage. The
relatively poor ecological environmental quality in the western segment may also be related
to the denser distribution of local residential areas.
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The area and proportion of the ecological environmental quality in the study area for
the nine periods were statistically analyzed (Table 5, Figure 3). It can be observed that
the proportion of good ecological environmental quality was the largest, followed by the
moderate category, from 2012 to 2020. The ecological environmental quality structure in
2012–2013 was similar, with the most significant variation occurring in 2014; the proportions
of poor, fair, and moderate ecological quality were the highest in the nine-year period,
and the MRSEI value was the lowest. Although the MRSEI value in 2015 was the highest
in the nine years, there was no significant change in the area of good ecological quality
compared to the previous year, and the area of moderate quality was the lowest in the
nine years, decreasing by 9.72% compared to 2014. It is worth noting that in 2015, the
area of excellent ecological quality reached 21.48%, which was nearly 10% higher than
the average proportion of excellent quality in the other seven years, excluding 2014. This
can be attributed to the construction period of the highway from 2013 to 2015, with full
construction taking place in 2014, stripping the original vegetation and damaging the
ecological environment along the route, resulting in a sudden decrease in the MRSEI
value in 2014. However, in 2015, thanks to the smooth implementation of the highway
ecological environment project, the MRSEI value rapidly increased. After the construction
was completed, the construction facilities were removed, construction waste was cleared,
depressions were leveled, and the original vegetation and turf were replanted, leading to a
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significant improvement in the overall ecological environmental quality in a short period
of time. Clearly, the ecological environmental quality in the road area and the peripheral
areas of the study area has been significantly improved. The proportions of excellent, good,
and moderate levels showed a declining trend in 2016 and 2017, indicating a slight rebound
in the ecological restoration effect, mainly due to the higher requirements for transplanting
vegetation in the high-altitude ecological environment. The ecological environmental
quality structure in 2018 was similar to that in 2017, with similar proportions of excellent
and good levels, but there was a noticeable increase in the proportion of excellent quality
areas in 2018. Looking at Figure 2, it can be further observed that these increased areas were
mainly located in the southern part of the eastern segment of the study area. Compared
to 2018, the MRSEI value decreased in 2019, and the area of excellent quality decreased
by 6.12%. Although there was a slight increase in the proportion of good-quality areas,
the combined proportion of excellent and good levels was lower than in 2018. In 2020, the
overall ecological quality level was good, with a 1.01% decrease in the area of excellent
quality compared to 2012, while the area of good quality increased by 5.46% and had the
highest proportion in the nine years. The area of moderate quality decreased by 2.74%, and
the combined area of poor and fair levels was the smallest in the nine years. In conclusion,
the ecological environmental quality in the study area in 2020 did not show significant
changes compared to before the construction of the highway.

Table 5. Statistics of MRSEI area proportions in different years.

Excellent Good Moderate Fair Poor

S/km2 Pct./% S/km2 Pct./% S/km2 Pct./% S/km2 Pct./% S/km2 Pct./%

2012 172.8125 10.51 728.3125 44.3 434.4375 26.43 237.75 14.46 70.6875 4.3
2013 232.0625 14.12 688.25 41.86 405.0625 24.64 235.75 14.34 82.875 5.04
2014 72.5 4.41 640.0625 38.93 511.3125 31.1 292.6875 17.8 127.4375 7.75
2015 353.1875 21.48 652.6875 39.7 351.4375 21.38 211.5 12.86 75.1875 4.57
2016 147.8125 8.99 765.6875 46.57 428.5 26.06 234.125 14.24 67.875 4.13
2017 146.0625 8.88 740.3125 45.03 423.5 25.76 230.5 14.02 103.625 6.3
2018 221.125 13.45 676.1875 41.13 424.0625 25.79 234.75 14.28 87.875 5.35
2019 120.5 7.33 742.875 45.19 439.125 26.71 237.75 14.46 103.75 6.31
2020 156.1875 9.5 818.0625 49.76 389.4375 23.69 204.5 12.44 75.8125 4.61
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Furthermore, the sums of the proportions of good and excellent quality (GE%) were
separately calculated. The GE% for the years 2012–2020 are as follows: 54.81%, 55.98%,
43.34%, 61.18%, 55.56%, 53.91%, 54.58%, 52.52%, and 59.26%. Obviously, the GE% initially
decreased due to road construction, then increased due to the implementation of ecological
environment projects and ecological restoration, followed by a stepwise increase.

3.3. Analysis of the Spatial and Temporal Evolution of Ecological Quality

In order to further analyze the dynamic changes in the ecological environmental
quality of the Nyingchi–Gongbo’gyamda section from 2012 to 2020, Table 6 presents the
calculation of the difference in the modified remote sensing ecological index (MRSEI) for
every two years. The difference values are categorized into five levels: significantly deterio-
rated (−2), deteriorated (−1), essentially unchanged (0), improved (+1), and significantly
improved (+2). Figure 4 provides a visual representation of the proportions of each category
and their changes over time.

Table 6. Monitoring of the level of MRSEI changes from 2012 to 2020.

Years The Ratio and
Area of Changes

Significantly
Worse Worse Invariability Improved Significantly

Improved

2012–2014
Change Area

(km2) 0.3125 545.375 990.0625 107.4375 0.8125

Percentage (%) 0.02 33.17 60.22 6.54 0.05

2014–2016
Change Area

(km2) 0 86.0625 1028.125 529.1875 0.625

Percentage (%) 0 5.23 62.54 32.19 0.04

2016–2018
Change Area

(km2) 1.125 199.25 1243.75 199.875 0

Percentage (%) 0.07 12.12 75.65 12.16 0

2018–2020
Change Area

(km2) 0.4375 193.0625 1192.875 256.75 0.875

Percentage (%) 0.03 11.74 72.56 15.62 0.05
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Combining Table 7 and Figure 5, it can be observed that the ecological quality remained
relatively stable across the four periods. The proportion of areas with deteriorated ecological
quality was highest in the 2012–2014 period, accounting for 33.17% of the total area. The
proportions of areas with unchanged and improved ecological quality were the lowest in
the four periods. Clearly, the construction of the highway had a significant impact on the
local ecological environmental quality. Figure 4 reflects that the regions with deteriorated
ecological environments were mainly located along the road and at the edges of the study
area. During the 2014–2016 period, only 5.23% of the area experienced deteriorated MRSEI,
while the proportion of areas with improved ecological quality reached 32.19%. This
improvement can be attributed to the restoration effects of ecological environment projects.
Overall, the ecological quality of the study area showed a positive trend. From the MRSEI
changes in the 2016–2018 period, it can be seen that the ecological environmental quality in
the study area exhibited a rebound trend. Looking at Figure 2, it is evident that the areas
with deteriorated ecological quality were mainly located along the road and at the edges
of the study area, indicating the high ecological sensitivity and the difficulty of ecological
restoration in the alpine region. The changes in the 2018–2020 period were similar to the
previous period. Looking at the 2016–2018 period, it can be observed that the proportion
of areas with unchanged ecological quality tended to stabilize. With the continued efforts
in ecological governance, the transplanted vegetation can better adapt to the local climate
and environment.

Table 7. Monitoring of MRSEI changes in the Nyingchi–Gongbo’gyamda section of the Lhasa–
Nyingchi Motorway from 2012 to 2020.

Change Level Change Area
(km2) Percentage (%) Total Change

(km2)
Total Percentage

(%)

Improved Significantly Improved 1.9375 0.12
289 17.58Improved 287.0625 17.46

Invariability Invariability 1142.5 69.5 1142.5 69.5

Degenerate Worse 212.375 12.92
212.5 12.93Significantly Worse 0.1215 0.01
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Table 7 presents the calculation of the MRSEI difference between the year before road
construction in 2012 and the fifth year after road implementation in 2020. It is evident
that the overall ecological quality in the study area remained relatively stable from 2012
to 2020, with a value of 69.5%. The majority of this ecological quality was concentrated
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in the western and central parts of the study area. Additionally, a significant proportion
(17.58%) of the area experienced improvement in ecological environmental quality, mainly
located in the central and western sections, as well as the periphery of the entire study area.
Lastly, there were areas where ecological quality degraded, primarily in the eastern-central
part of the study area. Table 8 analyzes the overall changes in ecological quality using a
transition matrix. With the exception of the “excellent” and “poor” levels, the proportion
of each ecological quality level that remained unchanged was the largest. Additionally,
the proportion of transitions between two or more levels was relatively small, regardless
of whether the changes were “improved” or “degenerate”. For each level, except for the
“excellent” level, the proportion of improvements was greater than that of degradations.

Table 8. Level transfer matrix of the MRSEI for the Nyingchi–Gongbo’gyamda section of the Lhasa–
Nyingchi Motorway from 2012 to 2020 (%).

2012

2020

Level Excellent Good Moderate Fair Poor
Excellent 33.35 12.88 0.95 0.21 0.18

Good 65.39 75.98 32.10 4.57 1.95
Moderate 1.27 10.36 54.22 29.60 8.31

Fair 0.00 0.71 11.57 49.21 45.36
Poor 0.00 0.07 1.17 16.40 44.21

Rate of change 9.62 −12.32 10.36 13.99 −7.25

From the perspective of MRSEI level transitions, the proportions and areas of land that
did not undergo transitions from the “excellent” to “poor” ecological quality levels are as
follows: 33.35%/57.625 km2, 75.98%/553.375 km2, 54.22%/235.5625 km2, 49.21%/117 km2,
and 44.21%/31.25 km2. Among them, the land with “good” and “fair” ecological quality
levels had a larger area that did not undergo any transitions. Therefore, the land with
unchanged ecological environmental quality from 2012 to 2020 was mainly dominated by
“good” and “fair” levels.

In terms of improvements in ecological environmental quality levels, the proportions
and areas of land that transitioned from “poor”, “fair”, “moderate”, and “good” to the next
higher level are as follows: 45.36%/32.0625 km2, 29.61%/70.375 km2, 32.1%/139.4375 km2,
and 12.88%/93.8125 km2, respectively. It is evident that there was a significant increase
in the areas for all categories. Therefore, improvements in ecological environmental qual-
ity were evident in all four levels: “poor”, “fair”, “moderate”, and “good”. In terms of
degradation types, the proportions and areas of land that transitioned from “excellent”,
“good”, “moderate“, and “fair” to the next lower level are as follows: 65.39%/113 km2,
10.36%/75.4375 km2, 11.57%/50.25 km2, and 16.4%/39 km2, respectively. It can be seen
that there was a higher proportion of degradation in the “excellent” and “good” categories.
Therefore, the degradation of ecological quality mainly occurred in the transition from “ex-
cellent” to “good” and “good” to “fair”. In summary, the ecological environmental quality
in the study area was slightly better in 2020 than in 2012, with more obvious improvements
in the central and western sections. The areas with significant ecological degradation were
mainly located in the eastern part of the study area, where the “excellent” and “good”
ecological quality levels were degraded to “good” and “moderate”, respectively.

4. Conclusions

This study mainly utilized MODIS data from the GEE platform and combined it with
the characteristics of the Xizang region. By introducing a combination weighting method
based on GT, the RSEI was improved to evaluate the ecological environmental quality of the
Lhasa–Nyingchi Motorway’s Nyingchi to Gongbo’gyamda section. The main conclusions
are as follows:

(1) The overall ecological environmental quality of the Nyingchi to Gongbo’gyamda
section has significant regional differences. The quality of the ecological environment
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decreases from east to west. In the central and eastern sections, the ecological environ-
mental quality is better on the southern side compared to the northern side. The areas
with better ecological quality are mainly located in the southeastern part, while areas
with poor, fair, and moderate ecological quality are mainly located in the roadside
areas and the peripheral regions of the central and western sections.

(2) During the process of highway construction and operation, the ecological environ-
mental quality shows a trend of “initial decline, subsequent improvement, and then a
stair-step increase”. The construction of the highway is the primary driver of ecologi-
cal degradation in the study area, significantly reducing its ecological environmental
quality. However, short-term ecological restoration and compensation efforts have
allowed for the recovery of the ecological environmental quality, followed by a stair-
step growth. This is mainly due to the strong ecological sensitivity of the Xizang
region, as well as its unique geographical and climatic characteristics such as high
altitude and large diurnal temperature differences, which increase the difficulty of
ecological restoration.

(3) The ecological environmental quality in the study area from 2012 to 2020 mainly
remained unchanged; with the area of improved ecological quality being greater than
the degraded area, the ecological restoration project of the Lhasa–Nyingchi Motorway
has shown significant effectiveness. The unchanged rate of ecological environmental
quality is 69.5%, mainly occurring in good and moderate levels. In the area where
the quality of the ecological environment has changed, there were significant im-
provements in all four levels of ecological quality: poor, fair, moderate, and good,
mainly occurring in the middle and western sections. The types of ecological quality
degradation mainly transformed from excellent to good and good to moderate, with
the transformation being more pronounced in the central and eastern parts of the
study area.

Overall, the assessment results validate the importance of ecological restoration
projects. However, it is worth noting that due to the high cloud cover in the Nyingchi
region from July to September, both Landsat and Sentinel data were not available for
use in this study. As a result, the assessment primarily relied on MODIS imagery data
and lacked consideration of factors such as meteorology and economic development. In
future research, the focus will be on integrating high-temporal-resolution land satellite
data, meteorological data, and other relevant factors for a more in-depth analysis. This
aims to further enhance the effectiveness of ecological restoration in the Xizang region.
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