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Abstract: Three-dimensional object detection is a pivotal research topic in computer vision, aiming to
identify and locate objects in three-dimensional space. It has wide applications in various fields such
as geoscience, autonomous driving, and drone navigation. The rapid development of deep learning
techniques has led to significant advancements in 3D object detection. However, with the increasing
complexity of applications, 3D object detection faces a series of challenges such as data imbalance
and the effectiveness of network models. Specifically, in an experiment, our investigation revealed
a notable discrepancy in the LiDAR reflection intensity within a point cloud scene, with stronger
intensities observed in proximity and weaker intensities observed at a distance. Furthermore, we
have also noted a substantial disparity in the number of foreground points compared to the number
of background points. Especially in 3D object detection, the foreground point is more important
than the background point, but it is usually downsampled without discrimination in the subsequent
processing. With the objective of tackling these challenges, we work from both data and network
perspectives, designing a feature alignment filtering algorithm and a two-stage 3D object detection
network. Firstly, in order to achieve feature alignment, we introduce a correction equation to decouple
the relationship between distance and intensity and eliminate the attenuation effect of intensity caused
by distance. Then, a background point filtering algorithm is designed by using the aligned data to
alleviate the problem of data imbalance. At the same time, we take into consideration the fact that
the accuracy of semantic segmentation plays a crucial role in 3D object detection. Therefore, we
propose a two-stage deep learning network that integrates spatial and spectral information, in which
a feature fusion branch is designed and embedded in the semantic segmentation backbone. Through
a series of experiments on the KITTI dataset, it is proven that the proposed method achieves the
following average precision (AP_R40) values for easy, moderate, and hard difficulties, respectively:
car (Iou 0.7)—89.23%, 80.14%, and 77.89%; pedestrian (Iou 0.5)—52.32%, 45.47%, and 38.78%; and
cyclist (Iou 0.5)—76.41%, 61.92%, and 56.39%. By emphasizing both data quality optimization and
efficient network architecture, the performance of the proposed method is made comparable to other
state-of-the-art methods.

Keywords: 3D object detection; data imbalance; feature alignment; feature fusion; two-stage
detection network

1. Introduction

LiDAR, also known as Light Detection and Ranging, is a remote sensing technology
that employs laser beams to measure distances and intensities, thereby creating detailed
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3D representations of the surrounding environment. In 3D object detection tasks, the most
commonly used sensor is LiDAR, which is used to collect a 3D point cloud to capture
3D structure information of the scene [1–6]. Owing to its capacity to accurately capture
spatial information and generate precise point cloud data, it has garnered significant
attention and importance in the field of 3D object detection. With the rise of applications
in various fields such as terrain surveying [7–9], environmental studies [10–12], and more
recently, autonomous driving [13–15], there has been an increasing demand for robust and
accurate 3D object detection systems. LiDAR technology plays a crucial role in meeting
this requirement by providing high-resolution point cloud data that can be utilized for
object detection, localization, and mapping purposes. One significant advantage of LiDAR
in 3D object detection is its ability to capture fine-grained details of objects, such as their
shape, size, spatial position, and corresponding intensity information. These detailed pieces
of information enable precise identification and tracking of objects, even in challenging
scenarios characterized by complex environments [16–24]. Furthermore, LiDAR point cloud
data are typically less affected by environmental conditions such as lighting variations,
making them highly reliable for 3D object detection tasks. It can operate effectively in both
day and night conditions, providing consistent and accurate data regardless of the lighting
conditions. However, due to the unordered, sparse, and non-uniform distribution of point
clouds, as well as the challenges posed by the generation of massive data, the processing
and interpretation of point clouds has brought severe challenges. Efficient algorithms and
techniques are needed to extract meaningful features from point clouds and achieve precise
detection and classification of 3D objects.

In recent years, deep learning has made remarkable progress in computer vision tasks,
including fields such as object detection [25–29] and semantic segmentation [30–33]. Three-
dimensional object detection plays an important role in many real-world applications, such
as autonomous driving and environmental exploration. However, using deep learning to
complete point cloud detection of 3D objects still faces difficult challenges from irregular
data of 3D points and the processing of massive amounts of data. Therefore, researchers
have conducted in-depth and systematic research in this field.

Based on the different processing methods for point clouds, 3D object detection
methods can be divided into three categories: voxel-based methods [34–36], point-based
methods [37–39], and multi-modal methods [40–42].

For voxel-based methods, early work typically involved converting the original point
cloud into an intermediate regular representation due to the unstructured and unordered
nature of 3D point clouds. This was achieved by projecting the 3D point cloud onto 2D im-
age from Bird’s Eye View (BEV) [43] or by transforming it into the dense 3D voxel grids [44].
Then, the mature 2D detection methods can be applied to the 3D object detection task.
However, the processing efficiency of voxels is one of the main limitations of this kind
of method, since the computational burden grows exponentially with the input. In this
regard, Zhou et al. introduced VoxelNet [45], which employs a fully convolutional network
architecture for the processing of point cloud data. The method involves partitioning
the 3D space into uniform voxels and associating each point with its respective voxel.
Subsequently, each voxel is characterized by a fixed-length feature vector encapsulating
information pertaining to the existence of objects within the voxel. Ultimately, the ap-
proach realizes an end-to-end-trainable deep network framework tailored for 3D object
detection. After that, Yan et al. proposed an efficient architecture known as SECOND [46].
This method significantly enhances computational and storage efficiency by reducing the
computation load of empty voxels and also overcomes computational barriers inherent
in voxel-based networks through the utilization of sparse convolution. In addition, the
PointPillars [47] algorithm is also proposed to further simplify voxels into pillar bodies to
improve processing efficiency. It shows how all the calculations on the pillars can be formed
into a dense 2D convolution, achieving faster performance than other methods. In general,
voxel-based approaches can achieve satisfactory detection performance under favorable
point-to-voxel conditions. Nevertheless, voxelization inherently results in point loss. Ad-
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ditionally, determining the optimal voxelization presents practical challenges due to the
intricate geometry and diverse object types. Consequently, point-based methodologies
have emerged as a focal point of recent research efforts.

Different from voxel-based methods, point-based methods directly extract features
from unstructured point cloud data to further generate specific proposals for 3D objects.
For an unordered 3D point cloud, these methods usually use PointNet++ [39] or another
series of methods [48–50] to extract semantic features from the point cloud. For instance,
Shi et al. proposed PointRCNN [51], a two-stage 3D region proposal framework for 3D
object detection. This approach initially utilizes segmented foreground points to generate
object proposals, followed by employment of semantic features and local spatial infor-
mation for the regression of high-quality 3D bounding boxes, achieving state-of-the-art
performance on the KITTI dataset. Shi et al. proposed a graph neural network to detect
objects from LiDAR point clouds, called Point-GNN [52]. This method efficiently encodes
a point cloud in a fixed-radius nearest-neighbor graph, and a box merging and scoring
operation was also designed to accurately combine detections from multiple vertices. It
is a new point cloud 3D object detection method based on a graph neural network and
it has achieved excellent performance on the KITTI dataset. Zhang et al. proposed an
efficient single-stage point-based 3D detector called IA-SSD [53]. The key of this method is
the use of two learnable instance-aware downsampling strategies to hierarchically select
the foreground points of the object. At the same time, a contextual centroid perception
module is embedded to further estimate the precise instance centers. It mainly proposes
an efficient point cloud 3D object detection method for the sampling problem of the point-
based method and has achieved excellent performance on the KITTI dataset. Point-based
methods can operate directly on the raw point cloud without any additional preprocessing.
However, the primary bottlenecks of point-based methods lie in the challenges posed by
massive point cloud, data imbalance, and insufficient network learning capabilities [54–56].
Therefore, multimodal approaches have been proposed to enhance the accuracy of 3D
object detection by employing joint strategies for matching and feature extraction of 3D
point clouds and camera images.

Furthermore, multi-modal approaches match and extract features from 3D point
clouds and camera images using a joint strategy. For example, PV-RCNN [57] can extract
features from a voxel abstraction network to improve proposals generated from a 3D
point cloud backbone network. Its main contribution is the further improvement of the
performance of 3D object detection by fusing a voxel-based method and a point-based
method in point cloud feature extraction. Jiang et al. proposed a new single-stage voxelized
information compensation network with lossless capability, called VIC-Net [58]. The entire
framework consists of a point for the branches of geometry detail extraction and efficient
scheme generation. It employs PointNet++ [39] to efficiently encode geometric structure
feature point clouds from raw data. Then, based on the encoded point features, a point
and voxel feature fusion is proposed to achieve 3D object detection. The main contribution
is the proposal of a 3D object detection method based on voxelization and information
compensation, which improves the accuracy and robustness of the detection. Zhang et al.
proposed a two-stage network called FusionPillars [59] to fuse 3D object detection methods
from point clouds and camera images. It includes three branches: a point-based branch, a
voxel-based branch, and an image-based branch. The modules are designed to enhance
the voxel features in the pseudo-image: the set abstraction self-fusion module and the
pseudo-view cross-fusion module. The pseudo-images and RGB images at different scales
are cross-fused to improve the detection effect of 3D objects. The multi-modal methods
enhance the precision of 3D object detection by integrating data from multiple modalities,
but they also have some drawbacks. For instance, these methods exhibit high computational
complexity and face challenges in acquiring different types of data. Therefore, this paper
aims to rely solely on point-based methods, emphasizing the optimization of data quality
and network structure to enhance the accuracy of 3D object detection.



Remote Sens. 2024, 16, 249 4 of 19

This paper is based on practical problems and faces the challenge of 3D object detection
with data imbalance and network model validity. For the case of data imbalance, we found
that the LiDAR reflection intensity is strong near and weak far in a point cloud scene, and
the number of foreground points is significantly smaller than the number of background
points. Especially in 3D object detection, the foreground point is more important than the
background point, but it is usually downsampled without discrimination in the subsequent
processing. To address these challenges, we design a feature alignment filtering algorithm
and a two-stage 3D object detection network from both data and network perspectives.
The spatial information and intensity information are combined to align the data features,
and then the aligned data are used to design a background point filtering algorithm to
alleviate the problem of data imbalance. At the same time, a two-stage deep learning
network that fuses spatial and spectral information is proposed to further improve the
accuracy of 3D object detection.

To summarize, the contributions of this study are as follows:

• For data imbalance, the LiDAR intensity is strong near and weak far in a point cloud
scene. The correction equation is introduced to decouple the relationship between
distance and intensity, thereby eliminating the intensity attenuation effect caused
by distance.

• Further, before network training, it is necessary to achieve a balance between fore-
ground and background points in the data. To address this, a feature alignment
filtering algorithm is proposed to preliminarily differentiate between foreground and
background points.

• For the network structure, a feature fusion branch module was designed and inte-
grated into the backbone. This branch encodes and integrates the spatial and spectral
information of k-nearest neighbors, thereby enhancing the representation ability of
local features.

• Through the optimization of data quality and efficient improvements in network archi-
tecture as outlined above, the proposed method achieved state-of-the-art performance
on the KITTI dataset among point-based methods.

2. Materials and Methods

In this section, the relevant analysis and findings concerning the presence of im-
balance in the experimental dataset are initially introduced. Subsequently, the feature
alignment filtering algorithm, designed to mitigate the issue of dataset imbalance, is pre-
sented. Finally, the proposed two-stage 3D object detection framework for identifying cars,
pedestrians, and cyclists solely based on point cloud input is demonstrated.

2.1. The KITTI Dataset

It is noteworthy that many public datasets for 3D object detection have been published
in recent years [60–64], which greatly promotes the rapid development of 3D object detec-
tion methods. Among them, the KITTI dataset [46] plays an important role in 3D object
detection algorithms, providing diverse samples containing images from a camera and
corresponding point clouds from LiDAR. Moreover, most outstanding 3D object detection
methods use the KITTI dataset for evaluation, so we can easily compare the proposed
method with the mainstream methods.

The KITTI dataset is a widely utilized open-source resource for 3D object detection.
It encompasses a substantial amount of real-world data collected in complex environments,
such as roadways, pedestrians, and vehicles. The evaluation tasks within KITTI are catego-
rized into three levels of difficulty—easy, moderate, and hard—primarily based on factors
including object size, occlusion, and truncation. KITTI’s validation predominantly employs
average precision (AP) and frames per second (FPS) as the evaluation metrics for 3D object
detection. In summary, the KITTI dataset offers a highly practical platform, providing
researchers with rich and authentic data for the study, evaluation, and comparison of
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various algorithms related to 3D object detection. Therefore, this paper also utilizes the
KITTI dataset for experiments and validation.

2.2. Analysis of Data

Data quality is crucial in network training. Quality data can reflect the real input
information more accurately so as to improve the training effect of the model. If the data
contain a lot of noise or errors, then the model may be misled, resulting in a poorly trained
model. Obviously, there is also the problem of data imbalance in the field of 3D object
detection [53]. Three-dimensional object detection primarily operates on point cloud data,
which represent the environment using 3D coordinates of individual points. Each point
typically contains additional information such as intensity or color. Three-dimensional
object detection algorithms leverage various features to identify and localize objects in a
point cloud. In addition to localization, 3D object detection aims to classify objects into
different categories such as cars, pedestrians, cyclists, etc. However, in the process of
scanning and collecting points centered on LiDAR, there will inevitably be the problem
of data imbalance, which may affect the accuracy of the subsequent detector results if
ignored. Specifically, in the KITTI dataset adopted in the experiments, we found that
the distributions of point clouds are dense near the center and sparse far away from the
center, while the collected reflection intensity values are also strong near and weak far away.
Furthermore, we also calculated the distribution of reflection intensity in the collected point
cloud scene. It can be seen that in the space with the collection center as the origin, with an
increase in distance, the intensity value of the point cloud roughly shows an attenuation
distribution. In other words, the intensity characteristic of the point cloud presents a
phenomenon that is strong near the center and weak away from the center, as shown in
Figure 1.

Pericentral

Off-center

Figure 1. The visualization of acquisition results from the KITTI dataset. The top portion of the
figure presents RGB images captured by the camera, while the bottom section depicts the original
point cloud data acquired by the LiDAR along with the distribution of reflectance intensity within
the scene.

As observed, the point cloud scene captured by LiDAR exhibits a fan-shaped pattern,
emanating outward from the light source. Additionally, with an increase in detection
distance, the radiation intensity of LiDAR diminishes, resulting in a distribution of the entire
point cloud scene that is more densely distributed near and sparser far away, characterized
by higher reflection intensity values at the close position and lower at the far position. The
point cloud acquisition LiDAR for the KITTI dataset is the Velodyne HDL-64E [46] with
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a scan rate of 10 Hz and a maximum measurement distance of 100 m. The device uses a
rotational scanning mode to acquire 3D point cloud data of the surrounding environment
through a laser transmitter and receiver. According to the principle of laser reflection [47],
as shown in Equation (1), the intensity of laser reflection is inversely proportional to the
square of the reflected distance of the object.

Intensity ∝
ρ cos θ

R2 η (1)

where R is the distance, ρ is the reflectance, θ is the incidence angle, and η is the attenuation
coefficient. From this, it can be assured that there is an attenuation in the intensity value with
an increase in the reflection distance. The data analysis above reveals the existence of data
imbalance in the LiDAR point cloud scene. Specifically, in point cloud 3D object detection,
the attenuation of LIDAR radiation intensity with distance introduces an imbalance. For the
same target, different positions from the acquisition center will lead to different intensity
values, which will inevitably lead to inconsistent features of subsequent network feature
extraction and ultimately affect the detection results. Therefore, it is necessary to design a
feature alignment filtering algorithm as a priority to mitigate this data imbalance issue.

2.3. Data Feature Alignment

The KITTI dataset is a popular benchmark for autonomous driving and object detection
tasks. This dataset was collected in urban environments, rural areas, and highways and
provides sequences of images and LiDAR data where certain objects (like cars, pedestrians,
and cyclists) are annotated with bounding boxes. In particular, on the KITTI dataset
in our experiment, we found that the distribution of the point cloud is dense near the
center and sparse far away from the center, and the collected reflection intensity values
also show strong near/weak far characteristics. However, in the subsequent network
training, the point-based pipeline usually adopts indiscriminate random sampling or
farthest point sampling to gradually downsample and extract features from the input point
cloud, although not all points are equally important for the object detection task. Inspired
by this, we propose a feature alignment filtering algorithm to complete the preliminary
distinction between the foreground and background points. The specific idea and operation
steps are as follows.

For a collected point cloud, each point contains the spatial position information (x, y, z)
and the intensity value of the reflection. Based on the aforementioned finding, as the
reflection intensity decays with increasing distance in point cloud object detection, the
same target exhibits different intensity features due to its varying position relative to
the acquisition center. As Equation (1) indicates, the raw intensity value is inversely
proportional to the square of the distance. With this in mind, we can calculate the spatial
distance between each point based on its coordinates. To eliminate the attenuation effect
caused by distance and achieve feature alignment, we introduce a correction calculation
that decouples the relationship between distance and intensity, as shown in Equation (2).

Ic
i = Io

i ·
x2

i + y2
i + z2

i
σ

(2)

where Ic is the corrected intensity feature, Io is the original intensity feature, i represents
traversing each point, and σ is the impact factor used for conditioning. In the specific im-
plementation, the alignment of input points is initially performed according to Equation (2)
to eliminate the influence of distance attenuation. This process is based on the principle
that the original intensity values of the point cloud are inversely proportional to the square
of the distance. Initially, the spatial distance for each point is computed, followed by the
multiplication of the intensity with the influence factor to obtain the corrected intensity
value. As shown in Figure 2, it illustrates the comparison of point intensity features before
and after alignment.
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By comparing the distribution of point intensity features in Figure 2, it can be seen
that the trend of intensity attenuation with increasing distance has been addressed after the
feature alignment process.

The original intensity feature distribution The distribution after feature alignment

Figure 2. The distribution of point cloud intensity before and after feature alignment.

After feature alignment is completed, it is worth noting that feature extraction is a
very crucial step in the subsequent network training process for 3D object detection. How-
ever, during the feature extraction, the point-based pipeline usually adopts indiscriminate
random sampling or farthest-point sampling to gradually downsample and extract features
from the input point cloud, although not all points are equally important for the object
detection task. Moreover, the number of foreground points is often less than the number
of background points, but they are downsampled and filtered without discrimination.
On this basis, a classification filtering algorithm is proposed to preliminarily distinguish
the foreground points and background points. The redundancy can be removed and the
data balance can be improved by retaining the foreground points and filtering certain
background points. Next, we will introduce the proposed classification filtering algorithm.

2.4. Feature Alignment Filtering Algorithm

In the actual 3D object detection scene, the points of interest are usually a small number
of points in some local regions. Three-dimensional object detection focuses on the few
but critical foreground points (i.e., instances of interest, including cars, pedestrians, and
cyclists in the scene). In fact, not all points are equally important for 3D object detection.
However, existing point-based detectors usually employ indiscriminate downsampling
methods in their framework, such as random sampling or farthest point sampling. That is,
foreground and background points are sampled and filtered out indiscriminately, which
may result in missing key points for subsequent feature extraction [53]. Therefore, it is
necessary to achieve data balance between foreground and background points before
feature extraction. To this end, we propose a feature alignment filtering algorithm to
initially distinguish foreground points from background points. Then, data balance is
achieved by filtering out some background points. The specific principles and steps are
described below.

Firstly, the alignment intensity features of input points were obtained by alignment
operation using the feature alignment equation mentioned above. Subsequently, we employ
the aligned intensity information as input features for classification. Here, we learn from
the Kmeans++ classification method [65] to roughly classify the input points into two
types of points with small and large intensity values. Through the above presentation and
analysis of Figure 2, we can see that some points with weak intensity values are still tiny
after feature alignment, which cannot provide valuable information for feature extraction.
Therefore, these points need to be filtered out appropriately. Here are the steps:

1. Initialize: Here, we consider that if all initial clustering centers are randomly chosen,
this may lead the algorithm to converge to a locally optimal solution. Therefore, we
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adopt a heuristic approach, which first randomly selects a point as the first clustering
center. Then, for each point in the dataset, the weight of the remaining points to be
selected as the next clustering center is calculated, and the point with the highest
weight is chosen as the next centroid. This method ensures that the initially chosen
centroids are closer to the global optimal solution. Here, we use aligned intensity
features as the measure of clustering for binary classification. The calculation of the
probability of selecting the cluster center is shown in Equation (3).

Pi =
I(xi)− I(x0)

N
∑

i=1
[I(xi)− I(x0)]2

(3)

where Pi is the probability that each point is chosen as the cluster center, I(x0) is
the strength eigenvalue of the initial centroid, and N is the total number of points.
For each point xi, the probability that each point is selected as the cluster center can
be calculated, where the point with the largest value is the next cluster center.

2. Assign points to clusters: For each point in the dataset, calculate its feature distance to
each cluster center, and assign it to the cluster with the nearest cluster center.

3. Update cluster centers: For each cluster, calculate the mean value of all points in the
cluster, and update the cluster center to this mean value.

4. Repeat steps 2 and 3 until the cluster centers no longer change.

Through the above classification methods, we divided the input points into two
categories, among which a group of point cloud classification results are shown in Figure 3.

Figure 3. A set of input point cloud classification results.

Shown in the figure is a group of input point cloud classification results. Here, we use
the alignment intensity feature as the clustering measure of binary classification. In this
point cloud scene, the classification points of the two categories are 40,179 and 8973, which
are roughly divided into foreground and background points. In 3D object detection, the
targets we are interested in are often composed of a small number of points in a small
region. Thus, foreground points are roughly contained in the smaller class of points.
The background points are included in the large number of categories. Consider that
in subsequent network training, the point-based pipeline uses indiscriminate farthest-
point sampling to progressively downsample and extract features from the input point
cloud, although not all points are equally important to the target detection task. While
foreground points tend to be fewer in number than background points, they are still
indiscriminately downsampled and filtered. Based on this, we utilized the classification
filtering algorithm to preliminarily distinguish foreground points from background points.
Finally, the foreground points are preserved and some background points are filtered to
improve the data balance. After completing the enhancement of data quality, we propose a
two-stage deep learning network that further improves the accuracy of 3D object detection
by fusing spatial and spectral information.
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2.5. Framework of Two-Stage Detection Network

Two-stage 3D object detection is a type of detection approach where two stages are
employed to achieve more accurate object localization and classification. In this paper, we
adopt the backbone architecture of a two-stage network called PointRCNN [34] and fuse
spatial and aligned spectral information to achieve 3D object detection. It consists of two
main stages: a 3D point cloud segmentation stage and a 3D bounding box estimation stage,
as shown in Figure 4.

M
LP

Input point 
cloud scene Data optimization

Feature Alignment

&

Filtering Algorithm

Stage 1： 3D Point Cloud Semantic Segmentation 

Stage 2： 3D Bounding Box Estimation
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Confidence Score Prediction
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Non-maximum Suppression 
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ROI Sampling
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Point-wise Feature

Bin-based 3D Box 
Generation 

Foreground Point 
Segmentation
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r

Canonical 
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Feature Merging

Figure 4. The backbone architecture of the adopted two-stage network.

Specifically, the first stage is data optimization and point cloud semantic segmentation
(Stage 1): The first is the feature alignment filter algorithm to complete the optimization
of the data. Then, PointNet++ [39] is used as the backbone for semantic segmentation of
the input point cloud, and a prediction label is obtained for each point. Meanwhile, we
implement a module based on spatial and spectral information fusion in the semantic
segmentation backbone to improve the accuracy of point segmentation, thus helping to
generate high-quality 3D proposals for objects. For example, label = 1 is assigned to all
points judged to be cars (called foreground points), and label = 0 is assigned to other points
(called background points). Then, all foreground points are used to generate bounding
boxes, one foreground point corresponds to one bounding box, and then non-maximum
suppression (NMS) is applied to remove overlapping proposals.

The second stage is 3D bounding box estimation (Stage 2): First, RoI pooling is applied
to extract the features of each 3D proposal, and the network is used to predict 3D bounding
box parameters, including position, size, and orientation. Meanwhile, the generated bound-
ing boxes are rotated and translated, and these bounding boxes are converted to canonical
coordinates. Finally, correction of the bounding box and calculation of the confidence
score are performed to obtain the final bounding box. In the process described above, the
accuracy of semantic segmentation in the first stage plays a crucial role, as its accuracy
affects the accuracy of subsequent 3D object detection. Therefore, improving the accuracy of
semantic segmentation in the first stage is also a key focus of this paper. When performing
semantic segmentation on the input point cloud to extract features, we further improve
the segmentation accuracy by fusing the spatial and spectral information. To this end, we
design and add the feature fusion branch module in the semantic segmentation network,
as shown in Figure 5. The point cloud semantic segmentation backbone network design
focused on feature fusion, and the main effort is to incorporate a feature fusion branch
that is able to encode and fuse the spatial and spectral information of k nearby points to
improve the representation of local features.

From Figure 5, it can be seen that the design of the feature fusion branch is based
on the encoded fusion of spatial and spectral features. Specifically, after completing the



Remote Sens. 2024, 16, 249 10 of 19

sampling and grouping, N1 points and their adjacent k points are obtained. We encode
the spatial and spectral feature correlation of these points separately and then concatenate
them together to provide certain sequential information. The following are the operational
steps of this process mainly conducted in the spatial and spectral branches.

Sam
pling

FPS

Input Points 

(N×D)

(N1×D)

(N1×K×D)

G
rouping

Q
uery B

all

Position
 (X,Y,Z)

MLP
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Feature 

(Intensity)
[fi, ...,  fi-fik]

[pi, ..., pi-pik]
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Maxpooling
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⊕ Concatenate 

PointN
et Layer

Feature Fusion Branch

Point Cloud Segmentation Backbone  

ReLu

ReLu

(N1×K×3)

(N1×D1)

(N1×K×1)

      D
econder 

Point-w
ise Feature

k nearest 
points

Spatial Feature
Spectral Feature

P group
i

Fgroup
i

Pmap

Fmap

Ffusion

Figure 5. The point cloud semantic segmentation backbone design with emphasis on feature fu-
sion branch.

Firstly, the local feature group is established. For each point N1 obtained through
grouping, its local feature group is established with the point itself as the center, including
its own feature and the difference information between itself and adjacent points, as shown
in the following equations:

Pgroup
i ≤= [pi,pi − pi

1...,pi − pi
k], pi ∈ Rk×3 (4)

Fgroup
i ≤= [ fi, fi − fi

1..., fi − fi
k], fi ∈ Rk×1 (5)

Here, the input point cloud features consist of two parts: the geometric space, which
has three channels, and the spectrum, which has one channel and each point has k near-
est neighbor points. pi and fi are the spatial and spectral features of the center point,
respectively, and pk

i and fki are the features of the neighboring points.
In the second step, an encoding operation is performed on the local feature group, and

then the features are obtained by max pooling to represent the overall local features, as
shown in the following equation.

Pmap = Max
k

[MLP(BN(ReLu(Pgroup))] (6)

Fmap = Max
k

[MLP(BN(ReLu(Fgroup))] (7)

We perform a Multi-Layer Perceptron (MLP) + BatchNorm (BN) + ReLu operation on
the local feature group and then obtain the encoded features with max pooling. After per-
forming the above operations on the spatial and spectral branches, the obtained feature
maps are concatenated to form the final encoded features, as shown in the equation below.

Ff usion = concat(Pmap, Fmap) (8)

Then, the encoded features are transmitted to the next PointNet Layer [51] and De-
coder for further point-wise feature extraction and 3D bounding box estimation [66].
By incorporating the aforementioned modifications to the network architecture, it is possi-
ble to effectively integrate the semantic information of local regions within point clouds.
This facilitates the enhancement of the network model’s first step in achieving point-wise
segmentation accuracy.



Remote Sens. 2024, 16, 249 11 of 19

In the second stage, the 3D bounding box estimation process remains consistent with
the original PointRCNN’s [51] processing approach. That is, after completing point-wise
feature extraction and generating 3D proposals, point cloud region pooling is applied
to pool the learned point representations from stage 1. The pooled 3D points are trans-
formed into canonical coordinates and combined with the pooled point features and stage
1 segmentation masks to achieve coordinate optimization. This strategy fully utilizes the
information provided by the segmentation in stage 1 to complete the 3D box refinement
and the final detection. Subsequently, we conducted experiments on the KITTI dataset to
validate the proposed method.

3. Experiments and Results

In this section, we validate the proposed 3D object detection method on the challeng-
ing open-source benchmark KITTI dataset. This dataset consists of three main categories,
namely, car, pedestrian, and cyclist. Firstly, we present the experimental setup details.
Subsequently, we compare our method with state-of-the-art 3D detection methods. Fi-
nally, ablation studies are performed to analyze the effectiveness of the components in the
proposed method. In addition, the proposed method is modified from the open-source
PointRCNN (https://github.com/open-mmlab/OpenPCDet (accessed on 4 January 2024)).
To ensure a fair comparison, the main experimental settings in this paper remain consis-
tent with the original model, with modifications made only to the relevant components
associated with the proposed innovative model.

3.1. Experiment Implementation Details

For each 3D point cloud scene in the training set, a batch consists of 16,384 points
as input. In the stage 1 sub-network, we adhere to the designed network structure with
the feature fusion branch. This involves using four set abstraction layers with multi-scale
grouping to downsample the point cloud into groups of sizes 4096, 1024, 256, and 64.
Subsequently, four feature propagation layers are employed to obtain point-wise features
used for segmentation and proposal generation.

The benchmark for 3D object detection in the KITTI dataset consists of 7481 training
samples and 7518 testing samples. We followed the commonly applied training split, where
the training samples were divided into a training set (3712 samples) and a validation set
(3769 samples). All method models were trained on the training set and evaluated on the
testing and validation sets. To maintain consistency, the proposed method also utilizes the
same loss function as PointRCNN. The proposed two-stage 3D object detection algorithm
utilizes focal loss in the first stage to differentiate between foreground and background
points, while the complete bin-based loss is used for generating 3D box proposals. For the
stage 2 sub-network, a combination of cross-entropy loss and smooth L1 loss is employed
to achieve accurate localization results. Additionally, the Adam optimizer is utilized to
expedite model convergence and enhance performance. During training, the network was
subjected to 80 epochs of training with a batch size of 3 and a learning rate set at 0.001,
incorporating a learning rate decay strategy. In addition, the experimental machine is
equipped with an Intel Core i7-11700 @2.5GHz CPU and NVIDIA GeForce RTX3060 GPU.

3.2. Three-Dimensional Object Detection on the KITTI Dataset

In this study, all experiments are conducted based on the KITTI dataset. The KITTI
dataset provides LiDAR point cloud and corresponding image samples, encompass-
ing 7481 training samples and 7518 testing samples. The training samples are divided
into two subsets: a training set consisting of 3712 samples and a validation set compris-
ing 3769 samples. The dataset comprises three categories: car, pedestrian, and cyclist.
Moreover, the dataset’s detection is stratified into three difficulty levels based on the size,
occlusion level, and truncation of each category: easy, moderate, and hard. Furthermore, to
ensure an objective comparison, we adopt average precision (AP) with recall 40 positions
as a comprehensive evaluation criterion [67].

https://github.com/open-mmlab/OpenPCDet
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AP|R40 = 1
|R| ∑r∈R ρinterp(r), ρinterp(r) = maxr′ :r′≥rρ(r′) (9)

where R is the total number of recall points, and ρ (r) is the precision at recall r. When
calculating the average precision (AP), each recall point is traversed. The maximum
precision value among all recall points that are greater than or equal to the current recall
point is selected and summed. Finally, this sum is divided by the number of recall points
to obtain the final AP value. The value of the AP ranges from 0 to 1, with a higher value
indicating better performance.

Firstly, we trained and tested the proposed method on the KITTI dataset and the
detection results obtained on the test set are shown in Table 1, which contains the detailed
detection results with three difficulty levels on the three categories.

Table 1. The experimental results of the proposed method and the baseline on KITTI. All results are
evaluated using average precision (AP) with 40 recall positions.

Metrics Methods
Car (IoU = 0.7) Pedestrian (IoU = 0.5) Cyclist (IoU = 0.5)

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

BBOX Baseline 96.19 92.56 90.28 63.45 56.52 50.04 78.41 66.11 65.06
Ours 96.26 92.58 90.31 63.94 57.21 50.64 79.24 67.98 65.95

BEV Baseline 92.78 88.54 85.33 50.37 42.54 40.54 77.28 64.20 56.76
Ours 92.82 88.61 86.60 55.71 48.64 41.85 77.45 64.23 57.95

3D Baseline 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
Ours 89.23 80.14 77.89 52.32 45.47 38.78 76.41 61.92 56.39

AOS Baseline 96.17 92.42 90.08 58.81 52.63 46.20 78.33 67.35 64.33
Ours 96.23 92.47 90.11 59.50 52.67 46.28 79.15 67.54 65.47

It can be seen that, overall, our network has a positive detection effect on the three
categories. In the typical focus on 3D benchmark, our experimental results demonstrate
that the proposed method achieves the following average precision (AP_R40) values for
easy, moderate, and hard difficulties, respectively: car (Iou 0.7)—89.23%, 80.14%, and
77.89%; pedestrian (Iou 0.5)—52.32%, 45.47%, and 38.78%; and cyclist (Iou 0.5)—76.41%,
61.92%, and 56.39%. Compared with the baseline method PointRCNN, each metric has been
improved to varying degrees. Further, we validated our method on the KITTI 3D object
detection benchmark and compared it with results achieved by state-of-the-art models, as
presented in Table 2.

Table 2. The 3D detection results on the KITTI test set are reported using different methods. All results
are evaluated using average precision (AP) with 40 recall positions. The frames per second (FPS) are
also shown. The best results of point-only method and multimodal method are bold.

Method
Car (IoU=0.7) Pedestrian (IoU = 0.5) Cyclist (IoU = 0.5)

FPS
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

VoxelNet [28] Voxel 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37 4.5
SECOND [29] Voxel 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67 20

PointPillars [30] Voxel 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 42.4
PointRCNN [34] Point 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 10
Point-GNN [35] Point 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08 1.6

IA-SSD [36] Point 88.87 80.32 75.10 49.01 41.20 38.03 80.78 66.01 58.12 85
PV-RCNN [40] Multi 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65 12.5
VIC-Net [41] Multi 88.25 80.61 75.83 43.82 37.18 35.35 78.29 63.65 57.27 17

FusionPillars [42] Multi 86.96 75.74 73.03 55.87 48.42 45.42 80.62 59.43 55.76 12.5

Ours Point 89.23 80.14 77.89 52.32 45.47 38.78 76.41 61.92 56.39 15.3
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We report the results of different methods on the test set of the KITTI dataset in
Table 2. These methods include voxel-based, point-based, and multi-modal approaches.
It can be seen that: (1) The proposed method achieves the best car (at hard level, 77.89%)
detection performance, even outperforming three multimodal detectors. This is mainly
attributed to the proposed feature alignment filtering algorithm, which effectively pre-
serves foreground points and enables accurate detection of small objects. Moreover, the
fusion branch of the network enhances the accuracy of foreground point segmentation.
(2) Compared to other point-based detectors, our approach also achieves nearly optimal car
detection performance, surpassing the benchmark PointRCNN by 2.27%, 4.5%, 2.25% re-
spectively. (3) In terms of pedestrian and cyclist detection performance, our method shows
a commendable performance even though it cannot achieve all-around results. (4) In terms
of real-time performance, compared with the FPS index of the baseline method PointRCNN,
the proposed method also improves FPS by 53%.

For 3D detection results, our method achieves better results than the previous
LIDAR-only method for monocular detection, but its performance is generally slightly
worse than that of the method with multi-modes. A possible reason is that our method
only uses a sparse point cloud as input, and the image combined with the point cloud
can capture more detail to aid in 3D detection. As can be seen, although most advanced
methods have achieved excellent results by utilizing both camera RGB images and point
clouds as inputs, our approach solely utilizes a point cloud as the input and achieves
comparable performance through both emphases on data quality optimization and an
efficient architecture. Compared to the baseline PointRCNN, our approach achieved av-
erage accuracy improvements of at least 1.45% (pedestrian at hard level) and up to 7.19%
(car at hard level) at different difficulty levels. In addition, through the optimization of
data quality, the index of detection efficiency FPS is also improved by 53%. Particularly,
the proposed method demonstrates obvious improvements in the classification of cars,
pedestrians, and cyclists, which means that our network has achieved satisfactory results
in detecting small object points. It is worth mentioning that the 3D detection results have
achieved noteworthy performances for the most important car category, reaching 89.23%,
80.14%, and 77.89%, for easy, medium, and hard difficulties, respectively. Furthermore,
in the most challenging situations, the detection performances of the car, pedestrian, and
cyclist categories at the hard level reached 77.89%, 38.78%, and 56.39%, respectively.

Next, we show some visualization results of the proposed method on the test of KITTI
dataset, as shown in Figure 6. Please note that the images are only for a better comparative
presentation of results, and our method only takes a point cloud as input to complete
3D detection results.

By comparing the detection results of point clouds with the real image, it can be seen
that the targets in the point cloud scene are accurately detected, and different categories are
also correctly distinguished. Through more detailed observations, as marked by the red
circle in Figure 6, tiny objects such as cars and cyclists at the edges and faraway regions of
the point cloud scene can also be effectively detected. This can be attributed to the designed
feature alignment filtering algorithm, which addresses the issues of distance attenuation
in LiDAR intensity values and data imbalance. Additionally, the designed feature fusion
branch network structure effectively enhances foreground point segmentation capability.
Ultimately, by emphasizing both data quality and network design, the performance of
3D object detection is improved. Next, we conducted an ablation experiment to indepen-
dently evaluate the performance of the designed feature alignment filtering algorithm and
feature fusion branch network structure on 3D object detection.
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Off-center

Figure 6. The visualization results of our method on the KITTI test set. The top displays the reference
real image, and the bottom displays the corresponding detection results. Tiny objects are marked with
red circles. Detected objects are represented by green 3D bounding boxes for cars, blue 3D bounding
boxes for pedestrians, and yellow 3D bounding boxes for cyclists.

3.3. Ablation Study

We independently evaluate the performance of the designed feature alignment filtering
algorithm and feature fusion branch network structure on the 3D detection benchmark
through ablation experiments. The results of the ablation experiments are shown in Table 3.

Table 3. The results of ablation experiments on data and network structure optimization. The results
are evaluated using average precision (AP) with 40 recall positions.

Opt Strategy
Car (IoU = 0.7) Pedestrian (IoU = 0.5) Cyclist (IoU = 0.5)

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Baseline 86.53 75.12 69.79 46.21 38.63 36.78 73.82 56.29 52.29
Data 88.15 75.26 72.77 50.42 43.81 38.19 72.62 60.57 56.04

Network 88.62 77.62 74.99 48.87 42.83 37.10 75.82 59.55 55.02
United 89.23 80.14 77.89 52.32 45.47 38.78 76.41 61.92 56.39

From Table 3, it can be observed that in the 3D benchmark, our optimization strategies
for both the data and network have effectively improved the AP for the three categories
of 3D detection. Compared to the baseline, the feature alignment filtering algorithm has
boosted the AP for cars by up to 2.98% (hard), pedestrians by up to 5.18% (moderate),
and cyclists by up to 4.28% (moderate). Furthermore, in the optimization of the network
architecture, we have designed a feature fusion branch that further enhances the detection
capability for foreground points. As a result, the AP for cars, pedestrians, and cyclists
increased by up to 5.2% (hard), 4.2% (moderate), and 3.26% (moderate), respectively.
When combining the data and network structure optimizations, all detection results showed
further improvement compared to the baseline. Specifically, the minimum improvement
in car detection AP was 2.7% (easy), while the detection AP for pedestrians and cyclists
increased by at least 2% (hard) and 2.59% (easy), respectively. Finally, our approach
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achieved the highest AP for the three types of 3D detection, reaching 89.23%, 52.32%,
and 76.41%. This is mainly attributed to the simultaneous optimization of the data and
network structure. Firstly, our feature alignment filtering algorithm effectively preserves the
foreground points and achieves accurate detection of objects with a small number of points.
In addition, the fusion branch of the network further enhances the accuracy of foreground
point segmentation, which provides a fundamental guarantee for subsequent detection.

4. Conclusions

In this study, an effective two-stage point-based 3D object detection method is in-
troduced. This method enhances 3D object detection performance by simultaneously
optimizing data quality and network structure. Specifically, regarding the data quality in
our experiment, we found that the distribution of the point cloud is dense near the center
and sparse far away from the center, and the collected reflection intensity values also show
strong near/weak far characteristics. However, in the subsequent network training, the
point-based pipeline usually adopts indiscriminate random sampling or farthest point sam-
pling to gradually downsample and extract features from the input point cloud, although
not all points are equally important for the object detection task. Inspired by this, firstly,
in order to achieve feature alignment, we introduce a correction equation to decouple the
relationship between distance and intensity and eliminate the intensity attenuation effect
caused by distance. Then, we propose a feature alignment filtering algorithm to complete
the preliminary distinction between the foreground and background points, the foreground
points are preserved, and some background points are filtered to improve the data balance.
In the optimization of the network structure, we have taken into consideration the crucial
role of the accuracy of semantic segmentation in the first stage for 3D object detection
results. Therefore, improving the accuracy of semantic segmentation in the first stage is also
a key point. When performing semantic segmentation on the input point cloud to extract
features, we integrate spatial and spectral information to further enhance the segmentation
accuracy. To achieve this, we design and incorporate a feature fusion branch module in
the semantic segmentation network. By emphasizing feature fusion in the design of the
point cloud semantic segmentation backbone network and introducing a feature fusion
branch, this branch is capable of encoding and fusing spatial and spectral information of
the k-nearest neighboring points to enhance the representation ability of local features.

Furthermore, we conduct a series of experiments on the challenging open-source
benchmark KITTI dataset to validate our method. We introduced the details of the ex-
perimental setup and reported the experimental results of the proposed method. Subse-
quently, we compared our method with state-of-the-art 3D detection methods and con-
ducted ablation studies to analyze the effectiveness of the components in the proposed
method. For 3D detection results, our method achieved better results than previous monoc-
ular detection methods that only used LiDAR point, but its performance was slightly worse
than multi-modal methods. Although most advanced methods have achieved excellent
results by utilizing camera RGB images and point clouds as inputs, our method only uti-
lizes points as input and achieves comparable performance by emphasizing data quality
optimization and efficient architecture. Finally, through a series of experiments on the
KITTI dataset, it has been proven that the proposed method achieves the following average
precision (AP_R40) values for easy, moderate, and hard difficulties, respectively: car (Iou
0.7)—89.23%, 80.14%, and 77.89%; pedestrian (Iou 0.5)—52.32%, 45.47%, and 38.78%; and
cyclist (Iou 0.5)—76.41%, 61.92%, and 56.39%. The proposed method also achieves a state-
of-the-art performance among point-based methods. In terms of real-time performance,
compared with the FPS index of the baseline method PointRCNN, the proposed method
also improves FPS by 53%.

Over the years, researchers have faced the great challenge of effectively extracting
features and accurately recognizing data collected in complex environments. Therefore, in
subsequent work, our research focus will still lie in exploring the quality optimization of the
data itself, including geometric and spectral features of the data, handling data imbalance,
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etc. Additionally, we will also pay attention to design optimization of the network to
achieve a better framework and improve the accuracy of 3D object detection.
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