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Abstract: With the advancement of deep neural networks, several methods leveraging convolution
neural networks (CNNs) have gained prominence in the field of remote sensing object detection.
Acquiring accurate feature representations from feature maps is a critical step in CNN-based object
detection methods. Previously, region of interest (RoI)-based methods have been widely used, but of
late, deformable convolution network (DCN)-based approaches have started receiving considerable
attention. A significant challenge in the use of DCN-based methods is the inefficient distribution
patterns of sampling points, stemming from a lack of effective and flexible guidance. To address
this, our study introduces Saliency-Guided RepPoints (SGR), an innovative framework designed to
enhance feature representation quality in remote sensing object detection. SGR employs a dynamic
dual-domain alignment (DDA) training strategy to mitigate potential misalignment issues between
spatial and feature domains during the learning process. Furthermore, we propose an interpretable
visualization method to assess the alignment between feature representation and classification perfor-
mance in DCN-based methods, providing theoretical analysis and validation for the effectiveness
of sampling points. In this study, we assessed the proposed SGR framework through a series of
experiments conducted on four varied and rigorous datasets: DOTA, HRSC2016, DIOR-R, and
UCAS-AOD, all of which are widely employed in remote sensing object detection. The outcomes of
these experiments substantiate the effectiveness of the SGR framework, underscoring its potential to
enhance the accuracy of object detection within remote sensing imagery.

Keywords: remote sensing object detection; feature representation; deformable convolution;
alignment; RepPoints

1. Introduction

In the field of remote sensing image interpretation and processing, object detection
has become an essential task, and with the advancement of deep neural networks, several
methods based on convolution neural networks (CNNs) are becoming prevalent [1–3].
Obtaining accurate feature representation of targets from feature maps is a crucial step in
accurately predicting targets, especially for targets with arbitrary orientations and complex
backgrounds in remote sensing object detection [4,5]. There are two methods that can
enhance the quality of the obtained feature representation. In the past, the region of interest
(RoI)-based method [6,7] has been primarily used, but now the deformable convolution
network (DCN)-based method [8–10] is also receiving increasing attention.

The RoI-based methods typically utilize coarse bounding boxes in the first stage to
adjust the sampled regions based on the spatial position of the targets, thus obtaining fixed-
shaped feature representations [6,7,11,12]. This approach has improved the accuracy of
the obtained feature representations and has become a standardized approach for a period
of time. In recent years, deformable convolutions, which are derived from convolutions,
have emerged as alternative solutions. By utilizing deformable convolutions, DCN can

Remote Sens. 2024, 16, 250. https://doi.org/10.3390/rs16020250 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6473-9187
https://doi.org/10.3390/rs16020250
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16020250?type=check_update&version=2


Remote Sens. 2024, 16, 250 2 of 25

adaptively modify their sampling regions through offsets, resulting in more accurate feature
representations [8,13]. The effectiveness of the offset in DCN determines the accuracy of
the acquired object feature representations [10,14]. Therefore, guiding the offsets in DCN to
acquire more accurate and distinguishable feature representations has become a central
focus for researchers.

The offsets of DCN essentially represent collections of sampling points, which should
follow a certain distribution pattern. To guide the selection of these sampling points,
it is necessary to identify an effective distribution. For example, ordinary convolution
can be viewed as sampling points following a fixed uniform distribution within a square.
S2ANet [10] and AFRE-Net [15] incorporate an alignment module to rearrange the positions
of sampling points, under the assumption that employing a scale-variable uniform sampling
strategy can effectively capture accurate feature representations. However, this approach
may encounter difficulties when dealing with non-rectangular objects, as some sampling
points may inadvertently fall within the background region. Some researchers [16,17] posit
that the sampling points adhere to a 2-D Gaussian distribution, with sampling conducted
under a fixed distribution pattern where only the scale and orientation vary. The aforemen-
tioned assumptions that the distribution patterns of sampling point sets are constant for
all targets and categories, with only the scale and orientation of the distribution varying,
do not effectively adequately showcase the flexibility of DCN sampling. Conversely, some
methods [18–20] assume that the sampling points can self-learn an appropriate distribution
pattern based on the gradients backpropagated by the classification and localization loss
functions. Different distribution patterns of sampling points are illustrated in Figure 1.
However, our experiments reveal that the gradients backpropagated by the loss function
are insufficient to enable the model to autonomously learn an efficient distribution pattern,
thereby resulting in sampling points remaining in their initial position.

The shared issue among these methods lies in the inefficient distribution patterns of
sampling points, caused by a lack of either effective or flexible guidance. This occurs as
these methods focus solely on providing information about the ground truth boundaries
for model learning, yet overlook the crucial internal information within these boundaries.
The neglect of internal information from the objects within the ground truth boundaries
hinders the accurate detection and understanding of remote sensing objects. In addition,
the DCN should not be guided by forcefully imposing a specific distribution pattern on
the sampling points, as this approach may result in misalignment between the spatial
and feature domains [21,22]. Consequently, DCN offsets do not truly learn to acquire
high-quality feature representations of the targets through accurate sampling, and the
resulting feature representations may not be comprehensible to downstream predict heads.
To mitigate misalignment between the spatial and feature domains, it is essential not only
to guide the sampling points of the DCN to learn flexible and object-aware sampling
patterns within the bounding box but also to implement strategic learning approaches.
These approaches will enable the prediction module to effectively interpret the feature
representations derived from the sampling points.

To address the issue previously mentioned, this study introduces Saliency-Guided
RepPoints (SGR), a flexible and efficient framework for object detection, building upon
the RepPoints method. Unlike other RepPoints-based methods, SGR utilizes saliency
maps derived from ground truth data as guidance to learn and predict the positioning
of sampling points. These response peaks frequently signify areas enriched with salient
features. This enrichment allows the DCN to extract feature representations from those
areas that are more distinctive and discriminative. In order to alleviate the potential mis-
alignment between spatial and feature domains during the learning process, we propose a
dynamic dual-alignment (DDA) training strategy, which incorporates the saliency-guided
method. This strategy consists of two components: a label assigner and loss functions.
By augmenting external salient information, which belongs to spatial information, a loss
function can be used as a constraint to guide the prediction of DCN offsets to focus on these
regions. The sampled feature representations belong to the feature domain information
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and need to be passed on to downstream regression and classification predict heads to
obtain the final results. In order to gradually enable the predict heads to understand the
feature representations from the upstream during the training process, we also consider
both the spatial prior information of the sampled points and the posterior information
from the downstream predictions simultaneously during the label assignment phase. Dur-
ing the training process, the label assigner can achieve a trade-off dynamically according
to the matching measurements, thus alleviating the optimization difficulties caused by
misalignment. Through training with DDA, the dual-alignment of spatial and feature
domains can be achieved. Furthermore, in order to examine the alignment between feature
representation and the classification performance of predict head, we propose an inter-
pretable approach to validate the effectiveness of sampling points and provide a theoretical
analysis. This visualization method has the characteristics of being intuitive and having
finer granularity. Moreover, it is also applicable to other point-based methods.

(a) Uniform distribution (b) 2-D Gaussian distribution

(c) With limited guidance (d) Saliency-guided

Figure 1. Various distribution patterns of sampling points. The patterns depicted in (a,b) represent
fixed distributions. In (c), the sampling points are guided to a limited extent, focusing on boundary
detection, while (d) demonstrates the SGR method, focusing on key regions.

According to the content presented above, the main contributions of this study can be
summarized as follows:

• To enhance the accuracy of feature representation, we propose Saliency-Guided Rep-
Points, a method that utilizes information within bounding boxes to guide the learning
of distribution patterns for DCN offsets.
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• To alleviate the potential misalignment between the spatial and feature domains
caused by model-guiding, we have designed a dynamic dual-domain alignment
training strategy, which mitigates the optimization difficulties.

• We propose an interpretable visualization method to assist in validating the effective-
ness of our proposed SGR.

• To validate the effectiveness of our proposed method, we conducted a series of experi-
ments on four diverse and demanding datasets, namely, DOTA [23], HRSC2016 [24],
DIOR-R [25], and UCAS-AOD [26].

The structure of this paper is as follows: Section 2 introduces related work, providing
a brief overview of the status of research related to our work. Section 3 presents, in detail,
our proposed method and its implementation. Section 4 demonstrates the effectiveness
of the method through experimental results. Section 5 provides a theoretical discussion
based on the experimental results, highlighting the effectiveness of our method and sug-
gesting potential areas for improvement in future work. Finally, Section 6 summarizes the
conclusions derived from our work.

2. Related Work

In this section, a thorough review is conducted of the existing literature relevant to
remote sensing object detection, emphasizing specifically the feature representation of
objects and dynamic assignment strategies. These aspects are intimately connected to the
focus of our study.

2.1. Remote Sensing Object Detection

The task of object detection in remote sensing imagery involves the localization and
classification of objects. Differing from object detection in other types of imagery, remote
sensing images are characterized by distinct difficulties, including arbitrary orientation,
dense packing, and complex backgrounds. In recent years, with the advancement of deep
CNNs, many methods have been proposed for remote sensing object detection. These
methods can be categorized into two major types: single-stage and two-stage methods.
Due to the constraints of the CNN receptive field, achieving accurate localization is cru-
cial for improving the performance of the model. To achieve more accurate localization,
the two-stage paradigm first performs coarse localization [6,7,12], and then refines the
localization and performs classification based on the coarse localization. This paradigm has
achieved great success with excellent performance. Nevertheless, the two-stage paradigm
also has its drawbacks, such as longer training time and larger memory consumption,
which makes it unsuitable for lightweight end devices and real-time inference scenarios.
Over the recent past, one-stage methods have made great progress, closing the performance
gap with two-stage methods. Li et al. [20], as well as Han et al. [10], proposed the utilization
of single-stage dense prediction offset, followed by the adoption of DCN-based offset sam-
pling, to achieve superior localization performance without the time-consuming overhead
associated with two-stage approaches. Additionally, the design of dense prediction in the
single-stage paradigm enables high recall rates. Among them, point-based methods have
attracted growing interest due to their flexible feature representation capabilities and high
robustness in obtaining bounding boxes. Yang et al. were the pioneers in introducing
the point-based RepPoints method, demonstrating that it is a geometric representation of
objects that reflects more accurate semantic localization compared to traditional RoI-based
methods [18]. Subsequent studies have adapted the RepPoints method [20,27–30] to the
domain of remote sensing object detection, where the targets exhibit greater geometric
and morphological variability. These studies have achieved commendable results, largely
owing to the feature representation’s ability to capitalize on its flexibility to extract more
precise features of the objects.
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2.2. Feature Representation of Objects

Remote sensing images undergo processing via a backbone network and a feature
pyramid network (FPN), resulting in the generation of multi-scale feature maps. From
these feature maps, essential feature domain information is extracted, constituting what
we refer to as feature representation. The success of downstream tasks, specifically in
localization and classification, relies heavily on the quality of this feature representation. It
is evident that obtaining effective and crucial feature representation plays a vital role in
enhancing the performance of remote sensing object detection. The traditional approach
of using conventional convolutions, depicted in Figure 2a, for feature representation of
objects with anchor-based axis-aligned square region sampling lacks flexibility, particularly
in the case of remote sensing objects with arbitrary orientations, as it introduces substantial
background noise. Xie et al. proposed refining oriented RoI [7], depicted in Figure 2b,
utilizing a two-stage scheme to obtain feature representation of the same scale from regions
of different sizes. This method resulted in remarkable improvements. The use of RoI for
feature extraction requires an upstream region proposal network (RPN) module, and such
two-stage methods consume lots of computational resources, resulting in slow inference
speed. Therefore, in recent years, researchers have turned their attention to DCN, depicted
in Figure 2c, which can also adaptively extract feature representations. Han et al. utilized
a feature alignment module (FAM) [10] to align the location and orientation to obtain
more accurate feature representations. Li et al. predicted key points from the feature
map in the initial stage and used them as offsets for DCN [20]. Regarding the selective
acquisition of sampling points, Hou et al. proposed shape-adaptive selection and mea-
surement [14], while other studies assumed that the points followed a two-dimensional
Gaussian distribution [16,17]. The feature representations obtained through the aforemen-
tioned different sampling methods will considerably influence downstream localization
and classification tasks.

(a) CNN (b) RoI (c) DCN

Figure 2. Different methods for obtaining feature representation. (a) Traditional convolution methods
sample from an axis-aligned square region to obtain a pixel in the feature map. (b) RoI-based
methods derive a fixed feature representation from a region of interest. (c) Deformable convolution
can adaptively obtain a pixel in the feature map based on the offset in the feature representation.

The feature representations obtained by the upstream sampling points will be passed
on to the downstream prediction modules. Most existing methods for remote sensing object
detection represent bounding boxes using five parameters (x, y, w, h, θ), where x and y
denote the coordinates of the center point, w and h represent the width and height, and theta
represents the rotation angle. These parameters are directly predicted by the regression
method employed in the predict head and subsequently refined using the SmoothL1
loss. However, directly introducing an additional angular parameter to the output of
a horizontally aligned bounding box results in imprecise predictions, which, in turn,
diminishes the overall performance of the model. One common issue is the discontinuity
in the angle regression loss. Several methods [31–34], such as that of Yu et al., propose
an innovative phase-shifting coder that encodes the angle of orientation to effectively
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mitigate the problem of bounding box discontinuity [35], but they still fail to completely
eliminate this problem. Another approach to obtain bounding boxes apart from direct
regression is by utilizing points. A notable method in this field is RepPoints [18,20], which
is a generic detector that leverages point extraction to obtain key features. Specifically, a set
of representation points is generated for each pixel in the feature maps. By integrating
the acquired offsets as prior information, the DCN is utilized to sample the neighborhood
regions. Following this, two parallel branches are utilized, one for classification and
the other for refinement. The refined results are then transformed into bounding boxes
using a conversion function [20,30]. The existing RepPoints method operates under the
assumption that the learning of an adaptive point-set can be self-guided by downstream
classification and regression tasks [18,20,28], which are, in turn, supervised by the loss
function. Unfortunately, such weak guidance is inadequate, leading to an unreasonable
distribution of sampling points.

It is evident that obtaining accurate feature representations is crucial for achieving
optimal results. Nevertheless, the aforementioned DCN-based methods often fail to recog-
nize the importance of directing the distribution patterns in sampling. This aspect merits
further investigation, given its potential influence on the performance of detection.

2.3. Dynamic Assignment Strategies

The assignment of positive and negative labels to samples plays a crucial role in
supervising the learning process of the model in the field of deep learning and remote
sensing object detection. Traditional object detection approaches typically use intersection
over union (IoU) as a measurement and a fixed hyperparameter as a threshold. However,
the adaptive training sample selection (ATSS) [36] method continuously adjusts the as-
signed IoU threshold during the model learning process. Additionally, the dynamic anchor
learning (DAL) [37] approach incorporates consideration of classification and regression,
utilizing the matching degree to dynamically assign labels. Furthermore, Xu et al. proposed
the finer dynamic posterior matching method [17], which incorporates posterior informa-
tion into the evaluation metric to better capture the shape of objects. Furthermore, it is
worth investigating the assignment strategy of the transformer-based detection transformer
(DETR). Some studies [38] have demonstrated that the Hungarian matching implementa-
tion of the DETR, which achieves one-to-one high-quality matching, significantly improves
performance. Researchers such as Li et al. [39] and Zhang et al. [40] have incorporated the
advantages of Hungarian matching into CNN-based models.

In short, it is crucial to obtain accurate feature representations when it comes to object
detection in remote sensing. The use of DCN in single-stage methods has demonstrated
their high accuracy and computational efficiency. Nonetheless, the DCN’s offset still needs
effective guidance to minimize the ambiguity of the obtained feature representation. More-
over, high-quality labels are indispensable for training; thus, a label assigner customized to
the detector’s characteristics is necessary to fully leverage its performance.

3. Method

This section offers a comprehensive overview of the methodology employed to direct
the DCN towards extracting high-quality feature representations. Furthermore, it elaborates
on the approach to achieve dual alignment through dynamic label assignment, covering
both the design rationale and the underlying theoretical framework.

3.1. Overview of Proposed Method

The overall pipeline is visualized in Figure 3. A remote sensing image is initially
processed by a backbone network for feature extraction, followed by the use of FPN to
obtain five feature maps of different scales, namely, [Fn| n = 3, 4, 5, 6, 7]. In the detection
pipeline, we focus on two key stages, namely, the obtaining feature representation stage
and the prediction stage. To address this, we employ the deformable convolution inherited
from RepPoints to sample the key regions predicted by the model. This approach allows us
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to utilize different sampling modes for different objects, thereby obtaining a more accurate
shape-adaptive feature representation of the objects. Moreover, we employ saliency maps to
explore regions in the ground truth images that may contain important information, guiding
the sampled points to focus on these areas. To obtain high-quality positive and negative
samples and to avoid misalignment between spatial and feature domains, we incorporate
prior knowledge and posterior knowledge of the model into the matching alignment degree
and utilize the Hungarian matching algorithm to complete label assignment. Furthermore,
based on the label assignment results, we filter out low-quality samples, and subsequently
pass the filtered samples into the loss function to compute the loss and backpropagate the
gradients for optimizing the model parameters.

Figure 3. The overall pipeline of our method. Our method, based on the RepPoints, flexibly obtains
feature representation through the DCN structure.

3.2. Sampling Points Distribution Pattern

The DCN calculates the feature representation of the objects at each pixel on the feature
maps by utilizing the contextual information of its neighborhood. To enable the model to
obtain shape-adaptive feature representation, we predict the offset of a sampled keypoint
set at each pixel on the feature map, which represents the distribution pattern of sampling
points, denoted as P.

Pi(x, y) = I(Fi(x, y)) =
{
(∆xj, ∆yj)

}n
j=1, i = 3, 4, 5, 6, 7 (1)

In the Equation (1) above, Fi designates the feature map of the ith layer, while i
signifies a neural network predicting the point set patterns, which is composed of multiple
superimposed neurons. I is a function that predicts the sampling points based on the pixels
on the feature map. Pi refers to the point set pattern obtained on the ith feature map.

The underlying principle of the distribution pattern of sampling points lies in how
the model interprets features at a specific pixel. It determines the neighboring regions that
contain important information and the information it desires to know. A pattern not only
includes the positional information of a set of points, but also contains predictions about
the geometric features, shape characteristics, size, rotation angle, and so on, implied by the
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relative positions of the points in the set. The specific predictions depend on the nature of
the object and its class.

We incorporate the predicted P as the offset and employ a DCN to extract shape-
adaptive feature representations of the target.

Ri(x, y) =
K

∑
j=1

wj ∗ Fi
(
x + ∆xj, y + ∆yj

)
(2)

In Equation (2), Ri represents the feature representation, which is obtained by summing
the weighted contributions. The weights, wj, represent the importance of each neighbor-
ing pixel’s feature contribution. Each pixel’s feature contribution, Fi(x + ∆xj, y + ∆yj),
is computed by evaluating the feature map at a shifted position, (x + ∆xj, y + ∆yj), rela-
tive to the current pixel’s position (x, y). Specifically, we partition the feature sampling
process into two independent branches, namely the regression branch and the classi-
fication branch, based on the downstream prediction tasks. This dual-branch design
enhances the stability of the model by allowing for separate feature maps dedicated to
regression and classification tasks. The offset can be added to a base offset, such as
B = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)}, allowing it as knowledge, or it can be left out for
the model to learn autonomously. In deformable convolution, the parameter w signifies
the model’s comprehension of the characteristics of each sampled point. This includes
the model’s varying degrees of attention to distinct features. In practical applications,
the points within a given set may assume varied functional roles. For instance, certain
points may be primarily tasked with discerning the object’s edges and background, whereas
others may focus on comprehending the central attributes of the object. The following
provides a comprehensive and detailed explanation.

3.3. Saliency-Guided RepPoints (SGR)

The SGR offers an intuitive method for directing the model’s sampling points, ad-
dressing the inadequacies of the existing RepPoints method that relies solely on gradients
backpropagated from the classification and regression subtasks. These subtasks primar-
ily extract information about the bounding box from the ground truth but fall short in
efficiently mining the intricate details within it. This limitation necessitates an additional
source of information to guide the DCN in adopting an appropriate sampling distribu-
tion pattern. Such guidance is crucial for the DCN to attain a superior quality of object
feature representation.

Saliency maps methods, renowned for their effectiveness in pixel-level object detection
and fine-grained classification, provide granular and interpretable visual insights. They
are adept at highlighting crucial information within bounding boxes. Thus, in the SGR
framework, we leverage the positional information obtained from saliency maps to guide
the RepPoints sampling process. This integration of saliency information into the point
guidance is a key aspect of SGR. Such a method significantly enhances the RepPoints’
ability to capture the essential features and patterns across different object categories.
Consequently, SGR fosters a more nuanced and precise detection process by leveraging
detailed insights of objects.

sn = S(tn), n = 1, 2... (3)

Equation (3) illustrates the process. Here, tn denotes the nth ground truth target image,
and sn represents its corresponding saliency map, which is a grayscale image. The function
S , signifying an algorithm, converts an RGB image into a saliency map. We employ the
method of spectral residual, as cited in [41], to generate static saliency maps. Typically, areas
on a saliency map with stronger responses indicate regions more likely to capture human
attention. Consequently, from a human-centric viewpoint, salient points are expected to
coincide with these peak response regions on the saliency map. Extracting these key points
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is vital to guide the model in identifying these areas. Deformable convolution is utilized to
derive feature representations with enhanced interpretability from these regions.

Pguidance = FindPeak(s) = {pn | n = 1, 2..., K} (4)

Equation (4) denotes the top K peaks with the highest response values on the saliency
map. A local maximum filtering algorithm is employed to identify these peaks, allowing
for the isolation of the most representative regions within each ground truth target. These
P points, combined with the boundary information of the target ground box, enrich the
dataset, facilitating model learning. A specialized loss function guides the predicted
sampling points towards the Pguidance region. This approach is conceptualized as an
optimization problem aiming to minimize the distance between two point sets. For this
purpose, we utilize the Chamfer distance as a measure for quantifying the disparity between
two point sets.

FCham f erDist.(P, Pguidance) =
1
|P| ∑

x∈P
min

y∈Pguidance
∥x − y∥2

2

+
1∣∣Pguidance

∣∣ ∑
x∈Pguidance

min
y∈P

∥x − y∥2
2

(5)

Equation (5), FCham f erDist.(P, Pguidance) quantifies the Chamfer distance between two sets
of points, where P represents the pattern of sampling points predicted by the model,
and Pguidance denotes the predetermined guiding point set. This loss function is specifically
designed to steer the model towards predicting a pattern of sampling points that closely
aligns with the guiding point set. Importantly, it should be noted that the number of
elements in the two point sets need not be identical. This flexibility is integral to the
function’s application, accommodating varying quantities of points in each set while still
providing a reliable measure of similarity between them. This metric will serve as a
component of the loss function, with our proposed overall loss function defined as follows:

L = λ1Lloc + λ2Lcls + λ3Lguidance, (6)

where
Lcls =

1
Ncls

∑
i
Ffocal(Pcls

i , gcls
i ), (7)

Lloc =
1

Nloc
∑

i
Fciou(Ploc

i , gloc
i ), (8)

Lguidance =
1

Nloc
∑

i
FChamferDist.(Ploc

i , Pguidance
i ). (9)

In Equations (6)–(9), Ncls and Nloc represent the total number of positive samples for
classification and localization, respectively. Pcls

i denotes the predicted class score based on
the feature representation, and Ploc

i signifies the positional coordinates of the predicted
points set. gcls

i represents the ground truth classification information for the ith target and
gloc

i signifies the ground truth positional information of the ith target. Fciou is the convex
IoU loss.

During the training process with SGR, guided by the saliency map and convex IoU
loss, the sampled points acquire different roles. Some points are responsible for exploring
the boundaries, while others focus on identifying more distinguishable features on the
targets, as shown in Figure 4. As the training progresses, the division of labor among
different sampled points becomes clear, and the obtained feature representation gradually
stabilizes. This phenomenon can be attributed to the exploitation of the saliency map
for highlighting important regions and the convex IoU loss for encouraging the accurate
localization of objects.
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Figure 4. Illustration of learning process. Sampling points learn to identify salient features and boundaries.

3.4. Dynamic Dual-Domain Alignment (DDA) Assignment

DDA, a training strategy innovatively redeveloped based on the SGR framework, is
illustrated in Figure 5. It employs the combined use of prior and posterior information as a
matching measurement, providing high-quality label assignments. This approach assists
SGR in circumventing potential misalignments between the spatial and feature domains.
DDA is designed to complement the SGR by directing sampling points towards regions
of higher saliency within the ground truth bounding boxes, thus focusing the model’s
attention in the spatial domain. A concern arises when sampling points, constrained by
loss functions, do not learn the correct distribution patterns effectively. Such constraints
can hinder the downstream predict heads from interpreting the feature representations
provided by the DCN, despite their inherent accuracy and desirability. This discrepancy
may lead to a disconnection between the spatial and feature domains. To address these
challenges and to reduce confusion in the model’s learning process, we have redesigned the
label assignment strategy. This revised strategy aims to establish a more effective balance
between the model’s inherent learning mechanisms and the input from the sampling points,
thereby enhancing the model’s overall prediction accuracy.

Figure 5. Procession of DDA. The main pipeline is depicted to the left of the black dashed line.
The measurement matrix is calculated based on the defined measurements function and subsequently
fed into the Hungarian algorithm for global minimization matching. All matching measurements are
non-positive numbers, with smaller measurements indicating a better match between the sample and
the ground truth. The integration of the Hungarian algorithm and the measurement matrix enables
dynamic consideration of diverse information, thereby providing high-quality labels for the samples.

The predictive output of a model reflects its learning outcomes, and this becomes
particularly evident in the later stages of training. As training progresses, the distribution
pattern of the sampling points stabilizes, indicating that the feature representations acquired
by the DCN experience minimal changes. Consequently, the primary focus of optimization
shifts to the prediction stage, with the feature representation considered as a given and the
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predict head as an optimizable entity. The effectiveness of the model’s predictions serves
as a measure of the predict head’s understanding of the feature representation—better
predictions imply a deeper comprehension. To align the learning processes in the spatial
domain, where sampling occurs, with those in the feature domain, where understanding
is developed, it is crucial to dynamically adjust the label assignment strategy throughout
different learning phases. This strategy integrates the model’s predictive performance as a
posterior criterion into our assignment measurement, alongside prior information, such as
the model’s initial positioning. Such an approach is designed to achieve spatial and feature
alignment during the model’s training process.

For an input image, the assignment measurement for each proposal corresponding to
each ground truth object is calculated as follows:

Mtotal = µ1Mcls + µ2Miou + µ3Mloc + µ4Mrepulsion (10)

where
Mcls = F f ocal(Pcls

i , gcls
j ),

Miou = Fciou(Ploc
i , gloc

j ),

Mloc = Fsmooth F1(Bloc
i , gloc

j ).

(11)

In the Equation (10), Mcls and Miou represent posterior information, whereas Mloc
and Mrepulsion are related to prior spatial information. The costs are all negative. The term
Bloc

i denotes the center position of the rectangular box obtained by transforming the i-th
prediction using the minAreaRect function. The definition of Mrepulsion is as follows:

Mrepulsion = −e−α ∑1≤y<x≤K ∥Px−Py∥2
2 (12)

The term Mrepulsion, as defined in Equation (12), is formulated to discourage the
excessive clustering of the sampling points. In this expression, Px and Py denote distinct
points within the point set. The parameter α serves as a hyperparameter, modulating the
decay rate of this measure as the dispersion of the point set increases. The hyperparameters
µ1, µ2, µ3, and µ4 in the equation are used to balance these various measures. All the
measurements are negative. Assuming there are n proposals and m ground truths, M is an
n × m assignment measurement matrix. Through the Hungarian algorithm, we minimize
the matching measurement, expressed as follows:

σ̂ = arg min
σ∈ΣN

N

∑
i=1

M(Pσ(i), gi) (13)

In Equation (13), σ̂ represents the matching result and ΣN denotes the solution space
for matching. The term Pσ(i) refers to the samples matched to gi, the i-th ground truth.
Since the number of predicted P’s is generally more than that of gi’s, the matrix M is made
square by padding with zeros to ensure that both P and g can be matched. In σ̂, matches
to the actual ground truths are considered positive samples, while matches to the padded
zeros are considered negative samples.

DDA provides the model with high-quality positive samples that consider posterior in-
formation, thus reducing confusion during the learning process, as demonstrated in Figure 6.
This method guides the assigner to emphasize different aspects during model training. Ini-
tially, when the model exhibits weak classification capabilities, greater emphasis is placed
on the location of proposals to enhance the learning of salient feature representations.
As the model’s localization ability strengthens, the focus gradually shifts to improving the
classification accuracy. Specifically, the objective is to optimize the weights to minimize
classification confusion given a feature representation. Ultimately, this approach enables the
model not only to identify suitable feature representations but also to enhance classification
based on these representations, leading to improved overall predictions.
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(a) Without DDA (b) With DDA

Figure 6. Comparative analysis of loss curves with and without the application of DDA.

3.5. Point Local Interpretable Map

In order to validate the alignment efficacy of DDA, particularly in terms of the predict
head’s assessment of the sampling points’ positions, we introduce a method for inter-
pretable visualization. This approach concentrates on evaluating the rationality of the
sampling points’ positions through visualization techniques. Our method is founded on
the fundamental mathematical concept that the final classification predict head can be
conceptualized as a multivariate function, defined as:

SCORE = H(p1, p2, p3, ..., pK) (14)

In Equation (14), SCORE represents the classification scores from the classification
branch. The function H symbolizes the computation of the classification predict head,
encompassing the positions of the sampling points (p1, p2, p3, ..., pK).

Given that H in a trained model is a fixed, deterministic function and that deformable
convolution employs linear interpolation in the sampling process, we posit that H can be
approximated as a continuous function [8]. Analogous to how the variation of a multivariate
function can be gauged by observing increments in its vicinity, the changes in SCORE upon
slight adjustments of the sampling points, denoted as δ in Equation (15), offer insights into
the model’s comprehension of the feature representation patterns:

∆SCORE = H(p1 + δ, p2, p3, ..., pK)−H(p1, p2, p3, ..., pK) (15)

In an ideal scenario, the feature representations derived from sampling based on pre-
dicted points should be coherent and interpretable by the downstream predict heads. The-
oretically, displacing a sampling point within its neighborhood is expected to result in a
decline in classification confidence, indicating that the original position of the sampling
point represents a function’s extremum. By analyzing changes in ∆SCORE, we can de-
duce whether the model’s predict head corroborates the appropriateness of the predicted
sampling points. Additionally, this approach facilitates the detection of potential misalign-
ments through visual inspection. In practice, this methodology involves systematically
shifting the focal sampling point across a neighboring grid. This approach facilitates a
comprehensive examination of how such movements affect the classification scores.
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4. Experiments and Results

In this section, the four publicly available datasets utilized in our experiments are first
introduced, followed by a discussion on the implementation details and evaluation metrics.
Subsequently, the experimental results are presented, aimed at validating the effectiveness
of the proposed method.

4.1. Datasets

In order to validate the effectiveness of our proposed method, we conducted a series of
experiments on four diverse and demanding datasets, namely, DOTA [23], HRSC2016 [24],
DIOR-R [25], and UCAS-AOD [26]. These datasets were specifically chosen as they rep-
resent different challenges and characteristics commonly encountered in remote sensing
object detection tasks.

DOTA is one of the most authoritative large-scale datasets for object detection in
aerial images. It consists of fifteen categories, namely ’plane’, ’baseball-diamond’, ’bridge’,
’ground-track-field’, ’small-vehicle’, ’large-vehicle’, ’ship’, ’tennis-court’, ’basketball-court’,
’storage-tank’, ’soccer-ball-field’, ’roundabout’, ’harbor’, ’swimming-pool’, and ’helicopter’,
which will be abbreviated as PL, BD, BR, GTF, SV, LV, SH, TC, BC, ST, SBF, RA, HA, SP,
and HC, respectively. The dataset employs rotated bounding box annotations, encompass-
ing dense, complex backgrounds, arbitrary orientations, and other challenging scenarios.
The DOTA dataset comprises a total of 2806 remote sensing images, each varying in size
from 800 × 800 to 4000 × 4000 pixels. The dataset is further divided into three distinct
sets: a training set, a validation set, and a testing set, which are presented in proportions of
1/2, 1/6, and 1/3, respectively, or numerically, 1411, 458, and 937 images in the respective
sets. For the purpose of our experiments, we utilize both the training and validation sets
in order to train the proposed detector. To this end, all the images used for training are
segmented into patches of 1024 × 1024 pixels, with a stride of 200 pixels. As part of the
rigorous data augmentation techniques, we also employed random resizing and flipping,
aiming to enhance the robustness of the model.

The HRSC2016 dataset operates with the oriented bounding box annotation method.
Designed as a high-resolution dataset, the HRSC2016 exhibits a resolution ranging from
0.4 m to 2 m. Specifically, all images within this dataset are sourced from six renowned ports
and incorporate an array of seafaring vessels along the coast. The size of the ship images
varies from 300 to 1500, with most of the images exceeding dimensions of 1000 × 600.
Additionally, this dataset is constituted of three different segments: a training set em-
bracing 436 images (with 1207 samples), a validation set encompassing 181 images (with
541 samples), and a testing set comprising 444 images (with 1228 samples). As a part of
our research, we resized all the images to an 800 × 512 resolution and applied random
horizontal flipping as an augmentation strategy to enhance the diversity of the model’s
training data.

The DIOR-R dataset is annotated using the oriented bounding box method and stands
as a substantial benchmark dataset for object detection in optical remote sensing images. It
is noteworthy that this dataset consists of instances spread across 20 different categories,
thus providing a wide spectrum of scenarios for detection. All the images in this dataset
have been resized to a standard dimension of 800 × 800, yielding a resolution that ranges
between 0.5 and 30 m. The images were extracted from Google Earth, resulting in a total
count of 23,463 images and comprising approximately 190,288 distinct objects.

The UCAS-AOD dataset, specializing in the detection of aircraft and automobiles,
encompasses a total of 2420 images and 14,596 instances. The dataset consists of two classes,
cars and airplanes, along with a background class serving as negative examples. Specifi-
cally, a total of 1000 images are automobile-based, comprising 7114 car instances, while,
7482 instances are designated towards aircraft illustrations. The defined distribution for
the dataset allocation involves a ratio of 5:2:3 among the training, validation, and testing
sets, respectively.
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4.2. Implementation Details

We execute all the experiments on a computing system equipped with two Nvidia
GeForce RTX 4090 GPUs, manufactured by Nvidia Corporation GPUs (Santa Clara, CA,
USA), using a batch size of 8. For implementation, the open-source toolboxes MMRotate
and MMDetection are employed. Furthermore, we opt for ResNet-50 and ResNet-101 as
the backbone network architectures, incorporating FPN. It is noteworthy that the weights
for these networks are pretrained and sourced from torchvision. For the learning process,
we employ the stochastic gradient descent algorithm as our optimizer, featuring a learning
rate of 0.01, momentum of 0.9, and weight decay set at 0.0001. Moreover, we methodically
train our neural architecture, running for 40 epochs on DOTA, 120 epochs on HRSC2016,
40 epochs on DIOR-R, and 40 epochs on UCAS-AOD, respectively. The hyperparameters
were set as follows: λ1, λ2, and λ3 were, respectively, set to 1.0, 0.375, and 0.2. The values
of µ1, µ2, µ3, and µ4 were set to 2, 2, 5, and 2, respectively. Furthermore, α was set to 1.5.

To assess the effectiveness of our proposed method, we employ the mean average
precision (mAP) as the evaluation metric, a standard in the field of remote sensing object
detection. The mAP is derived by computing the mean of the average precision (AP) values
across all classes, defined as follows [42]:

mAP =
1
N

N

∑
i=1

APi (16)

In Equation (16), N represents the number of classes, and APi denotes the average
precision for the i-th class. The AP is calculated as the area under the precision–recall curve
for each class, representing a balance between precision (the proportion of correct positive
predictions) and recall (the proportion of actual positives that were correctly identified).
This metric effectively encapsulates the performance of an object detection model in terms
of both accuracy and reliability.

4.3. Comparing Methods and Results

The performance evaluation on the DOTA dataset is presented in Table 1, where
both training and testing were conducted using a single-scale approach. Our proposed
method achieved mAP 76.88% with ResNet-50-FPN and mAP 77.55% with ResNet-101-FPN,
demonstrating performance improvements compared to the baseline models. We further
validated our approach by employing the Swin Transformer-Tiny-FPN as the backbone,
which yielded the best performance with a mAP of 78.45%. From the Table 1, it can be
observed that our method does not exhibit significant improvements for targets such as
small vehicles, large vehicles, and swimming pools. However, notable enhancements are
observed for targets such as docks, helicopters, and roundabouts. This can be attributed to
the utilization of our saliency-guided method, which involves sampling the more accurate
features. A comprehensive discussion of the results is provided in Section 5.1.

The proposed method can be validated on the HRSC2016 dataset, which contains a
diverse range of ship types. Ship detection in remote sensing object detection is of great
significance. The results from the HRSC2016 dataset demonstrate that our SGR method
with ResNet-50-FPN outperforms other existing methods, as shown in Table 2.
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Table 1. Experiment results on the DOTA dataset compared with state-of-the-art methods. Experimental results with best performance in red, second best in blue.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
(%)

single-stage

RetinaNet-O [43] R-50-FPN 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43
DAL [37] R-101-FPN 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78

RSDet [44] R-152-FPN 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10
R3Det [45] R-152-FPN 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [10] R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R3Det-DCL [34] R-152-FPN 89.78 83.95 52.63 69.70 76.84 81.26 87.30 90.81 84.67 85.27 63.50 64.16 68.96 68.79 65.45 75.54
AFRE-Net [15] R-101-FPN 89.34 85.74 53.23 75.96 79.22 81.03 87.88 90.86 83.82 87.08 65.95 67.33 76.52 73.06 64.52 77.44

two-stage

Faster-RCNN-O [2] R-50-FPN 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05
CAD-Net [46] R-101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
SCRDet [47] R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
FAOD [48] R-101-FPN 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

RoI-Trans. [12] R-101-FPN 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61
Gliding-Vertex [49] R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

MaskOBB [50] R-50-FPN 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86
CenterMap [51] R-50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74

ReDet [52] ReR-50-ReFPN [52] 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
Oriented R-CNN [7] R-101-FPN 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

anchor-free

CenterNet-O [53] DLA-34 [53] 81.00 64.00 22.60 56.60 38.60 64.00 64.90 90.80 78.00 72.50 44.00 41.10 55.50 55.00 57.40 59.10
PIoU [54] DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

O2-DNet [55] H-104 [56] 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DRN [57] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
CFA [58] R-101-FPN 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

G-Rep. [16] R-50-FPN 87.76 81.29 52.64 70.53 80.34 80.56 87.47 90.74 82.91 85.01 61.48 68.51 67.53 73.02 63.54 75.56
Oriented Rep. [20] R-101-FPN 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52

SGR(Ours) R-50-FPN 87.53 84.64 57.78 73.78 79.40 77.61 86.58 90.91 85.49 85.30 63.52 71.05 73.61 69.50 66.59 76.88
SGR(Ours) R-101-FPN 87.52 85.10 57.92 74.67 79.78 78.21 87.31 91.67 86.16 85.87 63.01 70.90 76.08 69.87 67.41 77.55
SGR(Ours) Swin-T-FPN 87.58 86.67 61.04 74.53 79.99 79.10 87.13 90.85 84.48 87.04 62.51 75.00 80.80 74.70 65.37 78.45
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Table 2. Experimental results on the HRSC2016 dataset with best performance highlighted in bold,
evaluated using the VOC2007 metric (%).

Methods Backbone mAP (%)

RoI-Trans. [12] R-101-FPN 86.20
Gliding Vertex [49] R-101-FPN 88.20
RetinaNet-O [43] R-101-FPN 89.18

R3Det [45] R-101-FPN 89.26
DAL [37] R-101-FPN 89.77
GWD [33] R-101-FPN 89.85

S2A-Net [10] R-101-FPN 90.17
AOPG [25] R-50-FPN 90.34

Oriented Rep. [20] R-50-FPN 90.38
Oriented R-CNN [7] R-101-FPN 90.50

SGR(Ours) R-50-FPN 90.67

The advanced nature of our proposed method can be further validated through the
results obtained on the DIOR-R dataset. The DIOR-R dataset consists of 20 different
categories of targets, and our method outperforms recent approaches on this dataset,
as demonstrated in Table 3.

Table 3. Experimental results on the DIOR-R dataset with best performance highlighted in bold.

Method RetinaNet-O [43] FR-OBB [2] RoI-Trans. [12] AOPG [25]
mAP (%) 57.55 59.54 63.87 64.41

Method GGHL [59] Oriented Rep. [20] DCFL [17] SGR (Ours)
mAP (%) 66.48 66.71 66.80 67.28

The results on the UCAS-AOD dataset are presented in Table 4. The UCAS-AOD
dataset, characterized by a multitude of small and densely packed objects, serves as an
effective platform for evaluating the efficacy of our proposed method. In the case of
regularly shaped rectangular objects like cars, our approach achieved an AP of 88.72%.
For planes, the method reached an AP of 92.60%. Overall, our method demonstrated the
best performance with a mAP of 90.66%, compared to the other methods listed in the table.

Table 4. Experimental results on the UCAS-AOD dataset with best performance highlighted in bold.

Methods Car (%) Plane (%) mAP (%)

YOLOv3-O [60] 74.63 89.52 82.08
RetinaNet-O [43] 84.64 90.51 87.57
RoI Trans. [12] 87.99 89.90 88.95

RIDet-O [39] 88.88 90.35 89.62
DAL [37] 89.25 90.49 89.87

Oriented Rep. [20] 89.51 90.70 90.11
G-Rep. [16] 89.64 90.67 90.16
SGR (Ours) 88.72 92.60 90.66

4.4. Main Visualization of Results

The object detection results obtained using the proposed SGR method are illustrated in
Figure 7. As observed in the figure, the SGR method demonstrates its superior performance,
characterized by precise distribution of sampling points, tightly fitted bounding box pre-
dictions, and accurate classification. These features collectively validate the effectiveness of
the SGR approach in the realm of object detection.
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Figure 7. Visualization of the detection results of our method on the DOTA dataset is provided.
The different colors of the boxes represent different categories. The red points are the key points
predicted by the model, and subsequent localization and classification are based on the feature
representation sampled from these points.

4.5. Visualization of Results on Different Datasets

The results from the HRSC2016 dataset, illustrated in Figure 8, demonstrate our
method’s capacity to generate precise and accurate detection boxes for ships. Such perfor-
mance reflects the high precision of our method in detecting maritime objects, and under-
scores its capability to handle diverse orientations and sizes.

Figure 8. Results on the HRSC2016 dataset, showcasing the detection of ships, which illustrates the
adaptability of our method to various orientations and sizes.
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In the DIOR-R dataset, Figure 9 illustrates the effectiveness of our method in handling
tasks involving a multitude of object categories. This ability to adeptly manage a diverse
range of categories underscores the method’s robustness and confirms its suitability for
complex and varied scenarios.

Figure 9. Results on the DIOR-R dataset, displaying the detection of multiple object categories,
demonstrating the robustness of our method.

Figure 10 showcases the results on the UCAS-AOD dataset, where our method accu-
rately detects a large number of vehicles and airplanes of different scales. This accuracy,
despite the varying sizes and types of objects, underscores the effectiveness and reliability
of our approach in diverse conditions.

Figure 10. Results on the UCAS-AOD dataset, presenting the comprehensive detection of airplanes
and cars.

5. Discussion

In this section, a discussion of the proposed method is provided, incorporating tables
and images. The discussion encompasses the efficiency of the modules, the efficiency of the
hyperparameters, and future directions.

5.1. Effectiveness of Saliency-Guided Methods

The positions of the sampling points before and after the improvement were compared,
as depicted in Figure 11. In Figure 11a, it can be observed that a small portion of points are
driven to the boundaries of the bounding boxes, while the majority of points are clustered
around the center of the boxes, which represents the initial positions of the sampling points.
This phenomenon occurs because the external points, guided by the convex IoU loss, tend
to seek the boundaries. Their slight perturbations can greatly affect the value of the IoU
loss, leading to larger gradients during the training optimization process. On the other
hand, the internal points, which do not easily cause changes in the loss function, do not
receive effective guidance and, thus, remain near their initial positions.

The effectiveness of the aforementioned sampling method can be attributed to the
fact that a majority of the salient features of the target objects are indeed located at the
center of the objects. This observation aligns with previous studies that hypothesized
that sampling points following a two-dimensional Gaussian distribution can also yield
satisfactory performance.

Point sampling, as a form of undersampling, should ideally focus on key areas to
extract critical features. With this in mind, we implemented an SGR approach, which offers
significant potential to enhance sampling efficiency by prioritizing areas of high importance
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in the data. This method allows for more targeted and effective feature extraction, thereby
optimizing the use of the available data and improving overall model performance.

(a) Baseline (b) Ours

Figure 11. Comparative analysis of baseline and proposed saliency-guided methods: Our method
demonstrates notable improvements, characterized by the suppression of false alarms, a more
rational distribution of sampling points, precise bounding box regression, and increased confidence
in classifications.

As previously shown in Table 1, our method has achieved significant improvement
in detecting planes, harbors, helicopters, and other irregular objects. For these types of
object, a considerable portion of the bounding box encompasses the background areas.
The SGR method’s ability to precisely sample within these boxes effectively reduces noise
interference, thereby enhancing detection performance for these irregularly shaped objects.
The enhancement in detecting categories such as small vehicles, large vehicles, and swim-
ming pools was comparatively modest. This limited improvement can largely be attributed
to the inherent characteristics of these objects. They typically display homogeneous features
within their respective bounding boxes, with a high degree of internal similarity, leading to
less variability and distinction in their feature representations.

5.2. Assessing The Impact of SGR and DDA on Model Performance

In the ablation study detailed in Table 5, the first two rows reveal the impact of
replacing the DCN in the RepPoints’ classification branch with traditional convolutions,
which focus on features near the central region. This modification led to a slight increase
in mAP, as shown in the second row, suggesting that traditional convolutions, with their
stable spatial structures, are more effective in extracting features from central areas.

The third and fourth rows in Table 5 act as control experiments for the SGR method.
The implementation of SGR resulted in a modest performance boost, with a mAP increase
of 0.27%, as demonstrated in the fourth row. The finding underscores that merely applying
the loss function to guide sampling points yields limited improvement. Such a directive
approach, while enabling the upstream network to learn sampling in key areas spatially,
does not necessarily ensure that the downstream predict head simultaneously comprehends
this guidance. This discrepancy can lead to a potential misalignment between the spatial
and feature domains.
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Table 5. Impact of SGR and DDA implementation in ablation study.

SGR DDA mAP (%) ∆

✕ ✕ 75.97 0
✕ ✕ 76.05 † +0.08 †

✓ ✕ 76.24 +0.27
✓ ✓ 76.88 +0.91

The second row with † replaces the DCN in the classification branch of the baseline with a regular convolution.

In contrast, the incorporation of DDA introduces posterior information predicted
by the model to more effectively allocate sample labels. This method dynamically rec-
onciles the balance between interpretability and model comprehension throughout the
learning process, progressively fostering a synergistic alignment between the two domains.
The loss curve depicted in Figure 6 during the training process provides evidence of further
improvement in classification ability after the sampling pattern stabilizes upon apply-
ing DDA. This suggests an enhancement in the predict head’s capacity to comprehend
feature representations.

5.3. Visual Interpretability Analysis of Alignment

The visualization results leveraging the point local interpretable map method on
the DOTA dataset are depicted in Figure 12. Instances of misalignment, as observed
in experiments utilizing other methods, are showcased in Figure 12a. These include
phenomena such as non-prominent activation in confused areas, background activation
coupled with foreground suppression, and the occurrence of erroneous predictions. In stark
contrast, Figure 12b displays the alignment between the spatial and feature domains.
Notably, the activation regions near the airplane are concentrated around the engines and
wings, indicating key areas of interest. Similarly, for the harbor, the activation points are
more granular and precise. The direction of activation at the dock aligns with its spatial
positioning, suggesting a high degree of accuracy in feature representation.

(a) Misalignment (b) Dual-domain alignment

Figure 12. Assessing the impact of DDA by point local interpretable map. The right-side picture
illustrates more refined and logically patterned activation than the left-side picture. Blue points
denote variable sampling points. The heat map illustrates classification score changes upon the
movement of these points in the grid area, with red for increase and blue for decrease.

These observations imply that, from the perspective of the predict head, the distri-
bution pattern of the sampling points appears rational and effective. The derived feature
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representations assist in reducing the ambiguity in classification tasks, thereby enhancing
the model’s predictive accuracy. This contrast between the misaligned and aligned scenar-
ios underscores the effectiveness of our approach in capturing and representing critical
features in complex images.

5.4. Effectiveness of Hyperparameters

Within the proposed SGR framework, the loss and assignment measurements are
pivotal in integrating saliency information into the guidance mechanism for sampling
points. As outlined in Equations (6) and (10), the two key hyperparameters, λ3 and µ4, are
identified. A detailed discussion regarding the selection of these two hyperparameters
follows below.

The hyperparameter λ3 is used to balance Lrepulsion with Lloc and Lcls, representing
the weight of the guidance constraint in the overall object detection task. As observed in
Table 6, the model’s performance is quite sensitive to changes in λ3, and it achieves better
performance when λ3 is around 0.2.

Table 6. Experimental evaluation of hyper-parameter λ3 with λ1 and λ2 fixed at 1 and 0.375. The
chosen values for λ3 is highlighted in bold.

λ3 mAP (%)

0.10 75.93
0.15 76.74
0.20 76.88
0.25 76.18
0.30 75.66

The hyperparameter µ4 influences the weight of prior spatial information in the
matching process of the samples used for learning. The experimental results in Table 7
indicate that the model performs better when µ4 is around 2.0.

Table 7. Experimental evaluation of hyperparameter µ4 with µ1, µ2, and µ3 fixed at 1, 2, and 5. The
chosen values for µ4 is highlighted in bold.

µ4 1.0 1.5 2.0 2.5

mAP (%) 76.45 76.48 76.88 76.57

Apart from the hyperparameters discussed above, the other hyperparameters were
selected based on experimental results and prior experience. They are coordinated and
balanced with each other to optimize the model’s performance.

5.5. Future Directions Based on SGR

The discussions and experiments previously conducted, involving multiple challeng-
ing datasets, have highlighted the robust theoretical foundation and the practical effec-
tiveness of the proposed SGR method. Although the efficacy of the SGR method has been
established in this study, there remains a wealth of opportunities for further exploration
within the framework of SGR. Future directions based on the SGR are discussed below.

Firstly, this work has already explored a path to interpretability, designing a visual,
interpretable tool for evaluating model training effects. Moving forward, we plan to utilize
interpretability tools to extract guiding information and to open up the model’s feature
domain black box.

Secondly, considering model robustness and stability, we have adopted saliency maps
as guiding information for the sampling points. This approach has validated the feasibility
of guiding the DCN in learning sampling point distribution patterns. Future research may
explore more fine-grained and interpretable distributions.
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Lastly, we employed DDA to alleviate model misalignment in spatial and feature
domains as our training strategy. In the future, we could enable the model to perform
weighted sample selection autonomously, achieving dynamic attention and moving to-
wards a more end-to-end approach.

In short, a validated and feasible framework for guiding the distribution patterns of
DCN sampling points has been established. Building upon this established framework,
there is considerable potential for further enhancements in the areas of interpretability and
end-to-end processing.

6. Conclusions

In this work, we addressed the issue of inadequate guidance for sampling points dur-
ing the feature representation stage in remote sensing object detection, a common limitation
in previous DCN-based methods. We introduced a novel method SGR, which significantly
enhances the capability of models to obtain accurate feature representations, thereby im-
proving the performance of point-based object detectors. Furthermore, to mitigate the
potential misalignment phenomena in the spatial and feature domains commonly encoun-
tered in model guiding processes, a dynamic dual-alignment assignment training strategy
was proposed. This strategy effectively eases the optimization difficulty encountered dur-
ing model training, allowing for the full realization of SGR’s capabilities. Additionally,
an interpretable and visual tool was developed for qualitatively assessing the alignment
in the spatial and feature domains. This tool can also be adapted for use with other point-
based methods. Extensive experiments conducted across multiple datasets have validated
the efficacy of our proposed method, achieving state-of-the-art performance.

Future research initiatives will expand upon the validated and feasible framework
established in this study, aiming to refine the interpretability aspects within our guiding
process. Furthermore, a systematic investigation into end-to-end detection methodologies
is planned. These advancements are expected to enrich our comprehension and to bolster
the performance of point-based detection techniques.
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