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Abstract: In regional development studies, GDP serves as an important indicator for evaluating the
developing levels of a region. However, due to statistical methods and possible human-induced
interfering factors, GDP is also a commonly criticized indicator for less accurately assessing regional
economic development in a dynamic environment, especially during a globalized era. Moreover,
common data collection approaches are often challenging to obtain in real-time, and the assessments
are prone to inaccuracies. This is especially true in economically underdeveloped regions where data
are often less frequently or accurately collected. In recent years, Nighttime Light (NTL) data have
emerged as a crucial supplementary data source for regional economic development evaluation and
analysis. We adapt this approach and attempt to integrate multiple sources of spatial data to provide
a new perspective and more effective tools for economic development evaluation. In our current
study, we explore the integration of OpenStreetMap (OSM) data and NTL data in regional studies,
and apply a Geographically and Temporally Weighted Regression model (GTWR) for modeling and
evaluating regional economic development. Our results suggest that: (1) when using OSM data as
a single data source for economic development evaluation, the adjusted R2 value is 0.889. When
using NTL data as a single data source for economic development evaluation, the adjusted R2 value
is 0.911. However, the fitting performance of OSM data with GDP shows a gradual improvement
over time, while the fitting performance of NTL data exhibits a gradual decline starting from the
year 2014; (2) Among the economic evaluation models, the GTWR model demonstrates the highest
accuracy with an AICc value of 49,112.71, which is 2750.94 lower than the ordinary least squares
(OLS) model; (3) The joint modeling of OSM data with NTL data yields an adjusted R2 value of
0.956, which is higher than using either one of them alone. Moreover, this joint modeling approach
demonstrates excellent fitting performance, particularly in economically underdeveloped regions,
providing a potential alternative for development evaluation in data-poor regions.

Keywords: OpenStreetMap (OSM); nighttime light (NTL); gross domestic product (GDP); geographically
and temporally weighted regression (GTWR); China

1. Introduction

Economic development evaluation is the process of assessing and analyzing the eco-
nomic conditions and developmental level of a country or region. This evaluation not only
provides a reference and guidance for achieving United Nations Sustainable Development
Goal 10 (SDG-10) [1], which aims to reduce inequality within and between countries, but also
holds significant importance in promoting sustainable economic development, enhancing
economic competitiveness, and improving the country’s image and creditworthiness [2–4]. In
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the process of achieving sustainable development goals, economic development evaluation
plays a crucial role in eliminating poverty, promoting social justice, enhancing education
levels, and improving environmental quality, among other aspects [5–10]. In addition, eco-
nomic development evaluation also serves as the foundation for policymakers to formulate
and implement measures and policies. Economic development assessment is therefore one
of the important tools for promoting economic and social progress and has far-reaching
implications for achieving the Sustainable Development Goals.

China, as the world’s second-largest economy, has achieved tremendous economic
development accomplishments in the past few decades. However, there are significant
disparities in the economic development levels and patterns among different regions and
prefecture-level cities [11]. At present, GDP is the most widely used economic indicator
and standard in economic development evaluation [12,13]. However, the calculation of
GDP heavily relies on the official statistical agencies of each country, and the existing statis-
tical methods have certain limitations. In economically developed countries and regions,
official economic statistics can be regularly updated and published. Nevertheless, in some
underdeveloped regions, especially in Africa, there are issues with the availability and
quality of official economic statistics [14]. This issue has become a hot topic of current re-
search; therefore, using multiple sources of spatial data to evaluate economic development
levels has become a trending and prominent issue in the international research community.
Utilizing multiple sources of spatial data can compensate for the limitations of traditional
economic statistical data and provide a more comprehensive and accurate economic evalu-
ation. This approach holds potential in addressing the issues of availability and quality
of official statistical data, offering a more reliable foundation for policy formulation and
decision-making. As a result, an increasing number of researchers are now focusing on
and exploring the application of multiple sources of spatial data in economic development
evaluation [15–20]. Their goal is to gain a better understanding and assessment of the true
economic conditions.

In recent years, nighttime light data have been extensively utilized as spatial data for
the evaluation of socio-economic development in geographical research [21–27]. Sutton
and Costanza [28] made the first attempt in 2002 to spatially model global economic devel-
opment using joint modeling and simulation of nighttime light intensity from DMSP/OLS
nighttime light remote sensing images with GDP or industrial economic data. However,
this type of data has a limitation known as the “saturation effect,” where the maximum
value of the grayscale is restricted to 63. As a result, regions with actual higher grayscale
values can only be displayed as 63, and the spatial resolution of these data is relatively
low. Since the emergence of the NPP-VIIRS nighttime light data in 2012, its high spatial
resolution and accurate recording of nighttime light radiance have been widely applied.
Wang [29] utilized NPP-VIIRS nighttime light remote sensing imagery to estimate and
map the subnational GDP of Uganda based on an enhanced light intensity model. Li first
proposed the application of nighttime light data to estimate the GDP of China in 2015 [30].
Li [31] conducted a another research on the spatiotemporal modeling of NPP-VIIRS night-
time light intensity and GDP in major urban agglomerations in China. The research aimed
to validate the spatiotemporal heterogeneity of the proposed model. There have been
numerous and rich research achievements in using NTL data for economic evaluation at
different scales [32–34]. Despite the significant advantages of using nighttime light data
in economic development evaluation, it is essential to recognize that nighttime light data
can only capture artificial light during the night [17]. Moreover, nighttime light data can
be influenced by various factors, including human activity intensity, observation angles,
and abnormal noise [35]. Indeed, exploring other data sources is crucial to enhance the
capabilities of economic evaluation. With the rapid development of technologies such as
computers and the internet, spatial data collection has become more accessible. The concept
of Volunteered Geographic Information (VGI) was first introduced by Goodchild [36] in
2007, and it refers to geographic data contributed voluntarily by the public [37]. Open-
StreetMap (OSM) is considered one of the most prominent VGI projects [38]. OSM data
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are globally available for free and is characterized by its rapid updates. In comparison to
official statistical and commercial data that often require authorization or incur fees, and
may have slower update rates [39], OSM data offer significant advantages, making them an
invaluable data source. Indeed, OpenStreetMap (OSM) has evolved into an independent
research field [40]. The characteristics of being massive, heterogeneous, rich, and freely
available have drawn extensive attention from researchers to OpenStreetMap [41]. Research
on OSM has primarily focused on OSM data quality assessment [40,42,43]. However, OSM
research has expanded to various fields, including urban development [44–46], navigation,
disaster relief, and humanitarian aid [47], among others. Although OSM data have been
utilized in economic studies as well [48,49], the focus has mainly been on economically
developed regions, and there is still a lack of research in economically underdeveloped
areas. OSM data can be autonomously and freely uploaded by any individual or organiza-
tion, and it is precisely this characteristic that establishes a strong correlation between the
contribution of OSM data and the socio-economic conditions of the regions [50]. Scholars
have applied OpenStreetMap (OSM) data and Nighttime Light (NTL) data in various geo-
graphical studies, encompassing climate, land use, and urban development. For example,
Cheng utilized these datasets to discern alterations in urban land patterns across different
developmental stages [51]. Shi employed OSM, NTL, and other data to categorize and
identify local climate zones within specific regions, thereby contributing to a more accurate
delineation of localized climatic patterns supporting large-scale production [52]. Wang
employed both datasets to compute housing vacancy rates, successfully estimating these
rates in cities with diverse developmental statuses [53]. Furthermore, Ma comprehen-
sively examined the scaling attributes within urban areas by integrating OSM and NTL
data, providing crucial data support for a nuanced understanding of urban planning and
economic development [54]. This study aims to explore the capabilities of OSM data in
economic development modeling, especially for economically underdeveloped areas. It
employs the space-time geographically weighted regression method to investigate the
combined modeling of OSM data and nighttime light data in assessing economic devel-
opment. China’s economic development exhibits significant spatial variations, with the
eastern regions generally outperforming the western regions. Therefore, focusing on the
Chinese mainland as the study area and assessing the differences in economic modeling
using various spatial data in different regions will contribute to a better understanding of
spatial data applications. This research will also serve as a reference for future studies in
this field.

This study takes the Chinese mainland as an example to explore the capabilities of
OSM data in economic development evaluation. It investigates the economic evaluation
effects of OSM and NTL data when jointly modeling them in different regions. The structure
of this paper is as follows: Firstly, an introduction to the research area, data selection, and
methods used is provided. Secondly, the economic modeling effects of different spatial
data are discussed. Based on the previous sections, the advantages and limitations of OSM,
NTL, and their joint modeling at the prefecture-level city scale are discussed. Finally, the
research results are summarized, and conclusions are drawn.

2. Data and Methods
2.1. Study Area

In order to assess the economic development evaluation modeling capabilities of OSM
data and NTL data, this study focuses on four direct-controlled municipalities (Beijing,
Shanghai, Tianjin, and Chongqing) and 332 prefecture-level cities (reduced to 331 after the
2019 merger of Jinan and Laiwu) and autonomous prefectures in the Chinese mainland
(excluding Hong Kong, Macau, and Taiwan). The research area and the NTL data along
with OSM Point of Interest (POI) and road network data for some cities are illustrated in
Figure 1.
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2.2. Data

The research data includes OSM data, NTL data, and economic data from 2013 to 2021.
We started from 2013 because OSM data, which are currently available for download, date
back to that year. The variable descriptions and statistical data are presented in Table 1.

Table 1. Variable descriptions and statistics.

Data Name Variable Description Unit Min. Max. Standard
Deviation

OSM
POI Count POI Total Count Per 0.00 14162 720.91

POI Density POI Density Per/km2 0.00 1.4690 0.08776
Road Density Road Network Density km/km2 0.0049 8.0836 0.76310

NTL TNL Total nighttime light 209.74 505,994 56,317.75
Economy GDP Gross Domestic Product 100 million CNY 7.3471 43,214.9 3846.57

The OSM data can be freely downloaded from the OSM website URL (download.
geofabrik.de) in the ESRI Shapefile format. OSM data are open-access, allowing anyone
to freely utilize, edit, and share this geographic information. OSM encompasses diverse
geographical data, including road networks, points of interest (POI), topography, buildings,
bodies of water, and more. The map data adhere to open standards, facilitating the import
and export by various geographic information software and applications. The OSM data
primarily include region POI count data, POI density data, and road network density data.
POI data comprise specific points on a map, typically denoting locations of particular
significance or attraction. POI categories encompass landmarks, dining establishments,
accommodations, retail outlets, cultural and entertainment venues, recreational spaces,
educational and research institutions, healthcare facilities, financial and service entities,
public amenities, and corporate offices. These diverse POI categories span locations of
potential interest to individuals in their daily lives and travels, serving as a comprehensive
information foundation for the provision of personalized map services and navigation.
The NTL data used in this study utilize the global 500-m resolution “NPP-VIIRS-like”
nighttime light dataset [32] from URL (www.geodata.cn). This dataset possesses parameters
and attributes consistent with NPP-VIIRS nighttime light data. Additionally, to obtain

download.geofabrik.de
download.geofabrik.de
www.geodata.cn
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a complete long time-series dataset spanning from 2000 to 2021, the annual composite
NPP-VIIRS nighttime light data from 2013 to 2021 are appended directly to the existing
“NPP-VIIRS-like” nighttime light data for the years 2000 to 2012.

2.3. Methods
2.3.1. Spatial Autocorrelation

Spatial autocorrelation measures the extent to which a particular geographic phe-
nomenon or attribute value in one specific spatial unit correlates with the same phenomenon
or attribute value in nearby spatial units [55]. To illustrate, if the values of a variable in one
spatial unit closely resemble those in its neighboring units, consistently being either high
or low, it indicates a positive spatial autocorrelation. Conversely, if the values significantly
differ, it implies a negative spatial autocorrelation. This study employs GeoDa [56] for
spatial autocorrelation analysis. Given the irregularities in administrative boundaries, the
utilization of the queen contiguity matrix is deemed a practical approach, especially suited
for handling polygonal regions. Specifically, the study used queen adjacency to construct
the spatial weight matrix, with an adjacency rank of 1.

(1) Global spatial autocorrelation

Global spatial autocorrelation pertains to the overall spatial clustering characteristics
within a given region [57,58]. Moran’s I [59] serves as a vital metric for quantifying global
spatial autocorrelation. Moran’s I ranges from −1 to 1, where a value exceeding 0 signifies
positive spatial correlation and a tendency toward spatial clustering of the variable in
question. Conversely, a value below 0 suggests negative spatial correlation and a tendency
toward spatial dispersion of the variable. Through an analysis of global autocorrelation,
we can discern spatial clustering patterns within the OSM data.

(2) Local spatial autocorrelation

Local spatial autocorrelation [60] primarily explores the specific characteristics of
spatial clustering within an area. Unlike the global Moran’s test, local spatial autocorrelation
overcomes the limitation of ignoring local spatial clustering [61,62].

According to the calculation results, the clustering states can be divided into high-high
aggregation (H-H), low-low aggregation (L-L), high-low aggregation (H-L), and low-high
aggregation (L-H). The spatial clustering distribution characteristics of OSM data can be
observed through local spatial autocorrelation.

2.3.2. Geographically and Temporally Weighted Regression Model

The GTWR model is an extension of the Geographically Weighted Regression (GWR)
model and is a local regression model that considers spatial and temporal variations [63–65].
It utilizes regional panel data for spatial regression and links the time attribute to the
spatial attribute of geographically weighted regression, better reflecting the spatiotemporal
information of the regions and improving the efficiency of estimation [66]. By analyzing the
regression results of the GTWR model, one can make more effective judgments about the
spatial heterogeneity of spatial data in economic development evaluation. The expression
of the GTWR model is as follows [65]:

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)Xik + εi, i = 1, 2, . . . , n (1)

where, (ui, vi, ti) is the space-time coordinate of point i, ui, vi, ti, respectively, represent
the longitude, latitude, and time of point i, β0(ui, vi, ti) is the constant term, βk(ui, vi, ti)
represents the k-th regression coefficient of point i, and εi is the model residual term.

The point i regression coefficient βi can be calculated by the least square method:

βi(ui, vi, ti) =
(
X′W(ui, vi, ti)X

)−1X′W(ui, vi, ti)yi (2)
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In the equation, W(ui, vi, ti) represents the spatiotemporal weight matrix, which uses
a Gaussian function as the weight function. The selection of bandwidth significantly
influences the establishment of spatiotemporal weights. This study utilizes the AICc
method for adaptive bandwidth determination, with the numerical value of the bandwidth
indicating the number of neighboring cities.

2.3.3. Residual Analysis

Residual analysis is a common statistical method used to evaluate how well a regres-
sion model fits the data and to understand the properties of the model’s errors. Residuals
represent the differences between the predicted values and the actual observed values of
the dependent variable when using the model for predictions. This analysis is essential
for assessing the accuracy of regression results, especially in the context of spatial data.
Absolute and relative residuals can be calculated as follows:

RAbsolute = Predictivei − Reali i ∈ [1, 2, 3, . . . , 3021] (3)

Rrelative =
( Predictivei − Reali)

Reali
× 100% i ∈ [1, 2, 3, . . . , 3021] (4)

where i is each prefecture-level city from 2013 to 2021, Predictivei is the model forecast
GDP, and Reali is the real GDP.

2.3.4. Regression Model Parameters and Description

Adjusted R2 is a metric used to measure the goodness of fit for a linear regression
model. In comparison to the ordinary R2, it accounts for model complexity by adjusting for
degrees of freedom, providing a more reliable reflection of the model’s explanatory power
on real data.

AICc [67] (Akaike Information Criterion with correction) serves as an indicator for
comparing statistical models, taking into consideration both the goodness of fit and model
complexity. Particularly suitable for small sample sizes, a smaller AICc value indicates a
more optimal model.

3. Results
3.1. Analysis of OSM Features and Modeling Capability
3.1.1. Residual Analysis

Figure 2 and Table 2 depict China’s global Moran’s Index for OSM data. Notably, the
Moran’s Index of OSM data remains consistently positive from 2013 to 2021. Among the
three variables, road network density displays the highest Moran’s Index, outperforming
POI count and POI density.

Over the years, the Moran’s Index of POI count decreases, while POI density expe-
riences a slight increase. Conversely, road network density’s Moran’s Index exhibits an
upward trend, signaling a spatial clustering pattern within China’s OSM data. Furthermore,
clustering in POI count and density is waning, whereas road network density’s clustering
is strengthening. These trends were statistically confirmed, with all p-values below 0.05.
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Table 2. Variable descriptions and statistics on the Moran Index.

Data Year Moran Index p-Value Z-Value

POI Count

2013 0.179 0.002 6.564
2014 0.16 0.003 5.909
2015 0.111 0.011 3.676
2016 0.097 0.014 3.562
2017 0.103 0.015 3.537
2018 0.09 0.016 3.511
2019 0.073 0.029 2.46
2020 0.076 0.026 2.529
2021 0.067 0.032 2.285

POI Density

2013 0.089 0.017 2.931
2014 0.089 0.013 3.091
2015 0.098 0.005 3.478
2016 0.086 0.018 2.849
2017 0.094 0.017 2.969
2018 0.096 0.018 3.099
2019 0.108 0.009 3.582
2020 0.105 0.011 3.405
2021 0.098 0.011 3.203

Road Density

2013 0.413 0.001 12.549
2014 0.428 0.001 13.49
2015 0.507 0.001 14.785
2016 0.544 0.001 16.019
2017 0.548 0.001 16.717
2018 0.549 0.001 16.28
2019 0.552 0.001 16.299
2020 0.551 0.001 16.192
2021 0.549 0.001 16.034
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3.1.2. Local Spatial Autocorrelation Features

To delve into the local spatial characteristics of OSM data from 2013 to 2021, spatial
autocorrelation analysis was performed. This analysis unveiled significant disparities
between eastern and western regions, highlighted by the Hu Line [68], an east-west eco-
nomic demarcation. Separating the region based on this line offers insights into economic
differences and aids in explaining spatial autocorrelation.

The OSM local spatial autocorrelation map (Figures 3–5) reveals that H-H regions
are predominantly found in economically developed areas like Beijing, Shanghai, and
Guangzhou, while L-L regions are concentrated west of the Hu Line. The spatial local
autocorrelation results all passed the significance test with p-values less than 0.05. This spa-
tial pattern correlates with economic development levels, providing essential preliminary
information for subsequent modeling.
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3.1.3. Analysis of OSM Economic Modeling Capability

To explore the economic modeling capability of spatial data, we first conducted re-
gression analyses using OLS, GWR, and GTWR on the OSM data. GDP was chosen as
the dependent variable. To achieve better results with fewer variables and avoid multi-
collinearity issues during analysis, we conducted exploratory analysis in ArcGIS to select
indicators with significance greater than 50% and Variance Inflation Factors (VIF) less than
7.5. The VIF for the selected variables in this study are as follows: POI count = 3.37, POI
density = 3.48, road network density = 2.97, the total nighttime light = 3.01. As a result, we
selected POI count, POI density, and road network density as explanatory variables for
the economic modeling. The annual regression results are summarized in Figure 6. The
comparison between GTWR regression results and OLS results for the years 2013–2021 is
shown in Table 3.
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Table 3. OLS and GTWR modeling results of OSM data.

Model R2 Adjusted R2 AICc Bandwidth

GTWR 0.898 0.889 51,992.28 16
OLS 0.675 0.674 55,066.95

Figure 6 illustrates that the GWR results surpass OLS, with a noteworthy improve-
ment of 0.214 in adjusted R2 and a substantial decrease of 3074.68 in AICc [67] (in model
comparisons using AICc, a difference greater than 3 indicates the model with the lower
AICc is the better fit [69–71]). Furthermore, the economic modeling with OSM data has
shown consistent enhancement, with adjusted R2 rising from 0.717 in 2013 to 0.844 in 2021.
Additionally, local R2 values are presented in Figure 7.
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3.2. Analysis of NTL Economic Modeling Capability

As a data parameter widely used in economic evaluation [31,33], NTL was analyzed
using the same model as OSM to compare the differences in their effectiveness in evaluating
the economy. The annual regression results of NTL are summarized in Figure 8 and the
comparison results between GTWR and OLS for the years 2013–2021 can be found in
Table 4. Additionally, local R2 values are presented in Figure 9.
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Table 4. OLS and GTWR modeling results of NTL data.

Model R2 Adjusted R2 AICc Bandwidth

GTWR 0.915 0.911 51,200.73 26
OLS 0.842 0.842 52,882.25

From Figure 8, it is evident that NTL’s GWR results outperform OLS, reflected in the
improved adjusted R2 and reduced AICc. Additionally, NTL excels over OSM in GDP
modeling, offering a better fit. However, NTL’s fitting performance gradually declines from
2014 to 2021, reaching an adjusted R2 of 0.865 in 2021. Conversely, OSM’s 2021 adjusted R2

is 0.844, indicating a rising trend and an approach to NTL’s economic modeling capabilities.
As shown in Table 4, the GTWR modeling results using NTL are significantly better

than OLS, with an increase in adjusted R2 of 0.069 and a decrease in AICc of 1681.25. This
indicates that the GTWR model exhibits a substantial advantage in economic modeling
compared to OLS.

From Figure 9, in 2013, NTL modeling had low performance near the Hengduan
Mountains in southwest China. Between 2014 and 2017, NTL exhibited strong fitting per-
formance nationwide, with local R2 > 0.8. It excelled in eastern coastal areas, the northeast,
and southwestern China, with local R2 > 0.9. However, starting in 2018, NTL’s performance
weakened in the Pearl River Delta region. By 2021, there was a significant decline in NTL’s
fitting performance, especially in southern China, where it was notably poor.

3.3. Joint Modeling Results of OSM and NTL

In the previous section, we assessed OSM and NTL data’s individual economic model-
ing capabilities. Now, we aim to combine these datasets as independent variables to jointly
model GDP, exploring the potential of multi-sourced spatial data for economic modeling.

The results of the joint modeling with OSM and NTL data are presented in Table 5.
We employed both GTWR and OLS models for modeling, ensuring that all independent
variables had VIF values below 7.5. As shown in the table, GTWR modeling significantly
outperforms OLS modeling, with an adjusted R2 of 0.957 for the GTWR model, surpassing
the adjusted R2 values of 0.911 for the NTL model and 0.889 for the OSM model. More-
over, the AICc value of the GTWR model is 2750.94, lower than that of the OLS model.
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Furthermore, the joint modeling results using both OSM and NTL data exhibit a distinct ad-
vantage over single spatial data modeling. The combined GTWR model attains the highest
adjusted R2 value, indicating a superior fit to the data and a more accurate representation
of economic relationships through the combined use of OSM and NTL data.
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Table 5. Modeling results of OLS and GTWR combined with OSM and NTL.

Model R2 Adjusted R2 AICc Bandwidth

GTWR 0.960 0.957 49,112.71 26
OLS 0.887 0.887 51,863.65

From Table 6, we observe that from 2013 to 2021, 90.04% of the 3021 analyzed
prefecture-level cities had a local R2 exceeding 0.9, while 9.04% had local R2 values from
0.8 to 0.9. Only 0.93% had local R2 values less than 0.8. In 2021, Chongqing had a local R2

of 0.799, being the sole city with a value between 0.7 and 0.8. Cities with local R2 below
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0.7 were all in Yunnan Province. Diqing Tibetan Autonomous Prefecture had the lowest
local R2 of 0.412 in 2021, the lowest nationwide. From 2013 to 2020, its local R2 ranged from
0.474 to 0.659. Two other cities with relatively lower local R2 values were Nujiang Lisu
Autonomous Prefecture (2021: local R2 0.543; 2013–2020: local R2 0.592) and Lijiang (2021:
local R2 0.613; 2013–2020: local R2 0.659).

Table 6. OSM and NTL joint modeling R2 statistics.

Local R2 Number of Cities Percentage (%)

0.4–0.5 9 0.30
0.5–0.6 9 0.30
0.6–0.7 9 0.30
0.7–0.8 1 0.03
0.8–0.9 273 9.04
0.9–1.0 2720 90.04

Due to the consistent local R2 values of GTWR across 2013–2020 (rounded to three
decimal places), this study presents local R2 values for 2013 and 2021, shown in Figure 10.
It reveals that the joint modeling of OSM and NTL data fits well in economically devel-
oped regions in eastern China and economically underdeveloped regions. However, the
fit is comparatively lower in regions with complex terrain and significant topographic
variations. For example, Chongqing, often referred to as a “mountain city”, and areas
like Diqing Tibetan Autonomous Prefecture, Nujiang Lisu Autonomous Prefecture, and
Lijiang, located in the mountainous Hengduan region, show less fitting due to their rugged
topography. In summary, utilizing multiple spatial data for economic evaluation is feasi-
ble, yielding an excellent fit in most regions and still offering a good fit in economically
underdeveloped areas.
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To validate the regression model utilizing OSM and NTL data from 2013 to 2021, this
study conducted residual analysis. Figures 11 and 12 present absolute residual scatter plots
and spatial distribution maps, while Figures 13 and 14 show relative residual scatter plots
and distribution maps.



Remote Sens. 2024, 16, 239 15 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 11. Statistical graph of absolute residuals of OSM and NTL combined. 

 
Figure 12. Distribution of absolute residuals of OSM and NTL combined. 

Figure 11. Statistical graph of absolute residuals of OSM and NTL combined.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 11. Statistical graph of absolute residuals of OSM and NTL combined. 

 
Figure 12. Distribution of absolute residuals of OSM and NTL combined. Figure 12. Distribution of absolute residuals of OSM and NTL combined.



Remote Sens. 2024, 16, 239 16 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 13. Statistical diagram of relative residuals of OSM and NTL combined. 

 
Figure 14. Relative residual distribution of OSM and NTL combined. 

Figure 13. Statistical diagram of relative residuals of OSM and NTL combined.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 13. Statistical diagram of relative residuals of OSM and NTL combined. 

 
Figure 14. Relative residual distribution of OSM and NTL combined. Figure 14. Relative residual distribution of OSM and NTL combined.



Remote Sens. 2024, 16, 239 17 of 23

Figure 11 reveals that absolute residuals exhibit a normal distribution. Across all
prefecture-level cities during this period, 46.2% have absolute residuals within the range
of −200 billion to 200 billion yuan. Meanwhile, 7.5% exhibit extreme values exceeding
1000 billion yuan or falling below −1000 billion yuan. Notably, economically developed
cities like Chongqing, Guangdong, Hubei, Hebei, and Zhejiang show substantial abso-
lute residuals, while their relative residuals remain moderate (as depicted in Figure 13).
Figure 13 indicates that relative residuals also follow a normal distribution. Among all
prefecture-level cities, 32.5% have relative residuals within −10 to 10, 57.5% within −20
to 20, and only 4.1% with extreme relative residuals surpassing 100 or falling below −100.
The latter are primarily concentrated in underdeveloped regions of western China, includ-
ing Xinjiang, Qinghai, Tibet, Gansu, and Yunnan. However, their absolute residuals are
not high.

4. Discussion
4.1. Economic Modeling Capabilities of OSM

The ability of OSM data as an economic evaluation indicator has been steadily in-
creasing over the years, and GTWR can serve as an economic development evaluation
model. The research findings indicate that the fit of OSM data to GDP shows a progres-
sively improving trend (Figure 6). The reason why OSM has a good economic evaluation
ability is mainly due to scholars’ discoveries through various statistical analyses that there
is a correlation between OSM contributions and the socio-economic characteristics of re-
gions [50,72–74]. Unlike OSM data, NTL data have shown a declining trend in fit since
2014. During 2020–2021, there was a noticeable decrease in the fit between NTL and the
economy, which could be attributed to the following factors. Firstly, POIs usually represent
(urban) functional developments, and NTL data may represent morphological expansion in
both space and quality [75–77]. Secondly, stringent lockdown measures were implemented
in the Chinese mainland during the COVID-19 pandemic. Thirdly, this might be associated
with the real estate bubble in the Chinese mainland. These factors could have contributed
to a disparity between nighttime light intensity and economic development. Moreover,
the model selected in this study has a higher fitting performance for GDP. Compared with
the OLS model, the GTWR model can better study the heterogeneity of GDP in time and
space scales. In comparison to other studies on economic development evaluation, this
study demonstrates competitive performance with respect to the selected data sources
and methods. For instance, Yu conducted regression analysis using corrected NPP-VIIRS
data and GDP at the municipal level, achieving an R2 value of 0.8088 [34]. Li investigated
the correlation between per capita luminosity and per capita GDP in five Central Asian
countries, but the R2 values were not higher than 0.6 [78]. Another study by Li focused
on China’s mainland and found R2 values of 0.8699 and 0.8544 between NPP-VIIRS TNL
and GDP at the provincial and county levels, respectively [25]. Liu utilized OSM’s road
network density for regression analysis in 85 cities in China’s provincial capitals and more
developed eastern regions [48]. However, they did not study cities in less developed re-
gions of the country and did not provide the overall R2. Furthermore, Huang et al. utilized
location-based social media (LBSM) data and NTL data with the GWR model to estimate
the economic development potential at different scales in China [79]. Their regression
analysis at the municipal level showed R2 values of 0.846 for NTL and 0.827 for Tencent
user density (TUD), which were lower than the R2 values achieved in this study. The study
uses OSM data (POI and road network) and NTL data (TNL) through the GTWR model
for regression analysis at the municipal level. Compared with previous research, the study
demonstrates good performance not only in economically developed areas but also in
economically less developed regions, allowing for economic development evaluation in
areas with limited economic data. Although the current economic evaluation capability of
OSM data is slightly lower than that of NTL data, OSM’s evaluation capability is increasing
annually, and its faster and more convenient processing suggests that it may become a data
source with superior economic evaluation performance in the near future. This highlights
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the importance of continuously exploring and advancing the use of spatial data sources for
economic development assessment.

4.2. Multi-Source Data Evaluation of Economy

Using multiple data sources for economic evaluation provides a more comprehensive,
accurate, and reliable assessment, while relying on any single data source for economic
evaluation is not sufficiently objective and comprehensive. Official GDP statistics are the
most widely used economic evaluation panel data [3], but the reliability of official GDP data
may be questionable in some low-income or middle-income countries [63]. Due to its high
spatial and temporal resolution and consistent global coverage, NTL data have become
an alternative to GDP for measuring regional economic development using spatial data.
However, the accuracy of NTL data can be affected by human activities and other sources
of abnormal light [66]. Currently, NTL data still show a high level of fitting performance
for economic evaluation. Nevertheless, this study observed a gradual weakening of the
fitting performance of NTL for economic evaluation after 2014 (Figure 8). Inspired by the
use of multi-source data in remote sensing, this study suggests that using multi-source
data to evaluate economic development may lead to better results. Evaluating economic
development with multiple data sources not only compensates for the limitations of using
a single indicator (such as unreliable GDP data or potential falsification) but also offers
a more efficient and cost-effective approach compared to conventional panel data used
for economic evaluation. Moreover, multi-source spatial data for economic evaluation
are not constrained by administrative boundaries, making it a valuable tool for regional
spatial planning, development, and governance, providing better support for decision-
making. As shown in Table 5, this study utilized four indicators from two spatial data
sources for economic development modeling, achieving an adjusted R2 of 0.957, which
outperforms any single indicator in evaluating economic development. In comparison, Cui
used a comprehensive nightlight composite economic index constructed from NTL data,
Normalized Difference Vegetation Index (NDVI) data, POI data, and urban land use data
for economic modeling, obtaining a correlation with the total social retail sales of consumer
goods with an adjusted R2 of 0.76 [80]. The use of spatial data for economic evaluation
not only offers faster and more flexible data acquisition compared to traditional statistical
data but also allows customization of regions based on specific user needs, without being
constrained by administrative boundaries. As an important source of geographical big data,
Volunteered Geographic Information (VGI) data can provide a wealth of information for
economic evaluation. In addition to the classical OSM data selected in this study, Wikimapia,
Google Map Maker, and various location-based social applications such as Tencent, Weibo,
Facebook, and Twitter can all serve as valuable data sources for economic evaluation. The
integration of multiple spatial data sources allows for more precise economic evaluation.
However, in the context of using multiple spatial data sources for economic evaluation, the
consideration of massive data application may lead to challenges related to time and cost.
In such research, it is crucial to first conduct exploratory analysis on similar data types and
then select appropriate VGI data sources tailored to the specific study area and available
hardware facilities, adhering to the principle of situational appropriateness.

4.3. Limitations and Prospects

Leveraging the GTWR model for joint economic modeling of OSM and NTL data
yields strong overall performance. This integration of multisource spatial data enhances the
model’s capacity to capture spatiotemporal variations and economic development correla-
tions, providing a more accurate and comprehensive economic assessment. Nonetheless,
it is worth noting that in regions characterized by rugged terrain and limited infrastruc-
ture, where economic development relies predominantly on nature and cultural tourism,
the spatial data might not fully reflect the true economic development levels, leading to
potential underestimations.
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This study focused solely on prefectural-level analysis, excluding provincial or county
levels. Additionally, we did not cross administrative boundaries for simulations due to our
use of GDP data based on administrative divisions. We have demonstrated the potential
of prefectural-level analysis using various spatial data sources, but have not explored
cross-scale model performance in this research. Future research endeavors should take
into account spatial scale effects [81] by employing multi-scale data analysis and model
evaluation. To delve deeper, the exploration should transcend administrative boundaries,
focusing on grid-scale dynamics and the perspectives offered by natural cities [82,83]. This
nuanced approach aims to enhance comprehension of economic development, thereby
delivering more precise and targeted recommendations for decision-makers.

While China’s regions can represent areas with different levels of economic develop-
ment, the applicability of using multiple spatial data sources for economic evaluation on
a global scale still needs to be further investigated. Based on the aforementioned limita-
tions, future research will attempt to explore the capabilities of using multiple spatial data
sources to evaluate economic development at different scales and in different regions. By
integrating and analyzing various data sources, we can achieve a more comprehensive and
accurate assessment of economic development. This comprehensive analysis of multiple
data sources is expected to provide deeper insights and reveal the heterogeneity of eco-
nomic development across different regions and scales. This will offer a more reliable and
comprehensive evaluation method for regional quantitative economic studies and provide
stronger support for the formulation of effective development policies.

5. Conclusions

This study focused on Chinese mainland prefectural-level cities, and explored the
modeling potential of OSM data and their combination with NTL data for economic devel-
opment analysis. The comprehensive utilization of multiple spatial data sources provides
a more accurate and comprehensive analytical framework for economic development
evaluation. Our approach can overcome the limitations of traditional single data sources
and offer decision-makers a more precise tool for economic development assessment. Fur-
thermore, the application of multiple spatial data sources can provide strong support for
the economic development of developing countries and serve as a decision-making refer-
ence for achieving SDG-10 (reducing inequality). These research findings hold significant
practical significance, enabling policymakers to better understand and promote economic
development, thereby fostering social inclusivity and sustainable development. The main
conclusions are as follows:

(1) The GTWR model was used to evaluate economic development with OSM data as the
single data source from 2013 to 2021, resulting in an R2 of 0.898 and an adjusted R2

of 0.889. When NTL was used as the single data source for economic development
evaluation, the R2 was 0.915, and the adjusted R2 was 0.911. OSM data can be con-
sidered as a metric to assess economic development, and its evaluation effectiveness
is steadily increasing over the years. On the other hand, the evaluation effectiveness
of NTL data, as a conventional spatial metric for economic development, is declin-
ing. OSM data demonstrate strong correlation with regional socio-economic factors
and offer significant advantages over commercial and official maps for economic
development evaluation.

(2) The integration and fusion of multiple spatial datasets can serve as a measurement
data source for evaluating the spatiotemporal development characteristics of regional
economies. The evaluation of economic development using multiple spatial data
sources is more reliable than relying on a single data source. VGI data like OSM and
spatial metrics like NTL offer empirical and applied research examples for evaluating
regional economic development in China. They provide support for broader research
and applications in this field.

(3) The GTWR model takes into account spatial and temporal heterogeneity, allowing the
establishment of separate regression models at different spatial and temporal points.
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This enables a more accurate capture of spatiotemporal variations in regional economic
characteristics. Compared to conventional global regression analysis, GTWR offers better
accuracy and explanatory power in spatiotemporal evaluation of regional economies,
resulting in more accurate and reliable assessments of economic development.
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