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Abstract: The Sustainable Development Science Satellite 1 (SDGSAT-1) satellite, launched in Novem-
ber 2021, is dedicated to providing data detailing the “traces of human activities” for the implementa-
tion of the United Union’s 2030 Agenda for Sustainable Development and global scientific research.
The glimmer imager (GI) that is equipped on SDGSAT-1 can provide nighttime light (NL) data with a
10 m panchromatic (PAN) band and red, green, and blue (RGB) bands of 40 m resolution, which can
be used for a wide range of applications, such as in urban expansion, population studies of cities,
and economics of cities, as well as nighttime aerosol thickness monitoring. The 10 m PAN band can
be fused with the 40 m RGB bands to obtain a 10 m RGB NL image, which can be used to identify the
intensity and type of night lights and the spatial distribution of road networks and to improve the
monitoring accuracy of sustainable development goal (SDG) indicators related to city developments.
Existing remote sensing image fusion algorithms are mainly developed for daytime optical remote
sensing images. Compared with daytime optical remote sensing images, NL images are characterized
by a large amount of dark (low-value) pixels and high background noises. To investigate whether
daytime optical image fusion algorithms are suitable for the fusion of GI NL images and which image
fusion algorithms are the best choice for GI images, this study conducted a comprehensive evaluation
of thirteen state-of-the-art pansharpening algorithms in terms of quantitative indicators and visual
inspection using four GI NL datasets. The results showed that PanNet, GLP_HPM, GSA, and HR
outperformed the other methods and provided stable performances among the four datasets. Specifi-
cally, PanNet offered UIQI values ranging from 0.907 to 0.952 for the four datasets, whereas GSA,
HR, and GLP_HPM provided UIQI values ranging from 0.770 to 0.856. The three methods based on
convolutional neural networks achieved more robust and better visual effects than the methods using
multiresolution analysis at the original scale. According to the experimental results, PanNet shows
great potential in the fusion of SDGSAT-1 GI imagery due to its robust performance and relatively
short training time. The quality metrics generated at the degraded scale were highly consistent with
visual inspection, but those used at the original scale were inconsistent with visual inspection.

Keywords: nighttime light imagery; pansharpening; glimmer imager (GI); sustainable development
science satellite 1 (SDGSAT-1)

1. Introduction

At the United Nations (UN) Sustainable Development Summit on 25 September 2015,
the 193 UN member states formally adopted the 2030 Agenda for Sustainable Development,
which announced 17 Sustainable Development Goals (SDGs) [1]. The SDGs aims to move
toward a sustainable development path by thoroughly addressing the social, economic, and
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environmental dimensions of development in an integrated manner between 2015 and 2030.
Since the implementation of the UN 2030 Agenda for Sustainable Development, it has been
facing huge challenges such as a lack of data, insufficient research on indicator systems,
and uneven development between different countries [2]. The essence of sustainable
development is the harmonious coexistence of humans and nature. Therefore, how to
improve the understanding of the mechanisms and evolutionary laws of the interaction
between human activities and the natural environment and deepen the in-depth knowledge
of the multidimensional development of society, the economy, and the environment and the
intrinsic connection with the Earth system are critical scientific issues facing the progress
towards sustainable development.

Space technology, represented by Earth observations from space, has the capability
to continuously observe critical elements of the surface environment and socioeconomic
development indicators in a macroscopic, objective, dynamic, and high-precision manner.
This enables a deeper understanding of the interaction mechanisms between human ac-
tivities and the Earth’s environment and can play a major role in monitoring, assessing,
and analyzing sustainable development goals. Big Earth data can be used to support SDG
indicators through three significant aspects. First, Big Earth data are used to compensate
for data gaps and provide new data sources for the monitoring and assessment of SDGs.
Second, new methodologies are developed based on Big Earth data technologies, and new
models are constructed to monitor and assess SDG indicators. Finally, case studies on
monitoring and assessment of SDG indicators using Big Earth data are provided to support
SDGs globally and regionally, which provides a practical contribution to decision making.

Remote sensing of nighttime light (NL) offers a unique opportunity to directly observe
human activity from space [3]. The number and quality of NL remote sensing sensors
has greatly increased since the early 2000s, enabling a large number of applications such
as tracking urbanization and socioeconomic dynamics, evaluating armed conflicts and
disasters, investigating fisheries, assessing greenhouse gas emissions and energy use, and
analyzing light pollution and health effects [4–10]. The earliest NL products were derived
from the Defense Meteorological Satellite Program’s Operational Line-scan System (DMSP-
OLS). With a spatial resolution of 2.7 km, the DMSP-OLS products have been available since
1992 [10]. The NL imagery generated by the Day–Night Band (DNB) of the Visible Infrared
Imaging Radiometer Suite (VIIRS) sensor carried on the Suomi National Polar Orbiting
Partnership (SNPP) satellite has been available since April 2012. The VIIRS/DNB routinely
provides panchromatic global imagery with a 742 m spatial resolution [11]. In comparison
to DMSP/OLS images, the VIIRS/DNB data have a better spatial resolution and lower
light detection limits (2 × 10−11 W/cm2/sr vs. 5 × 10−10 W/cm2/sr in US-DMSP), which
is especially important for analyzing dimly lit areas. Additionally, the VIIRS/DNB data
also do not exhibit bright light saturation, which is one of the major shortcomings of the
DMSP/OLS data collections [3,10]. DMSP-OLS and VIIRS-DNB played an indispensable
role in large-scale NL studies, which included urbanization, socioeconomic activities, and
environmental changes [12].

Besides coarse-spatial-resolution NL images from DMSP-OLS and VIIRS/DNB, NTL
data with a higher resolution are photographs taken by astronauts on the International
Space Station (ISS). The astronaut photos are the earliest multispectral images and have a
spatial resolution ranging from 5 to 200 m, providing more details of the Earth. However,
technical challenges in radiometric calibration and uneven temporal and spatial distribu-
tions of these original photos hinder a wide application of ISS images. There are also some
commercial satellites providing fine-spatial-resolution NL imageries, such as EROS-B and
JL1-3B. Launched in 2013, EROS-B provides 0.7 m spatial resolution NL imageries with a
spectral band wavelength range of 0.5–0.9 µm and a dynamic range of 10 bits. However, as
the NTL images of EROS-B are panchromatic, the lighting type cannot be identified from
these data [13]. JL1-3B was launched in 2017 and provides multispectral (red, green, and
blue) NTL imageries at a spatial resolution of 0.92 m with a capability to detect light as low
as 7 × 10−7 W·cm−2·sr−1 [12]. With the advantages of a submeter spatial resolution and
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multispectral information, as well as its on-board radiance calibration, new capabilities
of lighting types, road detection, land use, and urban nightscape patterns are promising
in future studies [10,14]. Another data source of NL imagery is cubesats, such as Luojia-1
launched in 2018. Luojia-1 provides NL images with a spatial resolution of 130 m and
a dynamic range up to 14 bits, enabling us to accurately map urban dynamics, monitor
the construction of infrastructure, and retrieve PM2.5 concentrations at a moderate spatial
resolution [10].

A new source of NL data is the Sustainable Development Science Satellite 1 (SDGSAT-1),
launched in November 2021. SDGSAT-1 is the first global scientific satellite dedicated to the
implementation of the UN 2030 Agenda for Sustainable Development and the needs of global
scientific research [15]. SDGSAT-1 is equipped with three payloads including a thermal infrared
spectrometer (TIS), a glimmer imager (GI), and a multispectral imager (MI). The day–night
coordinated observations from the three payloads provide a detailed description of the traces
of human activities. They will provide data support for the study of indicators characterizing
the interactions between humans and nature, as well as monitoring, evaluation, and scientific
research on the achievement of the SDGs on a global scale. They also provide spatial data to
countries along the Belt and Road to contribute to global scientific needs.

The GI sensor of SDGSAT-1 provides 10 m nighttime imagery with a single panchro-
matic (PAN) band and 40 m nighttime color imagery with the red, green, and blue bands.
The sensor has significantly improved spectral and spatial resolution compared to the
existing DMSP-OLS, SNPP-VIIRS-NDB, and Luojia-1 products. The GI can provide world-
wide products that are free of charge to researchers. The GI nighttime light (NL) imagery
reflects information about road networks and residential areas and other information that
is closely related to the distributions of populations and cities. Some studies tried to
transform panchromatic NL images to RGB images to help generate more information on
humans’ presence on Earth [11]. In contrast, the GI of SDGSAT-1 provides directly 30-m
RGB images containing spectral information that is helpful for identifying the type of lights.
Moreover, image fusion techniques can be employed to fuse the 40 m RGB image with the
10 m PAN image to produce 10 m RGB NL images. The fused products can be used to
distinguish information on the type, intensity, and spatial distribution of nighttime lights
and to identify the spatial distribution of road networks and residential areas, which can
provide fine-resolution NL data for improving the accuracy of SDG indicator monitoring.

Existing remote sensing image fusion algorithms are mainly developed for the fusion
of daytime optical remote sensing images. Current fusion algorithms can be broadly classi-
fied into component substitution (CS) methods [16–24], methods based on multiresolution
analysis (MRA) [25–36] and variational optimization (VO) [37–41], and deep learning (ML)
algorithms [42–51]. CS methods transform the MS image into a new domain, such as an
intensity–hue–saturation (IHS) color space. One of the components is replaced by the
original PAN band, and the new components are then transformed back to the original do-
main. Typical CS methods include the intensity–hue–saturation (IHS), principal component
analysis (PCA), Brovey transform (BT), PRCAS, and Gram–Schmidt (GS). The CS methods
are easy to implement, and the generated fused MS images yield high spatial quality.
However, the CS methods suffer from spectral distortions, since the local dissimilarities
between the PAN and MS channels, which are caused by different spectral response ranges
between PAN and MS bands, are not considered by them. Fortunately, the spectral range
of the PAN band of SDGSAT-1 GI sensor covers the entire ranges of the RGB bands. MRA
methods extract spatial details from the PAN band using a multiresolution decomposition,
such as a Laplacian filter or wavelet. The details are then injected into the upsampled
MS bands. Although the MRA-based methods better preserve spectral information of
the original MS images than the CS-based methods, they may cause spatial distortions,
such as ringing or aliasing effects, leading to shifts or blurred contours and textures [52].
VO methods address the pansharpening problem through the optimization of suitable
variational models. However, the problem to be solved is clearly ill posed. The target
image is usually estimated under the assumption of proper co-registered PAN and MS
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images. This limits the application of such methods, as in most cases, we need to deal with
registration issues [41]. ML methods use designed convolutional neural networks (CNNs)
to learn a pansharpened image or the residual between an upsampled MS image and a
pansharpened MS image. ML methods generally yield outstanding performances in terms
of both spatial detail enhancement and spectral fidelity, but they require that training and
testing data have similar properties, indicating that these methods have a relatively weak
generalization ability [53]. Additionally, some studies have focused on exploring optimal
image fusion methods for a certain sensor, such as WorldView-2 (WV-2) [54–57]. Several
studies have compared the performances of commonly used pansharpening algorithms
on WV-2 imagery, which has four additional multispectral bands that are absent in earlier
satellites such as GeoEye-1 and Pleiades.

Different from daytime optical remote sensing images, NL images are characterized
by a large number of dark pixels and have significantly fewer spatial details. In addition,
NL imagery commonly suffers from background noise. GI NL images record the spatial
distributions of nighttime lights of road networks and residential and commercial districts
in cities and towns. It is dark in areas outside cities, such as rural areas. Therefore, there are
a large number of dark pixels in SDGSAT-1 NL imagery, which increases the indeterminacy
of the performances of some statistically based pansharpening methods. Additionally, some
SDGSAT-1 NL imagery of Level 4 also faces the problems of stripe noise and misalignment
between the MS and PAN bands, which is one of the most critical factors directly affecting
the quality of fused images. Therefore, it is necessary to verify the effectiveness of traditional
optical remote sensing image fusion methods on the fusion of SDGSAT-1 NL imagery.
Furthermore, there is an urgent need to confirm which method or which type of fusion
algorithms should be selected for SDGSAT-1 NL data. Determining these questions is of
great importance for obtaining high-quality fused GI NL images and for better serving the
monitoring and assessment of urbanization-related SDG indicators.

Therefore, in this study, thirteen state-of-the-art pansharpening methods, including
five CS methods, five MRA-based methods, and three CNN-based methods were compre-
hensively evaluated through quantity indices and visual inspection of fused products of
four SDGSAT-1 GI NL images. The experimental results of this work can provide valuable
references for the selection of optimal pansharpening algorithms to generate high-quality
10 m RGB NL images used for monitoring and assessing SDGs. The results will also
give helpful directions for developing new pansharpening methods for SDGSAT-1. The
remaining parts of this study are organized as follows: Section 2 introduces the relevant
parameters of SDGSAT-1 GI, the experimental datasets, the fusion algorithms, and the
quantitative evaluation metrics of the fused images; Section 3 presents the results of the
fusion experiments; and Sections 4 and 5 are the discussion and conclusion, respectively.

2. Materials
2.1. SDGSAT-1 Night Light Sensor Parameters

The spectral band settings for the SDGSAT-1 GI are shown in Table 1. The sensor
consists of four bands with a spectral response range of 424–910 nm. The specific band
ranges and bandwidths for the PAN, red (R), green (G), and blue (B) bands are shown in
Table 1. The spatial resolution is 10 m for the PAN band and 40 m for the R, G, and B bands.
Each band is recorded with no less than 12 bits, and the minimum detection limit for the
bands is set at ~1 × 10−5 W/(m2·sr).
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Table 1. Band parameters of the GI of SDGSAT-1.

Band Center Wavelength (nm) Wavelength Range (nm) Bandwidth
(nm)

Spatial Resolution
(m)

SNR (Observed Objects with a
Reflectance Higher than 0.2)

Panchromatic 680.72 444–910 466 10
Lights on city trunk roads ≥ 30;
Urban residential district ≥ 20;

Polar moon light ≥ 10.
Blue 478.87 424–526 102 40

Lights on city trunk roads ≥ 15;
Urban residential district ≥ 10.

Green 561.20 506–612 96 40
Red 734.25 600–894 294 40

2.2. Datasets

Four Level 4 GI NL products were used in this work. The Level 4 products are ortho-
corrected products using ground control points and digital elevation models based on the
Level 1 products, which are standard products after relative radiation correction, band
alignment, high dynamic range (HDR) fusion, and rational polynomial coefficient (RPC)
processing based on Level 0 products. The Level 4 products provide three radiance bands
derived from the PAN band, which are panchromatic low (PL), panchromatic high (PH),
and HDR. The PL and PH are obtained using two versions of gain bias values for the PAN
band, whereas the HDR is the average of the PL and PH bands. We used the HDR band to
fuse with the three color bands in this work to produce pansharpened images with more
details in this work.

Figure 1 shows the four image scenes in Beijing, China; Rio de Janeiro, Brazil; Lisbon,
Portugal; and Shanghai, China. Subarea images were selected from the four image scenes to
carry out fusion experiments with quantitative evaluation of fused image quality and visual
comparison analysis. Table 2 introduces the recording time and image size information of
these subimages, and Table 3 shows the statistical information such as minimum, maximum,
mean, and standard deviation of the four subimages. As seen from Table 3, the mean
values of the images were extremely low and even lower than the corresponding standard
deviation values. This is because there are a large number of dark pixels in the images,
although these images cover urban areas. In addition, the mean and variance of the PAN
band are significantly lower than those of the R, G, and B bands. This is because the PAN
image has a larger number of dark pixels than the R, G, and B bands.

Table 2. Four SDGSAT-1 NL datasets used for the evaluation of pansharpening methods.

Id Location Sensor Date Image Size (MS/PAN)

1 Beijing SDGSAT-1 GI November 2021 512 × 512/2048 × 2048
2 Lisbon SDGSAT-1 GI January 2022 512 × 512/2048 × 2048
3 Shanghai SDGSAT-1 GI April 2022 512 × 512/2048 × 2048
4 Brazil SDGSAT-1 GI June 2022 512 × 512/2048 × 2048

Table 3. The statistics of the four SDGSAT-1GI nighttime light datasets.

Dataset Band Minimum Maximum Mean Standard Deviation

Beijing

R 1 4426 412.26 522.81
G 1 4643 396.93 530.18
B 1 4411 135.11 315.24

PAN 1 4465 35.37 153.17

Lisbon

R 1 3852 270.96 411.55
G 1 4079 180.75 301.28
B 1 3487 27.69 89.97

PAN 1 4152 13.47 37.05

Shanghai

R 7 4357 236.24 339.20
G 7 4616 219.54 343.54
B 7 4427 67.80 176.19

PAN 7 4420 17.17 78.74

Brazil

R 7 3789 230.14 218.47
G 7 3935 300.94 33.92
B 7 3962 126.52 33.06

PAN 7 3620 19.09 32.89
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The fusion experiments were performed on both the original and degraded scales
according to Wald’s protocol of quality assessment [58]. The fused products at the two scales
were then evaluated using quantitative indexes. Specifically, the original MS and PAN
images were degraded using the modulation transfer function (MTF) of the sensor and then
downsampled to spatial resolutions of 160 m and 40 m, respectively, to generate the test
images at the degraded scale [32]. The fused products that were generated at the degraded
scale were then evaluated using the original 40 m MS image as a reference. For the original
scale, the 40 m MS image was fused with the 10 m PAN image to generate 10 m MS images.
The fused images were evaluated using quality index without a reference image along with
visual inspection. The details of the quality metrics are introduced in Section 2.4.

2.3. Fusion Algorithms

The thirteen pansharpening methods considered in this work are shown in Table 4.
Five CS methods and five MRA-based methods, which belong to the conventional pan-
sharpening methods, and three CNN-based pansharpening methods were evaluated in
this work. The details of these methods are briefly introduced in this subsection.
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2.3.1. Conventional Pansharpening Methods

Conventional pansharpening methods include CS- and MRA-based methods and
methods based on sparse representation. Here, we introduce some details of the CS- and
MRA-based fusion algorithms considered in this work.

(1) CS methods

The CS algorithms use a simulated component obtained by a weighted sum of the MS
bands to replace the original PAN band. It is given that M and P represent the original low-
resolution MS image and high-resolution PAN image, respectively. M̃ and M̂ represent the
upsampled MS and the fused MS images, respectively. The CS fusion can be formulized as

M̂i = M̃i + gi(P − IL), i = 1, · · · , N

IL =
N

∑
i=1

wi M̃i,
(1)

in which the subscript i indicates the ith spectral band, gi is the injection gains of the ith
band, wi is the weight of the ith MS band, and N is the number of MS bands, while IL
is a low-resolution simulation of the original PAN band. In this work, we evaluated the
performances of the Intensity Hue Saturation (IHS) [16], principal component analysis
(PCA) [17], adaptive Gram–Schmidt (GSA) [19,20], haze- and ratio-based (HR) [21], and
reduce misalignment impact (RMI) [22] for the fusion of SDGSAT-1 GI imagery. The IHS
and PCA methods were selected because they were the earliest methods developed for
pansharpening. The GSA, HR, RMI were considered due to their outstanding performances
in previous works [57].

For the IHS method, the IL can be obtained by setting the coefficients wi to 1/N,
whereas the injection coefficients gi are all equal to 1.

The PCA method transforms the spectral bands to new uncorrelated spectral direc-
tions through an orthonormal projection matrix. For the PCA method, the IL is the first
component, which presents the largest variance and contains abundant spatial information.
The coefficient gi is the first column of the backward transformation matrix.

The GSA is an improved version of the GS method, and the weights wi for GSA
are estimated by the linear regression coefficients between the original MS band and the
degraded version of the PAN band. The gi for GSA is the ratio of the covariance between
the two bands M̃i and IL to the variance of IL. For HR, the IL is a low-pass version of the
original PAN image. For RMI, the IL is obtained using a weighted sum of the MS bands,
where the weights wi are estimated using a similar approach to the GSA method. On the
other hand, both the HR and RMI methods are based on the assumption that the ratio of an
HSR MS band to a low-spatial-resolution (LSR) MS band is equal to the ratio of an HSR
PAN image to a synthetic LSR PAN image.

(2) MRA-based methods

The MRA techniques inject the spatial details obtained through a multiresolution
decomposition of the original PAN band into the upsampled MS bands. Similarly, a general
formulation for MRA-based methods can be given by (2)

M̂i = M̃i + gi(P − PL), i = 1, · · · , N (2)

where PL is the low-frequency component of the PAN band. PL can be derived for the PAN
band through different approaches, such as low-pass filter, Laplacian pyramid, and wavelet
decomposition.

We considered the high-pass filter (HPF) [25], “à trous” wavelet transform (ATWT) [26,28]
and generalized Laplacian Pyramid (GLP) [29,30,32] methods with different detail injection
models in this work. These methods were employed as they are classic methods that have
obtained stable performances in previous comparisons [59]. The HPF uses a low-pass filter,
typically a box mask with uniform weights for average filtering, to obtain PL, and the coefficient
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gi is equal to 1. The ATWT method uses the “À trous” wavelet decomposition to obtain PL.
Similarly, gi is equal to 1. For the GLP methods, PL is generated by a Gaussian low-pass filter
that matches the MTF of the SDGSAT-1 GI sensor to achieve accurate estimation of the spatial
degradation model [32]. Moreover, several injection models can be used to obtain the injection
coefficients gi. For the GLP fusion scheme, the simplest approach is the additive injection model,
for which the coefficients gi are all equal to 1 [60]. For GLP-based fusion with a context-based
decision model (GLP_CBD), the coefficient gi is the ratio of the covariance between two bands
M̃i and IL to the variance of IL, which ensures that the spectral vector of a pixel in the fused
image is parallel to that of the corresponding pixel in the upsampled MS image [32,52,60]. For
the GLP-based fusion with the high-pass model (GLP_HPM), the coefficient gi is the ratio of the
ith MS band and PL [32,61].

Table 4. Fusion algorithms considered for the fusion of SDGSAT-1 GI data.

Category Method

Conventional algorithms
CS IHS [16], PCA [17], GSA [19,20], RMI [22], HR [21]

MRA-based HPF [25], ATWT [26,28], GLP [29,32,60],
GLP_HPM [32,61], GLP_CBD [32,52,60]

CNN-based pansharpening A-PNN [46], PanNet [44], Z-PNN [50]

2.3.2. CNN-Based Pansharpening Methods

The first CNN-based pansharpening (PNN) method, proposed in 2016 [42], was improved
from an architecture proposed for single nature image with super-resolution tasks [62]. In recent
years, deep learning has become a particularly popular solution for pansharpening. A large
number of CNN-based methods were proposed in recent years [43–50]. The PNN method
adopts a three-layer CNN architecture. The input of the model is the combination of the original
PAN band and the upsampled MS bands, whereas the output is the pansharpened MS bands.
The proposed deep residual pansharpening neural network (DRPNN) [43] employs a residual
learning approach and an 11-layer CNN architecture. The deeper architecture contributes to the
sharper edges obtained by the DRPNN method. A target-adaptive version of the PNN method
(A-PNN) adopts residual learning and a target-adaptive fine-tuning step to improve the training
efficiency and robustness over a wide distribution of data [46]. The PanNet method uses the
ResNet structure along with a spectra-mapping strategy for spectral preservation [44]. The input
of PanNet is the original PAN image and the original MS image. Most existing CNN-based
pansharpening methods, such as PNN, A-PNN, and PanNet, use degraded datasets at a lower
resolution for the training of model parameters, which are used for the fusion of the original
dataset. Recently, an improved version of the PNN method, namely, Z-PNN or Zoom-PNN,
employed a full-resolution training framework [50]. The Z-PNN method trains the model using
a dataset of the original resolution with a newly defined loss, including a spectral component
and a spatial component. The spectral loss component enforces the spectral consistency between
the pansharpened image and the original low-resolution MS image, whereas the spatial loss
component maximizes the spatial correlation between each fused band and the PAN band.
The PNN and its improved versions are commonly used in comparisons. The target-adaptive
PNN [46] and Z-PNN [50], as well as PanNet [44], were considered in terms of exploring
their performances on GI images, as they have yielded outstanding performances in previous
works [53].

The A-PNN implemented in Theano [46] and the Z-PNN implemented in PyTorch [50]
were used in this work. Another image scene recorded on 15 April 2022 was trained
to obtain pre-trained models for A-PNN and Z-PNN. For A-PNN, 1000 epochs were
considered for the fine-tuning phrase using the degraded version of the test datasets. For
Z-PNN, the datasets at the original scale were then trained for 3000 epochs based on the
pre-trained model. The PanNet was implemented in Keras, and the model was trained
using the degraded version of the test datasets. The three networks were trained using a
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graphic station equipped with an NVIDIA GeForce RTX 2080 Ti GPU, which has 11 GB
memory.

2.4. Fusion Image Quality Evaluation Index
2.4.1. Quality Indices with a Reference Image

Pansharpened remote sensing images at the degraded scale are commonly evaluated
using quality indices such as ERGAS, SAM, UIQI, and SCC. The introductions of the
abbreviations are presented in Table 5.

The ERGAS is defined as a weighted sum of the root of the mean square error
(RMSE) [63]. The ERGAS is calculated by (3)

ERGAS =
100
R

√
1
N ∑N

k=1(
RMSE

(
M̂k, Mk

)
u(Mk)

)2 (3)

where u(Mk) is the mean of the kth band of the reference image M; R is the spatial resolution
ratio between the MS and PAN bands. The optimal value for ERGAS is 0.

SAM measures the spectral similarity between a fused product and the correspond-
ing reference image [64]. Let two spectral vectors V = {V1, V2, · · · , VM} and V̂ ={

V̂1, V̂2, · · · , V̂M
}

present the reference spectral pixel and the fused spectral pixel, re-
spectively; their spectral angle SAM is defined as (4)

SAM = arccos(

〈
V, V̂

〉
|V|·|V̂|

) (4)

where ⟨X, Y⟩ stands for the inner product of the two vectors X and Y, and |X| stands for
the modulus of a vector X. The smaller the spectral angle, the higher the similarity between
the two vectors. The optimal value for SAM is 0.

The UIQI is a comprehensive measure that considers intensity, contrast, and local
correlation. As UIQI is for a single band, the multiband extensions of UIQI, including
Q4 [65] and Q2n [66], were proposed and then widely used in pansharpening. As the
SDGSAT-1 nighttime light imagery considered in this work has only three bands, the UIQI
index is employed. The UIQI index is defined as (5)

Q =
4σx,y·x·y(

σx2 + σy2
)[
(x)2 + (y)2

] =
σx,y

σxσy
· 2x·y
(x)2 + (y)2 ·

2σx·σy

σx2 + σy2 (5)

where σx,y denotes the covariance between the fused image x and the reference image y, x
and y are the means, and σx

2 and σy
2 are the variances of x and y, respectively. The dynamic

range of UIQI is [–1, 1], and the best value is achieved if x = y for all pixels. Specifically, the
UIQI value in this work refers to the average of the UIQI values of the three fused bands.

SCC assesses the correlation between spatial details that are presented in two images.
Similar to the procedure proposed by Otazu et al. [31], the spatial information presented in
the two images to be compared is extracted by using a Laplacian filter; then, the correlations
between the two filtered images are calculated band by band. A high SCC value indicates
that many of the spatial details of the reference image are presented in the fused image.
The optimal value for SCC is 1. Specifically, an overall correlation coefficient of the two
edge images with three bands is calculated in this study.

Some published studies have also considered PSNR and SSIM [51,67]. As a spatial
quality index, SSIM measures the structural similarity between a fused product and a
reference image. The PSNR is defined based on the mean square error (MSE); the higher
the PSNR value is, the higher the similarity of the two images is. However, some studies
expressed that MSE and PSNR are not very well matched to perceived visual quality [68].
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Table 5. Quality indices used at the reduced and original scales for the evaluation of fused products.

Scale Index Details Ideal Value

Reduced scale

ERGAS [63] Erreur Relative Globale Adimensionnelle de Synthese 0
SAM [64] Spectral angle mapper 0
UIQI [65] Universal Image Quality Index 1
SCC [31] Spatial correlation coefficient 1
SSIM [59] Structural similarity index 1

PSNR Peak signal-to-noise ratio -

Original scale

QNR [69] Quality with no-reference index 1
Dλ [69] Spectral distortion index 0
Ds [69] Spatial distortion index 0

Dk
λ [70,71] Khan’s spectral consistency index 0

HQNR [70,71] Hybird QNR based on Dk
λ and Ds 1

Dρ [51] Spatial consistency index 1

2.4.2. Quality Indices without a Reference Image

The evaluation of pansharpened products at the original scale is a challenging problem
due to the lack of a reference image. The most widely used quality index for fused
products obtained at the original scale is the quality with no reference (QNR) index. The
QNR is a combination of two separate metrics measuring spectral (Dλ) and spatial (Ds)
distortions [69]. Dλ measures the intrarelationship changes between the pansharpened MS
bands and those between the original MS bands. The value of Dλ is estimated as (6)

Dλ ≜ p

√√√√√ 1
N(N − 1)

N

∑
l=1

N

∑
r=1
r ̸=l

∣∣∣Q(
M̂l , M̂r

)
− Q

(
M̃l , M̃r

)∣∣∣p
(6)

where Q
(

M̂l , M̂r
)

is the UIQI index calculated from the lth and rth band of the fused image,

and M̂, Q
(

M̃l , M̃r

)
is the UIQI index of the lth and rth band of the upsampled MS image

M̃. N is the number of spectral bands. p is a positive integer exponent chosen to emphasize
large spectral differences and is typically set to one. The index is proportional to the p-norm
of the difference matrix, being equal to 0, if and only if the two matrices are identical.

Ds measures interrelationship changes between the MS and Pan bands and is esti-
mated as (7)

Ds ≜
q

√√√√ 1
N

N

∑
l=1

∣∣∣Q(
M̂l , P

)
− Q

(
M̃l , P̃

)∣∣∣q (7)

in which P is the original PAN image, and P̃ is a spatially degraded version of the PAN
image, obtained by filtering with a low-pass filter, having normalized the frequency cutoff
at the resolution ratio between MS and PAN, followed by decimation. The index Ds attains
its minimum (equal to zero) when the two vectors are identical.

As a joint index based on Dλ and Ds, weighted by the coefficients α and β. the QNR
index is defined as (8)

QNR ≜ (1 − Dλ)
α·(1 − Ds)

β (8)

The highest value of QNR is one, and it is obtained when the spectral distortion Dλ

and spatial distortion Ds are both zero.
Both Dλ and Ds do not measure the discrepancy between the fused product and

original MS and PAN images directly. Due to the lack of reference images, an improved
spectral distortion index, i.e., Dk

λ, was proposed by using the Q2n index to compare the
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degraded version of the fused image obtained using the MTF filter followed by decimation
with the original MS image [70]. The Dk

λ index is defined as (9)

Dk
λ ≜ 1 − Q2n(M̂L, M

)
(9)

where M̂L is the degraded version of the fused image M̂, and M is the original MS image.
The optimal value of Dk

λ is close to zero when M̂L is identical to M.
The hybrid QNR (HQNR) index is the combination of the spectral distortion Dk

λ and
the spatial distortion index Ds used by QNR. The HQNR index is defined as (10)

HQNR ≜
(

1 − Dk
λ

)α
·(1 − Ds)

β (10)

The optimal value of HQNR is also close to 1 when both Dk
λ and Ds are close to zero.

Similarly, an improved spatial distortion index, referred to as DF
s , used UIQI to mea-

sure the interrelationships between the details of the PAN image and those of the MS
images across resolution scales [70,71]. However, DF

s was sensitive to the spatial filters
used to generate high-frequency images [71].

The Dρ index is another spatial consistency index that is proposed to obtain closer
correlation with human judgment than those of Ds [51]. This index computes the average
local correlation between the pansharpened image and the PAN. Let Xσ

ij indicate a σ × σ

patch of image X, centered on location (i, j). We compute the correlation field ρσ
PM̂

, given by
the local correlation coefficients between P and each band b of M̂, as shown in (11). Then,
we reduce it to its average value over space and spectral bands. The final index is then
defined as (12)

ρσ
PM̂(i, j, l) = corrcoef

(
Pσ

i,j, M̂(l)σ
i,j

)
(11)

Dρ ≜ 1 − ρσ
PM̂

(12)

The choice of the parameter σ is of critical importance. It was suggested to choose the
resolution ratio as the value of σ. The optimal value for Dρ is 0, corresponding to perfect
correlation.

The jointed indexes QNR and HQNR and the spatial index Dρ were considered in
this work. The values of the spatial index Ds and the spectral indexes Dλ and Dk

λ were
presented together to evaluate the effectiveness of these indexes. The toolboxes provided
in [51,71] were employed to calculate the indexes.

3. Experiments and Results
3.1. Results for the Beijing Dataset

The quality indices of the fused images of the degraded and original scales of the
Beijing dataset are shown in Tables 6 and 7, respectively. Figures 2 and 3 show the orig-
inal and fused images of the two-scale datasets, respectively. The fused products of the
degraded datasets are shown to evaluate the consistency between visual inspection and
quality indexes.
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Table 6. Quality indices of fused products of the Beijing dataset at the reduced scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method ERGAS ↓ SAM ↓ UIQI ↑ SCC ↑ SSIM ↑ PSNR ↑

IHS 25.749 11.539 0.582 0.522 0.658 24.117
PCA 23.637 9.625 0.584 0.528 0.665 23.910
GSA 21.987 9.777 0.819 0.589 0.870 25.541
RMI 19.307 8.532 0.807 0.624 0.871 26.208
HR 17.289 8.907 0.854 0.592 0.895 26.770
HPF 18.494 8.818 0.792 0.522 0.853 26.166

ATWT 17.550 8.856 0.812 0.539 0.869 26.560
GLP 17.384 8.876 0.816 0.543 0.873 26.599

GLP_HPM 16.360 8.584 0.846 0.593 0.890 27.012
GLP_CBD 17.990 8.785 0.776 0.522 0.838 26.100

A-PNN 12.159 8.803 0.930 0.784 0.964 30.813
PanNet 9.287 8.199 0.952 0.864 0.974 33.029
Z-PNN 17.312 9.886 0.866 0.629 0.919 27.191

EXP 25.309 8.535 0.609 0.205 0.751 23.530

Table 7. Quality indices of fused products of the Beijing dataset at the original scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method Dλ ↓ Ds ↓ QNR ↑ Dk
λ ↓ HQNR ↑ Dρ ↓

IHS 0.465 0.017 0.526 0.417 0.573 0.254
PCA 0.351 0.019 0.636 0.456 0.533 0.228
GSA 0.035 0.012 0.953 0.215 0.775 0.141
RMI 0.011 0.016 0.973 0.223 0.765 0.158
HR 0.211 0.003 0.787 0.239 0.759 0.149
HPF 0.025 0.009 0.966 0.027 0.964 0.296

ATWT 0.035 0.009 0.956 0.029 0.962 0.275
GLP 0.035 0.009 0.956 0.033 0.958 0.270

GLP_HPM 0.031 0.010 0.959 0.033 0.957 0.285
GLP_CBD 0.020 0.008 0.972 0.024 0.968 0.440

A-PNN 0.109 0.082 0.817 0.491 0.467 0.365
PanNet 0.097 0.087 0.825 0.490 0.465 0.271
Z-PNN 0.081 0.088 0.838 0.441 0.509 0.094
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Figure 2. The degraded PAN, original MS images, and fused products of the degraded Beijing dataset.
(a) PAN image at 40 m, (b) original MS image at 40 m, and fused products of IHS (c), PCA (d), GSA (e),
RMI (f), HR (g), HPF (h), ATWT (i), GLP_HPM (j), GLP (k), GLP_CBD (l), A-PNN (m), PanNet (n), and
Z-PNN (o).
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Figure 3. The original PAN, upsampled MS images, and fused products of the original-scale Beijing dataset.
(a) The PAN image of 10 m, (b) the upsampled version of the 40 m MS image, and the fused products of IHS
(c), PCA (d), GSA (e), RMI (f), HR (g), HPF (h), ATWT (i), GLP_HPM (j), GLP (k), GLP_CBD (l), A-PNN
(m), PanNet (n), and Z-PNN (o).

As shown in Table 6, the three CNN-based methods yielded higher UIQI, SCC, SSIM,
and PSNR values than all the other methods, indicating their excellent performance at
the degraded scale. The higher SCC and SSIM values indicate that they achieved better
preservation of spatial details. A lower SAM value means less spectral distortion. Among
the three CNN-based methods, PanNet provided the highest UIQI, SCC, SSIM, and PSNR
values and the lowest RASE, ERGAS, SAM, and RMSE values, indicating that PanNet
showed outstanding performances in terms of both the spatial detail enhancement and
spectral fidelity. The ERGAS and SAM values of the Z-PNN were higher than some of the
traditional fusion methods, indicating a relatively high spectral distortion. According to
the visual inspection of Figure 2, the fused products of the three CNN-based methods were
very close to the original MS image in both spectral fidelity and spatial detail enhancement
resolution, which is consistent with the quantitative evaluation indexes. Among the CS-
based methods, GSA, HR, and RMI had higher UIQI values than IHS and PCA. The former
also yielded significantly higher SCC and SSIM values than the latter, indicating a better
spatial consistency. As shown in Figure 2, the fused products of the former showed lower
spectral distortions than those of the latter, which is consistent with the relatively high UIQI
that was provided by the former. Among the MRA-based methods, GLP_HPM proved to
have the highest UIQI value, followed by GLP, ATWT, and HPF, whereas GLP_CBD yielded
the lowest UIQI value. According to the visual inspection, the fused image of GLP_HPM
was clearer than the other products. The fused product of GLP_CBD looked blurred due to
a lack of details, which is consistent with the low SCC and SSIM values of GLP_CBD.

As seen from Table 7, the MRA-based method provided the highest QNR and HQNR
values and the lowest Dk

λ values. However, the Dρ values of MRA-based methods were
relatively high, indicating a poor preservation of spatial details. Among the MRA methods,
GLP_CBD yielded a higher QNR and HQNR and lower Dk

λ. However, the fused product
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of GLP_CBD shown in Figure 3 was the most blurred, indicating that the evaluations in
terms of QNR, HQNR, and Dk

λ were inconsistent with the visual comparison.
Among the CS-based methods, GSA and RMI yielded relatively high QNR and HQNR

values, along with relatively low Dk
λ and Dρ values. According to a visual inspection of

Figure 3, the fused products of GSA and RMI presented lower spectral distortions and
more spatial details than those of PCA and IHS. Offering the lowest Ds and Dρ values, the
HR-fused image also showed rich spatial details, but it had noticeable spectral distortions.

According to the visual inspection, the fused images of the three CNN-based methods
showed unnoticeable spectral distortions, as well as more spatial details than the MRA-
based methods. The QNR and HQNR of Z-PNN were the highest among the CNN-based
methods, while the Dρ was the lowest, which is also significantly lower than those of all
the other methods. However, PanNet yielded better visual effects than Z-PNN and A-PNN.
Therefore, it can be inferred that the performance evaluated in terms of Dρ did not match
the visual inspection.

Combining quantitative and visual comparisons on both the degraded and the original
scales, PanNet offered more robust performances than the other methods. At the degraded
scale, for PanNet, HR, and GLP_HPM, the performances evaluated using quantitative in-
dexes were consistent with the visual inspection. For the original scale, PanNet, GLP_HPM,
RMI, and HR yielded better visual effects than the other methods.

3.2. Results for the Brazil Dataset

The quality indices of the fused images of the degraded and original scales of the
Brazil dataset are shown in Tables 8 and 9, respectively. Figures 4 and 5 show the original
images and fused images generated from the degraded and original scales, respectively.

Table 8. Quality indices of fused products of the Brazil dataset at the reduced scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method ERGAS ↓ SAM ↓ UIQI ↑ SCC ↑ SSIM ↑ PSNR ↑
IHS 15.120 11.002 0.646 0.557 0.780 29.163
PCA 14.034 9.333 0.666 0.586 0.795 29.259
GSA 14.044 9.877 0.774 0.597 0.876 29.615
RMI 15.120 11.002 0.646 0.557 0.780 29.163
HR 11.196 8.952 0.797 0.589 0.917 31.294
HPF 11.305 8.943 0.794 0.587 0.914 31.210

ATWT 10.318 8.741 0.821 0.633 0.928 31.901
GLP 13.894 8.865 0.671 0.516 0.849 28.655

GLP_HPM 11.779 8.690 0.790 0.593 0.906 30.853
GLP_CBD 16.009 8.690 0.579 0.182 0.682 22.255

A-PNN 17.151 18.711 0.701 0.493 0.802 29.214
PanNet 6.134 8.410 0.928 0.866 0.976 36.884
Z-PNN 11.780 9.766 0.786 0.583 0.907 11.780

EXP 14.034 9.333 0.666 0.586 0.795 29.259
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Table 9. Quality indexes of fused products of the Brazil dataset at the original scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method Dλ ↓ Ds ↓ QNR ↑ Dk
λ ↓ HQNR ↑ Dρ ↓

IHS 0.093 0.008 0.900 0.466 0.530 0.288
PCA 0.066 0.010 0.924 0.449 0.546 0.277
GSA 0.097 0.003 0.901 0.377 0.621 0.257
RMI 0.083 0.005 0.912 0.322 0.675 0.271
HR 0.212 0.001 0.787 0.261 0.738 0.391
HPF 0.054 0.006 0.941 0.042 0.952 0.363

ATWT 0.067 0.006 0.928 0.048 0.946 0.332
GLP 0.069 0.006 0.926 0.048 0.946 0.331

GLP_HPM 0.061 0.006 0.933 0.047 0.948 0.325
GLP_CBD 0.013 0.004 0.983 0.039 0.957 0.598

A-PNN 0.008 0.014 0.978 0.481 0.512 0.479
PanNet 0.051 0.029 0.921 0.555 0.432 0.443
Z-PNN 0.040 0.035 0.926 0.496 0.487 0.312
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As shown in Table 8, PanNet provided the highest UIQI, SCC, SSIM, and PSNR val-
ues and the lowest ERGAS and SAM values among all the methods. The fused product of 
PanNet shown in Figure 4 was very close to the original MS image in both spectral and 
spatial and showed more spatial details than those of A-PNN and Z-PNN. Therefore, the 

Figure 4. The degraded PAN image, the original MS image, and fused products of the degraded
Brazil dataset. (a) The PAN image of 40 m, (b) the original MS image of 40 m, and the fused products
of IHS (c), PCA (d), GSA (e), RMI (f), HR (g), HPF (h), ATWT (i), GLP_HPM (j), GLP (k), GLP_CBD
(l), A-PNN (m), PanNet (n), and Z-PNN (o).
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Figure 5. The original PAN, upsampled MS images, and fused products of the original-scale Brazil
dataset. (a) The PAN image of 10 m, (b) the upsampled version of the 40 m MS image, and the fused
products of IHS (c), PCA (d), GSA (e), RMI (f), HR (g), HPF (h), ATWT (i), GLP_HPM (j), GLP (k),
GLP_CBD (l), A-PNN (m), PanNet (n), and Z-PNN (o).

As shown in Table 8, PanNet provided the highest UIQI, SCC, SSIM, and PSNR values
and the lowest ERGAS and SAM values among all the methods. The fused product of
PanNet shown in Figure 4 was very close to the original MS image in both spectral and
spatial and showed more spatial details than those of A-PNN and Z-PNN. Therefore, the
visual comparison is completely consistent with the quantitative evaluation index. Among
the CS methods, GSA and HR provided higher UIQI values than the other three methods.
The GSA-fused product was relatively close to the original MS image, whereas the IHS-
fused image showed noticeable spectral distortions. Among the MRA methods, ATWT
provided the highest UIQI, followed by HPF, GLP_HPM, and GLP, whereas GLP_CBD
yielded the lowest UIQI. The SCC of GLP_CBD was also significantly lower than the other
methods, indicating the lack of spatial details in the fused image. The fused product of
GLP_CBD was also blurred, which is consistent with the low SCC value of the method.

As seen from Table 9, the MRA-based methods yielded relatively high QNR and
HQNR, relatively low Ds, and the lowest Dk

λ values. Among the three MRA-based meth-
ods, GLP_CBD provided the highest QNR and HQNR, the lowest Dk

λ, but also the highest
Dρ values, which theoretically equates to a poor performance in spatial detail preservation.
However, the fused product of GLP_CBD shown in Figure 5 was the most blurred, indicat-
ing that the evaluation using QNR, HQNR, and Dk

λ might be inconsistent with the visual
inspection. Among the CS-based methods, PCA and RMI provided the highest QNR, HR
yielded the highest HQNR, whereas GSA had the lowest Dρ. However, according to the
visual inspection, the GSA-fused image balanced better between spectral fidelity and spatial
details compared with the fused products of PCA and RMI. The HR-fused image showed
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the richest spatial details, although it provided the highest Dρ value, which theoretically
indicates a lack of spatial details. Among the CNN-based methods, A-PNN yielded a
higher QNR and HQNR than the other methods, and it also provided the highest Dρ value.
The three CNN-based fused products showed unnoticeable spectral distortions and more
spatial details than the MRA-based methods. The fused image of PanNet showed a better
visual effect in terms of both spectral and spatial parameters than A-PNN and Z-PNN,
indicating that the assessment based on QNR, HQNR, and Dρ values was inconsistent with
the visual inspection.

Combining quantitative and visual comparisons on both the degraded and original
scales, PanNet, GSA, and HR performed better than the other methods in the fusion of
the two scales. The MRA-based fusion products were relatively spatially blurred, and
the assessment based on QNR, HQNR, and Dρ values was inconsistent with the visual
inspection.

3.3. Results for the Lisbon Dataset

The quality indices of the fused images of the degraded and original Lisbon datasets
are shown in Tables 10 and 11, respectively. Figure 6 shows the original Pan and upsampled
MS images and the fused products of the original-scale dataset.

Table 10. Quality indices of fused products of the Lisbon dataset at the reduced scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method ERGAS ↓ SAM ↓ UIQI ↑ SCC ↑ SSIM ↑ PSNR ↑
IHS 37.421 13.805 0.619 0.694 0.735 29.684
PCA 28.072 15.258 0.653 0.756 0.796 29.666
GSA 24.244 15.455 0.839 0.781 0.967 33.083
RMI 24.502 13.717 0.770 0.777 0.946 32.594
HR 20.541 14.247 0.848 0.779 0.964 33.260
HPF 25.456 14.117 0.807 0.738 0.945 31.841

ATWT 24.749 14.312 0.823 0.751 0.956 32.459
GLP 24.403 14.033 0.827 0.752 0.959 32.633

GLP_HPM 19.011 13.829 0.862 0.799 0.971 34.197
GLP_CBD 26.766 13.803 0.712 0.594 0.882 28.706

A-PNN 18.777 14.531 0.880 0.823 0.982 35.663
PanNet 14.219 12.492 0.907 0.888 0.987 37.185
Z-PNN 25.077 16.884 0.781 0.721 0.943 32.384

EXP 34.892 13.717 0.601 0.194 0.839 26.317

Table 11. Quality indices of fused products of the Lisbon dataset at the original scale. The symbol ↓
denotes the lower the index value, the better the performance; ↑ means the reverse.

Method Dλ ↓ Ds ↓ QNR ↑ Dk
λ ↓ HQNR ↑ Dρ ↓

IHS 0.066 0.006 0.929 0.612 0.385 0.168
PCA 0.036 0.003 0.961 0.486 0.512 0.154
GSA 0.092 0.004 0.904 0.342 0.656 0.106
RMI 0.073 0.004 0.923 0.385 0.612 0.166
HR 0.433 0.003 0.565 0.451 0.547 0.153
HPF 0.079 0.005 0.916 0.097 0.899 0.180

ATWT 0.088 0.005 0.908 0.111 0.885 0.156
GLP 0.088 0.004 0.908 0.150 0.846 0.155

GLP_HPM 0.081 0.004 0.915 0.146 0.850 0.160
GLP_CBD 0.011 0.003 0.985 0.063 0.934 0.565

A-PNN 0.057 0.114 0.836 0.792 0.185 0.498
PanNet 0.061 0.115 0.830 0.793 0.183 0.416
Z-PNN 0.069 0.218 0.728 0.780 0.172 0.192
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Figure 6. The original PAN, upsampled MS images, and fused products of the original-scale Lisbon
dataset. (a) The PAN image of 10 m, (b) the upsampled version of the 40 m MS image, and the fused
products of IHS (c), PCA (d), GSA (e), RMI (f), HR (g), HPF (h), ATWT (i), GLP_HPM (j), GLP (k),
GLP_CBD (l), A-PNN (m), PanNet (n), and Z-PNN (o).

As seen from Table 10, PanNet provided higher UIQI, SCC, SSIM, and PSNR values
and significantly lower ERGAS and SAM values than those of all the other methods. This
indicates that the fused product of PanNet shows small spectral distortion as well as good
preservation of spatial details. Among the CS-based methods, GSA and HR offered higher
UIQI, SCC, and SSIM values than IHS, PCA, and RMI. Among the MRA-based methods,
GLP_HPM yielded the highest UIQI, SCC, and SSIM values, whereas GLP_CBD offered
the lowest UIQI. The SCC of GLP_CBD was significantly lower than for the other methods,
indicating a lack of spatial details. This is very similar to the results for the Brazil dataset.

As shown in Table 11, GLP_CBD offered higher QNR and HQNR values than the
other two MRA-based methods, due to the significantly lower Dλ and Dk

λ values provided
by the method. However, GLP_CBD also yielded a significantly higher Dρ value than the
other methods, indicating a relatively low spatial consistency with the original PAN image.
The fused image of GLP_CBD was the most spatially blurred, which is consistent with the
high Dρ value. Among the CS-based methods, PCA yielded the highest QNR, whereas
GSA offered the highest HQNR and the lowest Dk

λ and Dρ values. However, the fused
images of GSA and RMI showed noticeable spectral distortions, and that of PCA yielded a
better visual effect. The three CNN-based methods offered relatively low QNR and HQNR
values, due to their relatively high Ds and Dk

λ values. The QNR and HQNR of A-PNN were
higher than those of PanNet and Z-PNN, but the Dρ of the former was also higher than
the latter. According to visual inspection, the three fused products showed richer spatial
details than those of the MRA methods. A-PNN and Z-PNN showed slightly better visual
effects than PanNet.
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According to the quantitative metrics at the degraded scale, PanNet, A-PNN, GLP_HPM,
HR, and GSA performed better than the other methods. According to the visual inspection,
A-PNN and Z-PNN outperformed the other methods at the original scale.

3.4. Results for the Shanghai Dataset

The quality indices of the fused images of the degraded and original Shanghai datasets
are shown in Tables 12 and 13, respectively. Figure 7 shows the original Pan and upsampled
MS images and the fused products of the original-scale dataset.

Table 12. Quality indices of fused products of the Shanghai dataset at the reduced scale. The symbol
↓ denotes the lower the index value, the better the performance; ↑ means the reverse.

Method ERGAS ↓ SAM ↓ UIQI ↑ SCC ↑ SSIM ↑ PSNR ↑
IHS 31.057 13.215 0.450 0.574 0.709 27.916
PCA 28.578 10.710 0.452 0.595 0.721 27.690
GSA 22.660 10.901 0.785 0.675 0.912 30.767
RMI 21.720 9.306 0.792 0.725 0.927 31.132
HR 19.713 10.026 0.870 0.783 0.954 31.103
HPF 22.560 9.535 0.747 0.578 0.901 29.942

ATWT 21.205 9.565 0.764 0.600 0.910 30.409
GLP 20.800 9.582 0.769 0.604 0.914 30.507

GLP_HPM 17.409 9.388 0.816 0.688 0.935 31.881
GLP_CBD 22.593 9.519 0.714 0.548 0.884 29.356

A-PNN 13.787 9.126 0.903 0.825 0.893 35.811
PanNet 10.194 8.572 0.924 0.900 0.907 38.363
Z-PNN 19.206 11.432 0.818 0.702 0.808 32.077

EXP 31.666 9.306 0.577 0.209 0.833 27.460

Table 13. Quality indices of fused products of the Shanghai dataset at the original scale. The symbol
↓ denotes the lower the index value, the better the performance; ↑ means the reverse.

Method Dλ ↓ Ds ↓ QNR ↑ Dk
λ↓ HQNR ↑ Dρ ↓

IHS 0.551 0.010 0.444 0.442 0.552 0.618
PCA 0.430 0.011 0.563 0.491 0.504 0.606
GSA 0.053 0.006 0.941 0.291 0.704 0.561
RMI 0.041 0.008 0.952 0.260 0.735 0.571
HR 0.226 0.002 0.772 0.229 0.769 0.560
HPF 0.017 0.004 0.979 0.032 0.964 0.635

ATWT 0.025 0.004 0.971 0.031 0.965 0.625
GLP 0.024 0.004 0.971 0.033 0.963 0.621

GLP_HPM 0.023 0.004 0.973 0.033 0.963 0.615
GLP_CBD 0.014 0.004 0.983 0.032 0.964 0.714

A-PNN 0.095 0.053 0.857 0.677 0.306 0.638
PanNet 0.083 0.049 0.872 0.681 0.303 0.594
Z-PNN 0.111 0.075 0.822 0.677 0.299 0.439
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Figure 7. The original PAN, upsampled MS images, and fused products of the original-scale Shanghai
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As seen from Table 12, PanNet offered the highest UIQI, SCC, SSIM, and PSNR and
the lowest ERGAS and SAM among all the methods, indicating an outstanding perfor-
mance in terms of both spectral fidelity and spatial detail enhancement. Among the CS
methods, the UIQI, SCC, and SSIM values of HR were significantly higher than those of the
other four methods. Among the MRA-based methods, GLP_HPM offered a higher UIQI,
SCC, and SSIM, whereas GLP_CBD yielded the lowest. The SCC and SSIM values of the
GLP_CBD method were significantly lower than those of the other methods, indicating a
poor performance in spatial detail preservation.

As seen from Table 13, the QNR values of the MRA-based fusion methods were higher
than those of the CS- and CNN-based methods. However, the fused products of the
CNN-based methods (Figure 7) showed more spatial details than those of the MRA-based
methods. Among the MRA-based methods, GLP_CBD yielded the highest QNR value, due
to a Ds of 0.004, which is significantly lower than for the other methods. However, the
Dρ of GLP_CBD was also the highest, which theoretically indicates that the fused product
showed low spatial consistency with the original PAN image. According to the visual
inspection, the fused product of GLP_CBD was very blurred, which is consistent with the
high Dρ value provided by the method. Among the CS-based methods, RMI offered the
highest QNR, whereas HR yielded the highest HQNR. According to the visual inspection,
the fused products of IHS, PCA, and GSA showed spectral distortions, and the spatial
details in the RMI-fused product were very close to those in the original PAN image. The
HR-fused image showed more spatial details than that of RMI, which is consistent with
the low Ds that HR offered. Among the CNN-based methods, PanNet offered the highest
QNR, A-PNN yielded the highest HQNR, and Z-PNN provided the lowest Dρ. According
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to the visual inspection, tspectral distortions of the three fused products were not distinct,
and the spatial details were close to those presented in the original PAN image.

Combining the quantitative indicators of the two scales with visual comparisons, the
GLP_HPM outperformed the other MRA-based methods, whereas RMI and HR outper-
formed the other CS-based methods. The CNN-based methods yielded different perfor-
mances across the two scales.

4. Discussion
4.1. Comparisons of Pansharpening Methods for SDGSAT-1 GI Data

The pansharpening methods yielded relatively robust performances at the degraded
scale among the four datasets. The CNN-based methods yielded better performances than
the other methods at the degraded scale according to the quality metrics, as well as the
visual inspection. The three CNN methods also achieved more robust and better visual
effects than the MRA methods at the original scale. This is mainly due to the powerful
learning ability of CNN-based models, which successfully achieve the enhancement of
spatial details while ensuring spectral consistency. Similar to the fusion of optical remote
sensing images, the CNNs showed remarkable advantages over traditional methods and
great potential in the pansharpening of the GI imagery of SDGSAT-1. PanNet yielded
a more stable and excellent performance than A-PNN and Z-PNN, mainly due to the
deeper network structure employed by PanNet. As introduced in Section 2, pre-trained
models that are trained using additional datasets were used for both A-PNN and Z-PNN.
In contrast, only the test image itself was used for the training of the PanNet model, which
saves a large amount of extra work and training time. Consequently, PanNet has great
potential in the fusion of SDGSAT-1 GI imagery.

A concern about PanNet is the feasibility and generalizability of the model when
used for other datasets, which is a challenge when considering remote sensing images that
are recorded in different seasons from multiple satellite platforms with different spatial
resolutions. Actually, PanNet was approved with outstanding generalization ability [53].
In this work, we primarily focused on the effectiveness of the CNN models working on
SDGSAT-1 NL images. Different from daytime multispectral images, NL images show
much simpler backgrounds except for nighttime lights. Consequently, we are optimistic
about using the trained PanNet models on other GI NL image scenes covering a different
place. Moreover, the performance of PanNet can be further improved through fine-tuning
training using the degraded version of the original dataset, which requires just a short
running time. Additionally, the trained PanNet models of the four datasets used in this
work can be used as pre-trained models for the fusion of other image scenes to further
reduce the training time.

Among the CS-based methods, GSA outperformed IHS and PCA in terms of SAM and
UIQI at the degraded scale, as well as visual inspection. This may be because both methods
are robust to misalignment between the MS and PAN bands [18]. The HR-fused images
were richer in spatial details and more suitable for generating fusion images that needed to
be used for the exhibition. However, HR-fused images may suffer from spatial distortions,
such as ringing artefacts, when the MS and PAN bands are not perfectly aligned. The fused
images of IHS and PCA usually had higher spectral distortions and blurrier spatial details.
This is very similar to the fusion of optical remote sensing images.

The GLP_HPM method yielded more robust and significantly better visual effects
and higher UIQI, SCC, SSIM, and PNSR values at the degraded scale than the other MRA
methods. For the GLP_HPM method, the injection weight gi is the ratio of the ith MS
band and PL, which limits the spectral distortions and ensures the injection of enough
spatial details. The GLP_CBD yielded very blurred details concerning lights and networks,
although it had relatively high QNR and HQNR values.
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4.2. Evaluation of Quality Indices Used for Fusion Products for SDGSAT-1 GI Data

The fused products of the degraded Beijing and Brazil datasets are shown in Figures 2
and 4, respectively, to evaluate the consistency between the visual inspection and the
quantitative metrics. The pansharpening method, i.e., PanNet, provided the highest UIQI,
SCC, PNSR values and the lowest SAM and ERGAS values, and this also corresponded to an
outstanding visual effect. Generally, the performances of the state-of-the-art pansharpening
in terms of quality indexes at the degraded scale were highly consistent with the visual
inspection.

However, it was found that the quantitative metrics generated from the fused products
of the four SDGSAT-1 GI datasets at the original scale were completely different from the
performances in terms of visual inspection. For example, the fused products of GLP_CBD
provided very high QNR and HQNR values for the four datasets but yielded very blurred
details, which achieved the poorest visual effect. Both Ds and Dρ measure the spatial
similarity between a pansharpened product and the original PAN band. The closer the
values are to 0, the better the spatial consistency is. Tables 6, 8, 10 and 12 show that the
fused products of the MRA methods, RMI, GSA, and HR achieved very similar Ds values
but showed significant visual differences. Some of them had very blurred details regarding
lights and road networks. Similarly, a fused image with a relatively low Dρ value may even
show blurred details. This indicates that the QNR-like indexes were not suitable for the
pansharpened SDGSAT-1 GI images.

These different performances of the quality indices are mainly due to the differences
between the NL data and the optical multispectral data. The most significant difference is
that the NL images contain a large number of dark pixels and lack spatial details of ground
objects. Additionally, some objects shown in the GL imagery, such as the 10 m Pan image,
may even be discontinuous. Currently, the quality index for the assessment of fused images
at the original scale is still an open issue for optical remote sensing imagery. However, it
is necessary to consider other metrics measuring the overall quality of pansharpened GI
images considering the difference between daytime optical images and NL images.

5. Conclusions

This work assessed the performances of thirteen state-of-the-art pansharpening meth-
ods on GI NL imagery provided by SADSAT-1 to provide a reference for selecting an
optimal pansharpening method for GI data. The fused products of four GI datasets from
SDGSAT-1 at both degraded and original scales were compared and analyzed by visual
inspection and quantitative indicators. The following conclusions were obtained:

According to the experimental results, the three CNN-based methods (A-PNN, PanNet,
and Z-PNN) yielded relatively stable and outstanding performances for the fusion of the
four datasets at both the degraded and original scales. Specifically, PanNet offered UIQI
values ranging from 0.907 to 0.952 for the four datasets, and the PanNet-fused products
that were generated at the degraded scale yielded better visual effects in terms of spectral
fidelity and spatial detail enhancement. Among the CS and MRA methods, GSA, HR,
and GLP_HPM provided UIQI values ranging from 0.77 to 0.856 for the four datasets
and outperformed other methods in terms of the visual inspection and quantitative index
comparison. If only the visual effect is considered, HR-fused images showed the richest
spatial details. The CNN-based methods also yielded comparable visual effects at the
original scale. PanNet has great potential in the fusion of SDGSAT-1 GI imagery due to its
robust performance on the four datasets and relatively short training time.

The quality metrics of the degraded scale were highly consistent with the visual
inspection. However, the quality indexes used at the original scale were inconsistent with
the visual inspection, especially spatial indexes such as Ds and Dρ. Although many efforts
have been made to achieve full-resolution quality assessment, it is a challenge due to the
absence of a ground truth image as a reference. It is urgent to explore quality metrics at
full resolution, measuring the overall quality of pansharpened GI images considering the
difference between daytime optical images and NL images. Although PanNet showed
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great potential in the pansharpening of GI imagery, how to obtain a model with a good
generalization ability is still a problem that remains to be explored. Further improvements
can also be made through exploring other advanced CNN models using advanced loss
functions and measuring similarities at full resolution. As the alignment between the MS
and PAN bands is a crucial factor of image fusion, it would be very useful for developing a
pansharpening method integrating accurate registration and image fusion.
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