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Abstract: Dissolved organic carbon (DOC) in lakes, as a regulatory agent and light-absorbing com-
pound, is a key component of the global carbon cycling in lacustrine ecosystems. Hence, continuous
monitoring of the DOC concentration in arid regions is extremely important. This study utilizes
the QAA-CDOM semi-analytical model, which has good accuracy in retrieving the CDOM (colored
dissolved organic matter) concentration of Lake Ebinur. We chose to invert the CDOM time-series
data from May to October during the 2018–2022 period. A DOC estimation model was then estab-
lished using the linear regression approach based on the CDOM inversion data and the field DOC
measurements. In general, the DOC concentration in Lake Ebinur exhibited an increasing trend from
2018 to 2022, typically lower in May and higher in June. When comparing the average values of
DOC in Lake Ebinur for the same months across different years, it can be observed that the month of
September exhibits the greatest variability, whereas June shows the least variability. In sum, this study
successfully retrieved CDOM concentrations for a saline lake within an arid region and developed
a DOC estimation model, thereby providing a reference for investigating carbon cycling in typical
lakes of arid areas.

Keywords: arid region; saline lake; Sentinel-2; CDOM; DOC estimation

1. Introduction

Inland aquatic ecosystems, including streams, rivers, and lakes, are important fresh-
water resources and provide a wide array of ecosystem services. These water bodies enable
the substantial transfer and conversion of carbon elements from terrestrial ecosystems
into aquatic environments [1]. Even though they occupy only 3% of the Earth’s surface,
recent studies have highlighted the crucial role of inland lakes in the global carbon cycle
(Harkort et al., 2023) as they emit greenhouse gases equivalent to nearly 20% of global
fossil fuel emissions [2]. Dissolved organic carbon (DOC) in lakes serves as a substrate for
heterotrophic bacterial growth, acting as a regulatory factor and light-absorbing agent in
the global carbon cycle [3]. While colored dissolved organic matter (CDOM) constitutes
the optically active fraction of dissolved organic matter (DOM), DOC serves as an effec-
tive water quality parameter in assessing carbon concentrations and spatial distribution
characteristics in aquatic environments [4,5].
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Scholars have pointed out that CDOM can serve as an alternative in estimating the
carbon in inland lakes [6,7]. Currently, there are three major categories of established
CDOM retrieval algorithms: empirical models, semi-analytical models, and analytical
models. Empirical models are primarily built upon statistical relationships between in situ
CDOM measurements and water surface remote sensing reflectance. For instance, spectral
index algorithms [8], band ratio algorithms [9], and matrix inversion algorithms [10] were
developed to retrieve CDOM concentrations in lakes. Empirical models offer advantages,
such as straightforward computation and ease of implementation. However, the devel-
opment of empirical models lacks theoretical support and cannot exhibit stable statistical
relationships, which necessitate a substantial amount of measured data. This limitation
constrains the widespread applicability and dissemination of these models [11] (Morel et al.,
1977). Semi-analytical models, grounded in radiative transfer principles, utilize simplified
model parameters derived from empirical models. This approach ensures a higher level of
generality and reliability for the models [12]. The Quasi-Analytical Algorithm for Colored
Dissolved Organic Matter (QAA-CDOM) separates the absorption coefficients of suspended
particulate matter (SPM) and CDOM, enabling the reliable retrieval of CDOM concentra-
tions in lakes [1,13]. Previous studies have already demonstrated the strong applicability
of the QAA model in Lake Ebinur [14]. Considering that the Lake Ebinur basin falls within
a data-scarce region and that there has been limited research on remote-sensing-based
CDOM concentration retrieval in lakes, this study contributes to enriching the body of
knowledge related to water quality monitoring in arid region lakes significantly. Analytical
methods theoretically offer high monitoring accuracy and generality. Furthermore, they
do not necessarily rely on extensive measured SPM concentration data. However, these
methods are based on the known inherent spectral characteristics of pure water and of
various components of lake water. The inherent spectral characteristics of these compo-
nents often require field observations, and the operational complexity of the observation
equipment means these analytical methods are uncommon in practical applications [14]. In
this study, empirical models and the semi-analytical QAA model were chosen to retrieve
CDOM concentrations from Lake Ebinur, with us selecting CDOM retrieval models that
are well-suited to the lake’s conditions.

As satellite technology has advanced in recent years, CDOM remote sensing retrieval
algorithms have been continuously refined, leading to their improved inversion accu-
racy [15]. Many scholars have made an initial research progress into quantitative retrieval
models for surface-level DOC concentrations in inland lakes [3,16]. Currently, two main
techniques are employed to estimate the DOC concentrations in inland lakes and marine
bodies by using remote sensing methods. The first approach is to establish direct empirical
models by correlating in situ measured reflectance spectral data with DOC measurements,
enabling the long-term analysis of DOC concentrations in a specific region [17]. The second
approach involves an indirect estimation of DOC through the relationship between water
color parameters and DOC concentrations, thereby achieving remote sensing estimation
of DOC [12]. In recent years, studies have indicated that there is a significant correlation
between CDOM and DOC concentrations, suggesting that utilizing CDOM in estimating
DOC holds a certain level of reliability [18,19]. Scholars have explored the relationship
between DOC and CDOM in different lakes, and the results show that there is a significant
correlation between the two water quality indices [16]. However, given the uncertainty
in the relationship between DOC and CDOM in lakes across different regions, further
exploration is warranted.

Lake Ebinur, a typical saline lake in an arid region, has experienced a continuous
reduction in its surface area in recent years. Investigating the lake’s DOC concentration is
of paramount significance in seeking to understand its dynamics. Accordingly, this study
develops a DOC estimation model for long-term DOC concentration monitoring in Lake
Ebinur. To achieve that goal, in this study, we set out (1) to determine the inherent optical
properties and reference wavelengths for the QAA algorithm’s establishment; (2) to assess
the applicability of multiple CDOM retrieval models to Lake Ebinur; (3) to evaluate the
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accuracy of different empirical models in establishing the relationship between CDOM and
DOC; and (4) to analyze the spatial–temporal changes in DOC over Lake Ebinur from 2018
to 2022 using the best DOC model. This research could provide a reference framework
for future DOC concentration retrieval in arid saline lakes and lays a solid foundation for
investigating carbon cycling in such arid lake ecosystems.

2. Research Area Overview

Lake Ebinur is situated in the northwestern part of Xinjiang, China, as shown in
Figure 1. The region has few surface water quality monitoring stations, and the issue of
missing values is severe. Lake Ebinur is situated 35 km north of Jinghe County. It is adjacent
to the Jinghe-to-Alashankou section of the Lanxin Railway to the west. To the east lies
the Ganjiahu Saltbush Forest Nature Reserve. The region receives about 292.31 mm/year
precipitation on average, which primarily comes from snow. Around 2457 mm/year of
evapotranspiration is distributed unevenly over a year on average. Within the lake area,
evapotranspiration can reach up to 3600 mm/year. The water of Lake Ebinur is cloudy,
and the average water depth is relatively shallow, at about 1.2 m. The average salinity is
about 169.3 g/L [20]. As depicted in Figure 1c, the sampling dates were 19 May 2021, 6 July
2022, 31 May 2023, and 1 June 2023. A total of 60 sampling points were included in this
study. Before field sampling, the water quality sampling bottle should be cleaned to avoid
affecting the water quality. During the sampling period, the sky was clear and the wind
was not very strong. The air temperature and wind speed of the three days before and
after sampling were recorded, and the coefficient of variation was calculated, as shown in
Figure 1d. The results showed that the weather conditions during different data collection
periods were similar, so the collected samples could be used for the inversion of water
quality parameters by means of remote sensing.
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Figure 1. (a) Xinjiang, China, (b) sampling points over the main lake area, (c) average wind direction
and speed in Lake Ebinur from 2014 to 2022, and (d) field sampling weather condition statistics.

3. Data and Methods

The CDOM inversion model was established using Sentinel-2 imagery acquired on
31 May 2023, and the field measurements were conducted on 31 May and 1 June 2023. This
study is focused on the estimation of DOC concentration from CDOM concentration; hence,
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the estimation of DOC concentration depends critically on the retrieval accuracy of the
CDOM concentration at various time scales. Therefore, the data collected on 19 May 2021
were chosen as an independent validation sample (14 points), to assess the accuracy of
QAA-CDOM concentration retrieval. To verify the stability of the statistical relationship
between CDOM and DOC, 70% of the 2023 DOC concentration measured data (42 points)
was used as the training dataset for the model, and 30% of the data (18 points) was used
as the validation sample. The data collected on 6 July 2022 were used as an independent
validation sample (12 points), to assess the accuracy of the DOC estimation model. The
development of statistical relationships between DOC and CDOM made it possible to
retrieve the DOC concentrations over Lake Ebinur for the period of 2018–2022 during
non-iced seasons from May to October. The 10 m spatial resolution images could serve as a
representative demonstration for the DOC estimation in this arid and data-scarce region of
northwestern China. In this study, the water quality of Lake Ebinur was sampled, with the
samples collected from the water surface (0–30 cm). After sampling, the collected water was
preserved at a low temperature and brought back to the laboratory for the determination of
water quality parameters, including water absorption coefficient, CDOM concentration,
DOC concentration, etc.

3.1. Data Sources

This study used Sentinel-2 L1-level data for the study area. To achieve the temporal
inversion of CDOM concentrations in Lake Ebinur, monthly satellite imagery from 2018 to
2022 for Lake Ebinur was collected (https://Sentinel.esa.int/web/Sentinel/home, accessed
on 1 July 2023). The collection protocol necessitates the selection of satellite images with
cloud cover of less than 10% over Lake Ebinur for each month’s early, middle, and late
portions. It is crucial to ensure a minimum of two satellite images within a month, separated
by at least ten days, to estimate DOC concentrations at image acquisition times. This process
generates a monthly dataset representing the DOC concentration for the respective month.
In this study, an image captured on 31 May 2023 is selected as the modeling datum. The
weather on that day was clear, with low wind speed and minimal cloud cover, making
it suitable for constructing the inversion model using remote sensing imagery. The Dark
Spectrum Fitting model was employed for atmospheric correction of the satellite image,
as outlined by Liu et al. [20], to acquire remote sensing reflectance from Lake Ebinur’s
water body.

3.2. Inherent Optical Characteristics of the Water Body

The inherent optical characteristics of a water body refer to the quantitative features
of its absorption and scattering by various components. Changes in the distribution and
intensity of incident light have no effects on the inherent optical characteristics, but they
are mainly reliant on the composition of the water. Hence, the absorption coefficient of
water is a key component used to differentiate the inherent optical properties. In this
study, laboratory measurements of water samples collected from field trips were used to
evaluate the absorption coefficients of different water color components. Differences in
water absorption characteristics directly influence the choice of the reference wavelength
(λ0) in the QAA algorithm calculation. Therefore, it was important to analyze the water’s
absorption properties in Lake Ebinur.

The total absorption coefficient of the water (a(λ)) is the sum of the absorption coeffi-
cients of SPM, CDOM, and pure water [21], as shown in Equation (1):

a(λ) = ap(λ) + ag(λ) + aw(λ) (1)

where aw(λ) represents the absorption coefficient of pure water; ag(λ) is the CDOM absorp-
tion coefficient; and ap(λ) represents the particle absorption coefficient. The absorption and
back-scattering coefficients of pure water were obtained based on the research findings of
Buiteveld et al. [22].

https://Sentinel.esa.int/web/Sentinel/home
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In the measurement of the SPM absorption coefficient, the GF/F filtration membrane
type should be selected first. The object of this study was an inland lake. So, a Whatman
GF/F filtration membrane with a diameter of 47 mm and an aperture of 0.7 µm [23] was
used to carry out the experiment. The volume of the filtered water sample was 200 mL. The
absorbance was measured every 1 nm between 380 nm and 800 nm by using a UV-3600
ultraviolet spectrometer. The absorbance of each band minus absorbance at the reference
wavelength (750 nm) was used to perform scatter correction based on the formula proposed
by Cleveland et al. [24], as follows:

ODspm = 0.378ODf + 0.523OD2
f ODf ≤ 0.4 (2)

where ODspm is the absorbance of SPM on the corrected filter membrane, and ODf is the
absorbance of SPM measured on the instrument and corrected by scattering.

The absorption coefficient of SPM on the filter membrane can be calculated according
to Formula (3) [24]:

ap = 2.303× s
v

ODspm(λ) (3)

where V represents the volume of the filtered water sample. In this paper, V = 2 × 10−4 m3.
S is the effective area of suspended matter deposited on the filter membrane. The diameter
of the filter membrane adopted was 47 mm, and the diameter of the part with filter matter
on the filter membrane was measured at 42 mm using a vernier caliper. Therefore, the
effective area was S = π × (0.021)2 with the unit of m2.

In this study, the CDOM absorption coefficient of Lake Ebinur was measured using the
quantitative filter technique at the sampling points, as shown in Figure 1. The filtrate was
obtained with a polycarbonate Millipore filter membrane with a diameter of 50 mm and an
aperture of 0.22 µm. The filtrate was loaded into a colorimetric dish, and its absorbance
was measured using a UV-3600 ultraviolet spectrometer. Then, the absorption coefficients
at each wavelength were calculated according to Formula (4) [25]:

ag(λ
′) = 2.303D(λ)/r (4)

where ag(λ’) is the uncorrected absorption coefficient at wavelength λ; D(λ) is the ab-
sorbance at wavelength λ; and r is the optical path. An optical path of 0.01–0.05 m is
acceptable, and the specific needs are determined according to the concentration of the
research target CDOM. The higher the concentration of CDOM, the smaller the optical path.
The optical path that was selected in this study was 0.012 m.

The filtrate will inevitably retain fine particles, which will be scattered when measuring
its absorbance. Therefore, scattering correction was performed according to Formula (5) [25]:

ag(λ) = ag(λ
′) − ag(700 ′)λ/700 (5)

where ag(λ) is the absorption coefficient at wavelength λ, and 700 nm is selected as the
reference wavelength to correct the absorption coefficient of CDOM.

DOC samples were stored at 4 ◦C in the dark during transportation. The concentration
of DOC was measured using high-temperature catalytic oxidation (TOC-VCPH, Shimadzu
for Japan, Nishinokyo Kuwabara-cho) [16].

3.3. CDOM Inversion Model
QAA-CDOM Model

In this study, the QAA-CDOM algorithm was employed to extract the absorption
coefficient of CDOM at 440 nm (ag440) from remote sensing reflectance (Rrs) data. This
extracted coefficient was then utilized for the inversion of CDOM concentrations in Lake
Ebinur [15]. QAA-CDOM is an enhancement of the QAA algorithm [26], as illustrated in
Figure 2. The QAA-CDOM model for CDOM concentration inversion primarily comprises
two components. As shown in Table 1, steps (1)–(7) encompass the foundational QAA
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algorithm. This section involves the calculation of absorption coefficients at characteristic
wavelengths, deduction of the water back-scattering coefficient at characteristic wave-
lengths, and computation of the water back-scattering coefficient at various wavelengths.
Ultimately, it extrapolates the water absorption coefficient at 440 nm.
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Table 1. Calculation process of the QAA-CDOM algorithm based on the Sentinel-2 image.

Step Formula

(1) rrs(λ) = Rrs(λ)/(0 .52 + 1.7Rrs(λ))

(2) µ(λ) =
−g0+

√
(g0)

2+4g1×rrs(λ)

2g1
, g0 = 0.0895, g1 = 0.1247

(3) a(λ 0) = a(833) = aw(833) + 0.39× (
rrs(833)

rrs(443)+rrs(492) )
1.14

(4) bbp(λ 0) = bbp(833) = (
µ(λ 0) × a(λ0)

1−µ(λ 0)
) − bbw(833)

(5) Y = 2.0× (1− 1.2 exp(−0.9× rrs(443)
rrs(560) ))

(6) bbp(λ) = bbp(λ 0)× (λ0
λ )

Y

(7) a(λ) =
(1−µ(λ))×(bbw(λ)+bbp(λ))

µ(λ)

(8) ap(443) = j1 × bbp × (561)j2

(9) ag(443) = a(443) − ap(443)

Note: Step diagram of QAA-CDOM algorithm (Rrs(λ) represents above-surface remote sensing reflectance (sr−1);
rrs(λ) represents below-surface remote sensing reflectance (sr−1); µ(λ) represents ratio of back-scattering coefficient
to the sum of absorption and back-scattering coefficients; a(λ) represents the total absorption coefficient (m−1);
aw(λ0) represents the absorption coefficient of pure water at a characteristic wavelength (m−1); bb(λ) represents the
back-scattering coefficient (m−1); bbw(λ0) represents the back-scattering coefficient of pure water at a characteristic
wavelength; Y represents the spectral power of the particle-scattering coefficient; λ0 represents a characteristic
wavelength; ap and ag represent SPM and CDOM’s absorption coefficients).
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As shown in Table 1, steps (8)–(9), building upon the outcomes of part one, involve
substituting the remote sensing reflectance at 440 nm and 555 nm with the nearest bands.
Specifically, the reflectance at 443 nm and 560 nm is used as a replacement for the remote
sensing reflectance at 440 nm and 555 nm, respectively [1]. By utilizing the SPM absorption
coefficient at 443 nm, total absorption coefficient, and back-scattering coefficient (bbp) at
555 nm, the absorption coefficient of CDOM at 440 nm can be calculated [15,26]. The
QAA algorithm requires the remote sensing reflectance levels at four wavelengths (440 nm,
483 nm, 561 nm, and 865 nm) as input data to infer the absorption and back-scattering
coefficients of lakes. The second part involves deriving the absorption coefficient of phyto-
plankton and non-algal particles (ap440) using the back-scattering coefficient, as outlined
by [15]. As shown in step (8), this ultimately leads to the computation of ag443. This process
is mainly aimed at separating the absorption coefficients of SPM and CDOM and using the
measured data for regression analysis to determine j1 and j2. In this step, j1 and j2 are two
parameters estimated from field data, with values of j1 = 1.1 and j2 = 0.72.

3.4. Technical Approach

The first part of this study involved investigating the inherent optical characteristics
of Lake Ebinur. This was accomplished by measuring the absorption coefficients of Lake
Ebinur’s water, based on which we determined the reference wavelength to be 833 nm.
Based on the semi-analytical QAA model, in this study, we inverted the absorption coeffi-
cients and back-scattering coefficients of Lake Ebinur’s water. The second part of this study
was focused on constructing a CDOM inversion model, where we used the QAA-CDOM
semi-analytical model to retrieve the CDOM concentration of Lake Ebinur. The third part
of this study involved constructing a Lake Ebinur DOC estimation model based on CDOM
inversion data. Various regression models were employed, including linear, exponential,
logarithmic, and quadratic models. The goal was to select the most suitable DOC estimation
model for Lake Ebinur and to use it to estimate the changes in DOC concentration from
2018 to 2022. This part of the study also included an analysis of the inter-monthly and
inter-annual variations in Lake Ebinur’s DOC concentration.

4. Results
4.1. Analysis of Inherent Optical Characteristics of Lake Ebinur

The spectral curves of SPM, CDOM, and the dewatering absorption coefficient are
shown in Figures 3 and 4. Figure 4a depicts that the CDOM absorption coefficients are
remarkable similar. The coefficients exhibit an exponential decrease pattern and greater
discrepancies in the short-wave region compared to the long-wave region. There is no
prominent absorption peak that can be observed. At a wavelength of 380 nm, the CDOM
spectral absorption coefficient of Lake Ebinur varies between 1.0 and 3 m−1, gradually
approaching 0 towards the 700 nm wavelength. As depicted in Figure 4b, the SPM ab-
sorption coefficient curves are largely consistent, exhibiting an exponential decrease trend.
The coefficients decrease with increasing wavelength, indicating a diminishing light ab-
sorption capability of SPM as the wavelength increases. The SPM absorption coefficient
varies between 1.0 and 4.0 m−1 at a wavelength of 380 nm. Similar to CDOM, the SPM
absorption coefficient also approaches 0 after 720 nm, showcasing similarity in absorption
coefficient variations.
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Figure 4. Comparison between the absorption coefficients of dewatering and pure water ((a) repre-
sents the absorption coefficient of dewatering, (b) represents a comparison between the absorption
coefficient of pure water and that of non-water, where the blue curve represents the average value of
the measured absorption coefficient of non-water).

The non-water absorption coefficient, obtained by subtracting the pure water absorp-
tion coefficient from the total absorption coefficient, represents the sum of CDOM and SPM
absorption coefficients. Consequently, its curve characteristics exhibit similarities with
those depicted in Figure 3a,b. Figure 4a illustrates that the measured total non-water of
absorption coefficients also exhibits an exponential decay trend, where at around 700 nm,
the absorption coefficient approaches 0. Additionally, it approximately demonstrates the
characteristic of greater disparity in short-wave absorption coefficients compared to long-
wave coefficients. The deionized water absorption coefficient shows a range of variation
between 2.4 and 6.5 m−1 at the wavelength of 380 nm. This implies that at a wavelength
of 700 nm, the total absorption coefficient of Lake Ebinur’s aquatic body is approximately
equal to that of pure water, given the extremely low chlorophyll content in Lake Ebinur.

The selection of a reference wavelength (λ0) is an important step in the computation
of the QAA algorithm. The inversion effect of the whole absorption coefficient is directly
impacted by the estimation accuracy of the absorption coefficient at λ0. When λ is selected,
the condition that the absorption coefficient or characteristic of pure water dominates at
this wavelength should be met [26] (Lee et al., 2002). To invert the absorption coefficient
of Lake Ebinur using remote sensing images, the appropriate band must be chosen as the
reference wavelength according to the band setting of the sensor. Hence, the current study
primarily focused on assessing the influence of two water color parameters, namely SPM
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and CDOM, on the absorption coefficient of the water body. As depicted in Figure 4b,
the absorption coefficient of pure water surpasses that of non-water beyond 590 nm. The
measured average value of the non-water absorption coefficient tends to approach zero
after 700 nm. Based on the aforementioned analysis, it is advisable to opt for a wavelength
where the dominance of the pure water absorption coefficient is evident when selecting the
characteristic wavelength (λ0) for Lake Ebinur. For Sentinel-2 data, 833 nm (B7 band center
wavelength) was selected as the reference wavelength to calculate the total absorption
coefficient and back-scattering coefficient according to the measured absorption spectral
characteristics, the relative error distribution of atmospheric correction in each band, and
the sensor band setting.

4.2. Validation of CDOM Inversion Models

The accuracy of the QAA inversion model is illustrated in Figure 5. The QAA-CDOM
inversion model’s coefficient of determination (r2) is 0.72, and the root mean square error
(RMSE) is 0.13 m−1, as shown in Figure 5. The validation points are predominantly
concentrated within the 30% error boundary, with only a small number of validation
points falling outside this range. Overall, the model exhibits inversion accuracy. This
study selected the measured data from 19 May 2021 as an independent sample to validate
the accuracy of the QAA-CDOM model. The validation results showed an r-squared
value of 0.51 and an RMSE of 0.12 m−1. Previous research demonstrated that, unlike
empirical models such as machine learning, the semi-analytical model, like QAA-CDOM,
incorporates a significant amount of fundamental theory in its calculation process, making
it more versatile. Accordingly, the QAA-CDOM model can be used for long-term CDOM
concentration retrieval in Lake Ebinur.
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4.3. Estimation Model for DOC and Accuracy Verification

This study employed regression models such as linear, quadratic, exponential, and
logarithmic functions to construct an estimation model for DOC based on the measured
CDOM and DOC concentrations. The correlation values of the linear and quadratic re-
gression models were better than the logarithmic and exponential regression models, as
depicted in Figure 6. Additionally, the linear model slightly surpassed the quadratic model
in terms of goodness of fit. Consequently, this study opted for the linear regression ap-
proach, which was used to construct the estimation model for DOC. Prior research has
demonstrated a linear relationship between lake CDOM and DOC concentrations, and the
results of this study further substantiate this viewpoint. Overall, the evaluation results of
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the model were good, indicating that the linear regression model could be used to estimate
the DOC concentration. Therefore, this study estimated the temporal and spatial variation
characteristics of DOC in Lake Ebinur based on the linear regression model, with the
expression Y = 59.1x.
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4.4. Spatial Variability Characteristics of DOC

In Figure 7, the monthly distribution of DOC in Lake Ebinur during the non-iced
periods (May to October) from 2018 to 2022 is presented. In 2018, the DOC concentrations
are primarily situated between 30 and 90 mg/L. In particular, the DOC concentration is
notably elevated in June, with the central region of the main lake area and the smaller lake
areas exhibiting DOC concentrations exceeding 150 mg/L. In 2019, there is a noticeably
higher DOC concentration in June, exceeding 150 mg/L in both the smaller lake areas and
the northwestern part of the main lake area, compared to other months. In October, the
southern region of the smaller lake areas in Lake Ebinur exhibits DOC concentrations that
surpass 150 mg/L. In 2020, the DOC concentrations are notably higher compared to the
same period in 2019. Specifically, the DOC concentrations in May, August, and September
of 2020 are significantly higher than those in June, July, and October. Furthermore, in
both June and September, there is an elevated DOC concentration in the northern part
of the main lake area, surpassing 150 mg/L. In 2021, both June and July exhibit elevated
DOC concentrations. In June, a large portion of Lake Ebinur experiences DOC concentra-
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tions exceeding 60 mg/L. During July, the northern region of the main lake area records
DOC concentrations surpassing 90 mg/L. In 2022, the lake area experiences a significant
reduction. During June and July, Lake Ebinur’s DOC concentrations are relatively high.
Notably, in June, the coastal regions of Lake Ebinur display DOC concentrations exceeding
150 mg/L.
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In summary, from 2018 to 2022, there was a progressive reduction in the lake area,
while the DOC concentrations consistently increased over time. In each year, the months of
June and July exhibited generally higher DOC concentrations compared to the other months
of the same year. In recent years, Lake Ebinur has experienced a gradual decrease in water
volume, with the lake essentially drying up in August and September 2022. Consequently,
it was impossible to retrieve the lake’s DOC concentrations for these months.

Figure 8 shows that the annual average DOC concentrations in Lake Ebinur increased
from 2018 to 2021. Considering the significant reduction in lake surface area in 2022, the
DOC concentration in that year is not included. In 2018 and 2019, the DOC concentrations
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were relatively low, ranging between 0 and 60 mg/L. However, in 2020 and 2021, the
DOC concentrations were notably higher compared to 2018 and 2019, with concentrations
predominantly falling within the range of 30 to 90 mg/L. Over the years 2018 to 2021, there
were relatively few areas with DOC concentrations exceeding 9 mg/L, and most of the lake
areas exhibited DOC concentrations ranging from 0 to 90 mg/L.
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Figure 8. Interannual DOC changes in Lake Ebinur from 2018 to 2021 (considering that the area of
Lake Ebinur varies greatly, the minimum lake area for different months in the same year was selected
as the boundary when the annual average data of Lake Ebinur from 2018 to 2021 were synthesized).

Figure 9 presents the spatial–temporal variation characteristics of the monthly mean
DOC of Lake Ebinur during 2018–2021. When exploring the spatial distribution character-
istics of DOC concentrations from June to October, it can be observed that the months of
June, July, and September generally have higher DOC concentrations compared to the other
months. The DOC concentrations typically range between 30 and 120 mg/L during these
months. Conversely, during May, August, and October, the DOC concentrations fall within
the range of 0 to 60 mg/L. In May, the southeastern part of the main lake area exhibits
lower DOC concentrations (less than 30 mg/L), while the northwestern part of the main
lake area has higher concentrations (greater than 60 mg/L). In June, the DOC concentra-
tions are notably higher compared to May, with most of the main lake area showing DOC
concentrations within the range of 60 to 90 mg/L. During July, the central part of the main
lake area experiences lower DOC concentrations (below 60 mg/L). The spatial variability
of DOC concentrations in August is relatively small, with concentrations ranging from 0
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to 60 mg/L. In September, the lake area undergoes significant shrinkage, and the western
region of the lake registers higher DOC concentrations compared to the eastern region. In
October, the DOC concentrations are generally lower, with concentrations ranging between
0 and 60 mg/L.
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Figure 9. Seasonal DOC changes in Lake Ebinur from 2018 to 2021 (considering the large seasonal
variation in Lake Ebinur’s area, the minimum lake area of the same month in different years was
selected as the boundary when compiling the monthly average data of Lake Ebinur from 2018 to 2021).

4.5. Temporal Variation Characteristics of DOC

In order to study the monthly mean change trend of DOC in Lake Ebinur from 2018 to
2022, the mean and standard deviation of DOC for 4 years (24 months) were calculated. As
shown in Figure 10a, the change in the average DOC concentration presents an obvious
fluctuating trend, with an overall upward trend over time. In September 2020, the lake had
the highest average DOC concentration at more than 130 mg/L. In contrast, the average
DOC concentration was lowest in May 2018, indicating that DOC levels were generally
low in Lake Ebinur during that period. The standard deviation of DOC concentration
changes in Lake Ebinur in different months ranged from 15 to 60 mg/L, with the lowest
standard deviation in July 2018 and the highest in October 2020. In Figure 10b, the boxplot
illustrates the monthly average values of DOC. The month with the highest average DOC
concentration is June (80 mg/L). The relatively consistent DOC concentrations in Lake
Ebinur during June of each year suggest a general trend of higher DOC concentrations
during this particular month. The month with the lowest average DOC concentration is
May (48 mg/L). Of these months, September exhibits the greatest inter-annual variation
in DOC concentration. Notably, in September 2020, the DOC concentration reaches a
high of 130 mg/L. Conversely, the inter-annual variation in DOC concentration for June
is relatively small, with DOC concentrations generally maintaining a higher level. The
average DOC concentration for July is similar to that of September, with a comparable
inter-annual variation range, while the variation in DOC concentration for August is similar
to that of September.
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Figure 10. Average monthly DOC statistics of Lake Ebinur from 2018 to 2022. ((a) Line chart of the
monthly DOC concentration in Lake Ebinur; (b) box chart of the average DOC concentration in Lake
Ebinur in different months; (c) variation coefficient of DOC in different regions from 2018 to 2022;
(d) variation coefficient of DOC in different regions from May to October.).

As shown in Figure 1c, this study divided the main lake area of Lake Ebinur into four
regions according to parallel and vertical wind directions, based on statistics of the average
wind direction of Lake Ebinur during the 2018–2022 period. Five sampling points were
randomly selected in different regions. As shown in Figure 10c,d, the average values and
coefficient of variation for sampling points in different regions were calculated. Figure 10c
shows that the DOC concentrations in 2020 and 2021 were generally higher than those in
2018 and 2019 in different regions. From 2018 to 2021, the coefficient of variation in region
4 was the highest, indicating a large difference in the DOC concentration in this region. In
contrast, the coefficient of variation in region 1 was the smallest, indicating a small change
in DOC concentration in this region. Figure 10d shows the DOC concentrations in four
regions in different months. The results show that the DOC concentrations were greatest
in June and July in different regions. Region 2 had the largest coefficient of variation
from May to October, indicating a large difference in the DOC concentration in this region.
Meanwhile, there was slight variance in the DOC concentrations in other regions, with the
coefficients of variation closer to each other.
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5. Discussion
5.1. Applicability of Data and Models

Considering that the sampling time of in situ measured data is different from that
of satellite imagery, the inversion result is uncertain to some extent [27]. To ensure an
alignment between the measured data and the satellite images, this study chose sampling
times that were within a 30 h window around the passage time of the images. This approach
aimed to minimize the temporal discrepancy between the in situ data collection and the
satellite image acquisition, enhancing the accuracy of the data. In addition, the performance
of different atmospheric correction models also affects the inversion results of water quality
parameters to a certain extent [27]. Scholars have proven that the dark pixel method has
the best correction effect on the applicability of different atmospheric correction models
in Lake Ebinur [14]. Therefore, this study selected the dark pixel method for atmospheric
correction of remote sensing images.

This study solely considered a single water quality index (CDOM), used to estimate
the DOC concentration. Scholars have proven that DOC is highly correlated with CDOM
in saline lakes [16], and considering that Lake Ebinur is a typical saltwater lake, it is of
great significance to explore the relationship between DOC and salinity in Lake Ebinur [7].
Previous studies have reported a positive correlation between river DOC and SPM [28–30];
hence, future studies should consider further exploring these parameters in lakes. Addi-
tionally, more studies should be conducted to explore the relationship between DOC and
other water quality indicators, to improve the accuracy of the lake DOC estimation model.
When discussing the relationship between CDOM and DOC, some studies have proven
that there is a linear relationship between the two, which is consistent with the results of
this study [7,16]. The DOC estimation models employed in this study—linear, quadratic,
exponential, and logarithmic regression models—are relatively simple methods. It is worth
noting that some researchers have utilized a variety of machine learning approaches to
construct DOC estimation models [16]. These machine learning techniques can offer more
complexity and flexibility in capturing intricate relationships within the data, potentially
enhancing the accuracy of DOC estimation [16]. The choice between simple regression
models and complex machine learning methods depends on the data availability, research
objectives, and desired levels of accuracy and interpretability [3]. Future studies should
consider exploring a wider range of methods to estimate DOC in representative lakes
within arid regions. This will enable the development of more accurate DOC estimation
models, especially suited to lakes in arid areas.

In this study, CDOM and DOC inversion models were constructed using the measured
data from the first phase. Although scholars have used such methods to invert lake
water quality data [14], there may be a problem of large seasonal differences in lake water
quality, resulting in differences in the applicability of inversion models in different seasons.
In a follow-up study, the authors will further accumulate measured data to reduce the
uncertainty of the estimated results. In this study, DOC concentration was estimated based
on lake CDOM concentration; the accuracy of the DOC estimation model could be improved
to some extent by improving the accuracy of the CDOM inversion model. However, there
are certain challenges involved. For example, the calculation steps of the QAA-CDOM
estimation model are massive, meaning that errors can be generated in the calculation
process of different parameters and then propagated in the next calculation process [27].
So, it is very important to optimize the model parameters. In addition, the center band of
the image provided by Sentinel-2 data does not completely match the center wavelength
of the QAA algorithm, which may also affect the accuracy of the CDOM inversion model.
The authors will solve this problem in future studies to further improve the accuracy of the
CDOM inversion model and thus enhance the applicability of the DOC estimation model.

5.2. Uncertainties in DOC Estimate

As depicted in Figure 11, an estimation model was created by using 70% of the
measured DOC data that were randomly selected, and the model’s accuracy was checked
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using the remaining 30% of the data. The linear regression model has the highest degree of
fit during the training stage, with r2 and RMSE values of 0.74 and 7.6 mg/L, respectively.
Meanwhile, the r2 and RMSE values of the validation set of data were 0.68 and 7.9 mg/L,
respectively. In addition, this study used the measured DOC concentration data from 6 July
2022 to validate the applicability of the model. As shown in Figure 11, the independent
validation sample had an r2 value of 0.6 and an RMSE of 11.4 mg/L, indicating that the
DOC estimation model is suitable for estimating the DOC concentration in Lake Ebinur.
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Coastal waters are important habitats for a variety of animals and play a crucial role
in the stability of ecosystems [31]. Coastal water ecosystems are often affected by various
human activities, resulting in a diversity of coastal water problems [32]. The complexity
of lake boundaries, the presence of bottom reflectance in optically shallow areas, and
the abundance of vegetation in nearshore regions pose challenges for optical sensors in
monitoring nearshore water bodies [32]. When considering the specific conditions of Lake
Ebinur, the reasons for the occurrence of land adjacency effects could include the following:
(1) Mixed Pixel Interpretation: During the process of delineating lake boundaries, mixed
pixels may arise where individual pixels contain both land and water. This mixing of
water and land reflectance leads to higher overall reflectance values, thereby affecting
the accuracy of remote sensing derivations. The reflected light from both water and land
components can be combined, causing uncertainties in the interpretation of the true water
characteristics. (2) Shallow Water Bottom Reflection: In the shallow water areas along the
lake, the shallow depth allows light to penetrate through the water to reach the lake bottom.
This phenomenon leads to bottom reflection, where the lake’s floor contributes to the
overall reflectance. Consequently, the water surface exhibits higher reflectance values than
expected, introducing errors in remote sensing results. Therefore, eliminating the influence
of mixed pixels and bottom reflectance is crucial to addressing land adjacency effects in
Lake Ebinur. In future research, the authors will make strides toward understanding the
impact of land adjacency effects on the lake and work toward enhancing the precision of
model inversions.

The reasons for the great variation in DOC in Lake Ebinur may hinge upon many
factors, including the water quality, water quantity, and human agricultural activities in the
upper reaches of the rivers flowing into the lake, as well as the natural climate conditions
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(temperature, wind speed, precipitation) in the study area [3,33]. Scholars have previously
found that the concentrations of DOC in the lakes under study were high from June to
September and reached their peak in June, which is similar to the results of this study [16].
However, the concentration of monthly DOC in this study was low, though similar to the
results of a previous investigation [7]. That study showed that the low DOC concentration
in Lake Ebinur in May might have resulted from the large amount of glacial meltwater
entering the lake in spring, resulting in a low DOC concentration in the lake. Then, we
found in this study that the lake water volume gradually decreased from June to August,
which may have caused the decrease in DOC concentration month by month in the water
body, along with the rising temperature, and the subsequent decrease in DOC concentration
in September.

5.3. Applications and Limitations of this Study

The “2030 Agenda for Sustainable Development” introduced 17 global goals, among
which goal 6 is to “Ensure availability and sustainable management of water and sanita-
tion for all” [34]. As a result, water quality safety has emerged as a worldwide concern,
impacting future generations’ ability to sustain economic and social development. Investi-
gating the changes in DOC in lakes contributes to improving our understanding of lake
ecosystems and their eutrophication status, and it serves as a reference for the cycling of
dissolved organic matter within lake ecosystems [35,36].

This study utilized single-source Sentinel-2 remote sensing imagery. However, future
research could consider incorporating multiple data sources through spatio-temporal
fusion techniques to invert long-term DOC concentration data for Lake Ebinur. This
approach will provide us with a comprehensive understanding of prolonged variations
in DOC concentration. In the context of the QAA semi-analytical model, differences in
band settings and central wavelengths among different data sources can lead to increased
uncertainty in the derived results [1]. In follow-up research, the band matching problem
should be improved to further raise the inversion accuracy of the model. In addition, in
this study, a remote sensing image and a phase of measured data were used to build a
DOC estimation model [37]. Considering the seasonal differences in DOC concentration in
Lake Ebinur, we will accumulate measured data in different seasons in subsequent studies
and build a DOC estimation model using multi-source remote sensing data to explore the
variation characteristics of DOC in different seasons in Lake Ebinur. Nonetheless, this
study may provide a reference for subsequent inversions of the water color parameters of
the arid saltwater lake and also lay a solid foundation for the in-depth exploration of the
change law of the water color parameters of Lake Ebinur.

6. Conclusions

First and foremost, this study launched an in-depth exploration of the inherent optical
characteristics of Lake Ebinur, thereby establishing reference wavelengths specific to Lake
Ebinur. Subsequently, an assessment was conducted to evaluate the precision of various
CDOM inversion models, leading to the identification of a suitable CDOM inversion model
tailored to Lake Ebinur. Lastly, an investigation was conducted into the correlation between
CDOM and DOC in Lake Ebinur. Additionally, by leveraging CDOM estimations, the
temporal variations in DOC within the period of 2018–2022 were characterized for Lake
Ebinur. The outcomes of this study provide a robust foundation for forthcoming endeavors
in the field of inverting aquatic optical properties and exploring the carbon cycling processes
within Lake Ebinur. The key contributions here are summarized as follows.

(1) By measuring the absorption coefficients of Lake Ebinur’s water body, the intrinsic
optical characteristics of Lake Ebinur were investigated. Through this examination,
it was observed that the absorption coefficients of SPM and CDOM approach zero
at around 700 nm, where the dominance of pure water absorption coefficients in the
total absorption of water becomes evident. In conjunction with the band configuration
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of Sentinel-2 remote sensing imagery, the wavelength of 833 nm was selected as the
reference wavelength for Lake Ebinur.

(2) In this study, observation data during 2021 and 2023 were used to verify the appli-
cability of the QAA-CDOM model in Lake Ebinur, in which the validation set r2

value was 0.72 and the RMSE value was 0.13 m−1. Meanwhile, the independent
verification sample r2 value was 0.51 and the RMSE value was 0.12 m−1. The above
verification results show that the QAA-CDOM model is suitable for the inversion
of the CDOM concentration in a long Lake Ebinur time series. In comparison with
multiple DOC estimation models, the linear regression model demonstrated the most
favorable performance, yielding an r2 value of 0.72. The measured data in 2022 were
used as independent verification samples, and the verification results (r2 = 0.6 and
RMSE = 11.4 mg/L) showed that the DOC estimation model could be used to estimate
the long-term DOC concentration in Lake Ebinur.

(3) By conducting a comparative analysis of the spatial variation in Lake Ebinur’s DOC, it
could be inferred that from 2018 to 2022, Lake Ebinur’s DOC concentration exhibited
an overall increasing trend. The concentration predominantly ranged between 30 and
90 mg/L, with a few regions displaying DOC concentrations exceeding 150 mg/L.
Further comparison of Lake Ebinur’s spatial DOC variations from 2018 to 2021 re-
vealed a year-on-year increase in DOC concentration. Additionally, upon contrasting
the spatial distribution patterns of DOC across different months, it became evident
that DOC concentrations in June and July of each year exceeded those in other months,
while concentrations in May were notably lower.

(4) Analyzing the temporal variations in Lake Ebinur’s DOC concentration revealed a
distinct fluctuating trend, characterized by an overall increasing trajectory over time.
Among these variations, the month of June stood out with the highest average DOC
concentration (80 mg/L), whereas the lowest average concentration was observed in
May (48 mg/L). From 2018 to 2021, the coefficient of variation in region 4 was the
highest, and the coefficient of variation in region 1 was the smallest.
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