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Abstract: Crop mapping is vital in ensuring food production security and informing governmental
decision-making. The satellite-normalized difference vegetation index (NDVI) obtained during
periods of vigorous crop growth is important for crop species identification. Sentinel-2 images with
spatial resolutions of 10, 20, and 60 m are widely used in crop mapping. However, the images
obtained during periods of vigorous crop growth are often covered by clouds. In contrast, time-series
moderate-resolution imaging spectrometer (MODIS) images can usually capture crop phenology
but with coarse resolution. Therefore, a time-series-based spatiotemporal fusion network (TSSTFN)
was designed to generate TSSTFN-NDVI during critical phenological periods for finer-scale crop
mapping. This network leverages multi-temporal MODIS-Sentinel-2 NDVI pairs from previous years
as a reference to enhance the precision of crop mapping. The long short-term memory module was
used to acquire data about the time-series change pattern to achieve this. The UNet structure was
employed to manage the spatial mapping relationship between MODIS and Sentinel-2 images. The
time distribution of the image sequences in different years was inconsistent, and time alignment
strategies were used to process the reference data. The results demonstrate that incorporating the
predicted critical phenological period NDVI consistently yields better crop classification performance.
Moreover, the predicted NDVI trained with time-consistent data achieved a higher classification
accuracy than the predicted NDVI trained with the original NDVI.

Keywords: crop mapping; Sentinel-2 NDVI; MODIS NDVI; deep learning; spatiotemporal fusion

1. Introduction

The spatial distribution of crop planting is critical for effective government decision-
making, accurate estimation of crop yields, and efficient management of agricultural
resources [1,2]. Traditional ground investigation methods are time-consuming and labor-
intensive and cannot meet the needs of timely and large-scale monitoring. Remote sensing
has the advantages of being fast, large-scale, and high-precision and has been proven to
be an important data source for modern agricultural management. Remotely sensed crop
mapping mostly uses spectral reflectance and phenological characteristics [3]. Remote
sensing image reflectance data and the vegetation index during vigorous growth stages
of crops can substantially enhance the accuracy of crop identification [4–6]. Meanwhile,
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compared with a single image, time-series images can provide more information about
phenological changes and obtain higher recognition accuracy [4,7,8]. However, even using
time-series images for classification, incorporating images during vigorous growth stages
can still significantly improve the accuracy [4].

The normalized difference vegetation index (NDVI) [9] is an important parameter
for crop growth monitoring. Remote sensing-derived NDVI time series is one of the most
recognized methods in the field of crop mapping [10,11]. However, the spatiotemporal
resolution of NDVI images largely determines the crop distribution information that can
be extracted from it [12]. In most cases, there is a trade-off between the temporal and
spatial resolutions of the same satellite sensor. In addition, adverse weather conditions,
such as cloudy periods, limit the amount of available data. For instance, Sentinel-2, with
its simultaneous dual-satellite observations, revisit period of up to five days, and multi-
spectral data with a spatial resolution of up to 10 m, is widely applied in agriculture [13–15].
However, during periods of vigorous crop growth, there are often long spans of missing
observations that seriously affect the effectiveness of crop classification [16,17]. Conversely,
the high revisit frequency of the moderate-resolution imaging spectrometer (MODIS)
approach enables the observation of rare cloud-free images during prolonged cloudy
periods and provides crop information references for missing times. However, the coarse
spatial resolution of MODIS imaging limits its application at a regional scale.

Spatiotemporal fusion methods can effectively address the issue of limited temporal
and spatial resolutions in remote sensing imaging [18]. Existing spatiotemporal fusion algo-
rithms can generally be divided into four categories: weight-function-based spatiotemporal
fusion methods, learning-based methods, unmixing-based methods, and flexible meth-
ods [19,20]. The spatial and temporal adaptive reflectance fusion model (STARFM) [18]
was a relatively early and notable model. Researchers have also explored the use of fused
images for crop classification [21–23]. However, studies have mostly explored the effective-
ness of existing traditional spatiotemporal fusion algorithms in crop classification. These
fusion methods usually obtain only fused images and are rarely designed to improve crop
classification accuracy. Yang et al. [24] used deep learning-based spatiotemporal fusion
technology to optimize crop classification results automatically. However, they used the
spatiotemporal fusion technology to fuse the classification results based on image blocks
and pixels. Crops have certain phenological cycle characteristics. Therefore, the fusion
of crop images should be considered using time-series data. A few scholars have fused
time-series data and achieved high accuracies [19,25–29]. However, most of these studies
manually designed time-change models, which resulted in the insufficient utilization of
temporal information. A novel spatiotemporal fusion method that considers time-series
data for crop classification is required.

In recent years, with the rise of artificial intelligence, recurrent neural networks
(RNNs) are commonly used in land cover mapping due to their ability to capture temporal
changes [30]. However, RNNs cannot capture long-term dependence. LSTM, as a variant
of RNNs, effectively solves this problem by introducing gating mechanisms [31–34]. This
study proposes a novel time-series-based spatiotemporal fusion network (TSSTFN) for
crop classification that combines LSTM, UNet, and attention mechanisms to learn deep
spatiotemporal features. LSTM captures time-series information, UNet extracts multi-level
features in the spatial-spectral domain [35–39], and the attention mechanism allows the
focus on key information while suppressing unnecessary information [40]. The aim is to
develop a model to automatically capture the phenological cycle characteristics of different
crops and discover the relationship between high- and low-resolution NDVI image pairs.
The predicted high-resolution NDVI data of critical phenological periods in the required
years can be applied to improve the accuracy of crop identification.

The remaining parts of this study have been divided into four parts. The materials and
methods are introduced in the second section. The third section presents and analyzes the
results of spatiotemporal fusion and crop mapping. The fourth section discusses the results
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obtained from other data processing strategies and the advantages and disadvantages of
the model. Finally, the fifth section provides a summary.

2. Materials and Methods
2.1. Study Area

The study area is located at the junction of Inner Mongolia and Heilongjiang in
Northeast China (Figure 1). It covers an area of approximately 704 km2, equivalent to
3071 × 2294 Sentinel-2 pixels. The region experiences a temperate continental monsoon
climate with four distinct seasons, with most of the precipitation occurring in July and
August. The main crops are soybean and corn, typically planted in April, mature in August,
and harvested in September and October. According to the crop phenology calendar
(Figure 2) obtained from the official website of the Ministry of Agriculture and Rural Affairs
of the People’s Republic of China (http://www.moa.gov.cn/, accessed on 8 June 2023), late
July and August are the periods of vigorous growth for soybean and corn [41].
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Figure 1. Study area and distribution of samples. Yellow indicates soybeans, green indicates corn,
and grey indicates other.

The NDVI time-series curves of crops can closely reflect the changes in crops in the
whole process from growth to harvest. Accordingly, the NDVI time-series curves of soybean
and corn in the study area were plotted using the time-series Sentinel-2 images in 2020.
Due to the limited number of images, the Savizky–Golay filter [42] was used to smooth
and reconstruct the NDVI time-series curve (Figure 3) [43]. As can be seen from the NDVI
time-series curve, the growth cycles of soybean and corn are very similar, as are the NDVI
values. The difference in NDVI values gradually increases after the emergence of crops in
May, and the difference is relatively large in July and August. The difference in September
and October is obvious because the crops gradually ripen and are harvested during this
period. Delayed harvest will adversely affect the classification.

Data Preparation

The Sentinel-2 mission has two satellites, A and B, that operate simultaneously, allow-
ing for relatively high temporal and spatial resolution. The revisit cycle can be as short
as 5 days. The spatial resolution of the red and near-infrared bands is 10 m, which meets
the requirements for crop mapping in the research area. The surface reflectance data from
Sentinel-2 were primarily obtained and cropped from the Google Earth Engine platform
(“COPERNICUS/S2_SR”).

http://www.moa.gov.cn/
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The MOD09GQ Version 6.1 product provides daily observations of infrared and
near-infrared bands with a spatial resolution of 250 m. All MOD09GQ products were
downloaded from the United States National Aeronautics and Space Administration Level
1 and Atmosphere Archive and Distribution System Distributed Active Archive Center
website (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 7 January 2023).

The dates of the selected cloud-free images are listed in Table 1. The 2020 data were
primarily used for training, while the 2021 data were mainly used for testing and crop

https://ladsweb.modaps.eosdis.nasa.gov/
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identification. Previous studies have shown that calculating NDVI first and then performing
fusion yields better results than performing fusion first and then calculating NDVI [44–46].
Therefore, all subsequent fusion and crop mapping experiments were performed based on
NDVI data.

Table 1. Image date information.

Year Date

2020 Training data 18 April, 28 April, 6 May, 8 May, 18 May, 28 May, 7
July, 12 July, 15 July, 19 August, and 10 September.

2021
Testing base date and

classification data
6 April, 8 April, 18 April, 21 April, 16 May, 21 May, 2

June, 12 June, 22 June, and 25 June.
Validate the predictions 30 July, 31 August, and 5 September.

The MODIS data were reprojected, cropped, and resampled using cubic interpolation
to match the Sentinel-2 images. All images were cropped into 192 × 192 pixels before train-
ing and prediction. To increase the amount of training data, the adjacent sub-images were
overlapped by half when cropping the training image. In the predicted image sequence,
adjacent sub-images were overlapped by 10 pixels to ensure smooth blending of the results.

Reference and validation samples were produced using multi-period imagery from
Sentinel-2. A total of 101,126 soybean sample points, 1,589,126 corn sample points, and
159,651 other samples were randomly selected, and the training and test samples were
divided in a 7:3 ratio. The spatial distribution of the sampling points is shown in Figure 1.

2.2. Methods

As shown in Figure 4, the flowchart can be divided into two parts: spatiotemporal
fusion and crop classification. In the first part, we processed and grouped the MODIS
and Sentinel-2 NDVI pair sequences according to different training strategies, stacked the
multiple base date MODIS-Seninel-2 NDVI pairs and the forecast date MODIS NDVI in
chronological order as inputs, and used the TSSTFN to generate TSSTFN-NDVI during
the critical phenological period of the required year. In the second part, we combined the
above TSSTFN-NDVI and early Sentinel-2 NDVI sequences and crop classification samples,
followed using accuracy evaluation and comparative analysis.
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2.2.1. Fusion Model

As illustrated in Figure 5, the network architecture of the TSSTFN contains UNet, the
convolutional block attention module (CBAM), and LSTM. UNet is the main structure that
involves feature extraction through the encoder and feature fusion through the decoder.
CBAM focuses on important features using channel and spatial attention modules. The
LSTM component was inserted to process the time-series information and predict the value
at a specific time.
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The overall structure of the model is consistent with that of UNet. In the encoding
structure, the number of filters in the convolutional block gradually increased from 64
to 1024, thereby deepening the level of the extracted features. Each convolutional block
comprises two convolutional layers with a filter size of 3 × 3. Following each convolutional
layer, batch normalization layer, dropout layer, and LeakyReLU activation functions were
applied. The dropout layer randomly sets all elements of a channel in the input to zero, with
a probability of 0.3. In addition, a pooling layer was inserted between the convolutional
blocks to increase the receptive field. In the decoding structure, the output of the encoding
structure was successively up-sampled to restore its size before entering the data-input
network. To compensate for the loss of fine features, the up-sampled feature map was
connected to the feature map extracted from the corresponding coding structure through
the channel. These combined maps were then processed using convolution blocks with 512,
256, 128, and 64 filters based on their order in the decoding structure. Finally, the feature
map produced using the decoding structure is passed through a convolutional layer with
3 × 3 filters to generate a TSSTFN-NDVI for the predicted date.

The CBAM was inserted after the first convolutional block. The channel attention
module processes the results of global maximum pooling and global average pooling
through a shared multi-layer perceptron, adds them, and generates the final channel
attention map through the sigmoid activation function. The spatial attention module
connects the maximum and average pooling results applied along the channel direction,
convolutes them into a channel, and generates the final spatial attention map through the
sigmoid activation function. The input of the CBAM was sequentially multiplied by the
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channel attention map and spatial attention map, and the product was added to the input
of the CBAM to obtain the final output.

CBAM and LSTM were jointly applied (hereafter referred to as CL) for temporal
change prediction at different spatial scales. The CL was inserted after the convolutional
blocks with filter numbers 128, 256, and 512 (Figure 6). This module processes the same
input through multiple identical CBAM modules, focuses on different features, and then
processes them using LSTM. Because of the difference in data dimensions between the
CNN and LSTM in the PyTorch framework, the last two dimensions must be flattened into
one before inputting the data into the LSTM. Additionally, after adjusting the parameters,
the input of each time step must be divided again, resulting in LSTM input feature numbers
384, 96, and 96, respectively, which can achieve higher accuracy. Therefore, the outputs of
each LSTM must be sequentially connected to form a complete LSTM layer output. In this
study, the input of the CL module was processed using CBAM and LSTM along these nine
paths to obtain nine outputs. After channel connection, reshaping is required to maintain
the dimensions and shape consistency of the last two dimensions with the input of the
CL module.
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The model was implemented using the PyTorch framework. During the training
phase, we used the Adam optimizer with an initial learning rate of 0.001. To evaluate
the performance of the model and prevent overfitting, we divided the training samples
into training and validation sets at a ratio of 9:1. The validation set was used to monitor
the overfitting. We employed an early stop strategy that involved recording the best
accuracy achieved on the validation set during training. If the best accuracy did not surpass
12 consecutive epochs, the training process was terminated. The weights obtained at this
point were considered the final parameters. The batch size was set to 16.

2.2.2. Crop Type Classification and Accuracy Assessment

The random forest (RF) classifier from the Scikit-learn library was used to identify
crops. The parameters were determined through cross-validation [47–49]. Specifically, the
number of trees (n_estimators), maximum depth of the tree (max_depth), and minimum
number of training samples for the child nodes (min_samples_leaf) were set to 40, 25, and
20, respectively. To enhance the classification accuracy, we employed the multi-time-series
value of the pixel being classified and the multi-time-series value of the 3 × 3 window
centered on the pixel, as suggested by Sharma et al. [50].

The classification accuracy was evaluated using Cohen’s kappa coefficient, which
assesses the consistency between the model’s and actual classification results. The kappa
coefficient was calculated based on the confusion matrix using the following formula:

kappa =
P0 − Pe

1 + Pe
(1)

where P0 is the number of correctly classified samples divided by the total number of
samples, and Pe is the sum of the products of the actual samples and the predicted numbers
corresponding to all categories divided by the square of the total number of samples.
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2.2.3. Experiment Design

Two strategies were designed, STR_A and STR_B. For STR_A, we selected the satellite
image sequences closest to the critical phenological periods in 2020 and 2021 for training
and prediction, respectively. As shown in Figure 7, the two-year satellite image sequence
times are inconsistent. Researchers usually use partially cloud-contaminated data directly
to address this issue or find ways to fill in missing values [25,45,51,52]. Among them, the
image-based temporal linear interpolation approach is undoubtedly the simplest and fastest.
Therefore, we used temporal linear interpolation to obtain the 2020 interpolated images
that were consistent with the 2021 time as STR_B. The STR_B image was obtained at a
certain time by linear time interpolation of the satellite data before and after the time closest
to the target time. Crop growth was the most vigorous and uniform in August, which is
advantageous for feature classification. Therefore, in the training sequence, image selection
for the critical phenological period was aligned with 31 August, regardless of whether
we predicted the NDVI on 30 July, 31 August, or 5 September 2021. Many comparative
experiments were performed based on early crop growth image data. The number of
determined fused base image pairs was seven.
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data were used for training, and the 2021 data were used for testing.

To illustrate the advantages of the proposed TSSTFN, an existing typical method
(STARFM) was selected for comparison. STARFM requires one or two pairs of reference
high- and low-resolution images and low-resolution images for predicting time. STARFM
searches for similar pixels in a moving window from fine-resolution images and predicts
the central pixels using the spatial, spectral, and temporally weighted mean differences
of these similar pixels. Further details of this algorithm can be found in [18]. We chose 25
June 2021 as the reference date, which is the closest to the critical phenological period (i.e.,
31 August 2021).

For crop mapping, it was assumed that no images would be available during the
critical phenological periods in July and August 2021. Therefore, all available Sentinel-2
satellite NDVI sequences from April to June 2021 were used to identify crops. To prove the
effectiveness of the TSSTFN, we added the predicted NDVI of the two strategies mentioned
above to the NDVI sequence from April to June for crop identification.
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3. Results
3.1. Assessment of the Spatiotemporal Fusion Results

To illustrate the effectiveness of the proposed method, the fused results were evaluated
using visualization and quantitative metrics. Figure 8 shows the real Sentinel-2 NDVI on
31 August 2021, and NDVI fused in different ways. The fusion results of STARFM and
TSSTFN with STR_A differed significantly from the actual Sentinel-2 NDVI, especially in
the high NDVI region. In contrast, the fusion result of TSSTFN with STR_B was closer
to the actual Sentinel-2 NDVI. The quantitative evaluation results (i.e., RMSE and SSIM)
of the real Sentinel-2 NDVI and the fused NDVI are shown in Table 2. The quantitative
evaluation results of the TSSTFN with STR_B were better than those of the TSSTFN with
STR_A and STARFM. In addition, the TSSTFN scores with STR_A were slightly inferior to
those with STARFM. These findings indicate the necessity of time alignment between the
training and testing sequences for the TSSTFN.
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Figure 8. Comparison between the real Sentinel-2 NDVI and the fused NDVI in different ways on
31 August 2021. The first row displays the real Sentinel-2 NDVI and the fusion results of STARFM,
respectively. The second row displays the fusion results of TSSTFN with the STR_A and STR_B,
respectively.

Table 2. Quantitative evaluation of fused NDVI in different ways on 31 August 2021.

STARFM STR_A STR_B

RMSE 0.2357 0.2850 0.1274
SSIM 0.9944 0.9899 0.9984

3.2. Crop Maps with Addition of One Prediction in the Critical Phenological Period

In addition to the images from the early season, the crop maps generated by separately
incorporating TSSTFN-NDVI on 30 July, 31 August, and 5 September 2021 are shown in
Figure 9. Although the adopted RF classification method can discriminate crops from
non-crops very well, accurately distinguishing between soybeans and corn using only the
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satellite NDVI from April to June (early season) has proven difficult, resulting in many
misclassifications. This situation improved when fused data were added to the data source
during the early seasons. Overall, compared with the crop map from early reasons (i.e.,
without fused data), the crop maps with fused data from both STR_A and STR_B were
closer to the label. In addition, the crop maps with fused data from STR_B showed better
visual effects than those from STR_A. Interestingly, the crop maps with the fused TSSTFN-
NDVI on 5 September 2021 seemed slightly inferior to those on 30 July and 31 August
2021. The most probable cause is that on 5 September, the critical phenological period had
already passed and was the farthest from the base dates. Except for the label, it is worth
noting that the generated crop maps have a certain degree of fragmentation. The similar
growth cycles and spectra of soybean and corn make crop classification more challenging
and cause further fragmentation. Additionally, inconsistencies in the growth of crops in
different fields, or even in the same field, may result in mapping errors.
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Figure 9. Crop maps from adding one prediction using STR_A and STR_B on 30 July, 31 August, and
5 September, respectively. The label and the crop map using only Sentinel-2 extracted NDVI from the
early season are used for comparison. The early season stands for classification using only Sentinel-2
extracted NDVI from April to June 2021.

The values of the kappa coefficients are listed in Table 3 to quantitatively compare the
mapping accuracies of the crop maps in Figure 9. The kappa coefficient of the crop map
from the early reason (i.e., without fused data) was 69.2%. This value was lower than that
from both STR_A and STR_B at different dates. Moreover, the kappa coefficients for STR_B
on 30 July, 31 August, and 5 September were 82.44%, 81.95%, and 74.22%, respectively.
These values were higher than those for STR_A (3.94%, 74.84%, and 69.48%, respectively).
Overall, crop maps with the addition of one prediction from STR_B on 30 July 2021 showed
the highest classification accuracy, whereas crop maps from early reasons (i.e., without
fused data) showed the lowest classification accuracy. The results show that adding fused
NDVI during the critical phenological period can greatly enhance the accuracy of crop
mapping, and time alignment between training and testing sequences (STR_B) for the
TSSTFN can achieve higher classification accuracy.
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Table 3. Kappa coefficients for crop classification using with and without fusion data.

without Fusion Data
with Fusion Data

STR_A STR_B

Early season 1 69.20

30 July 2021 73.94 82.44
31 August 2021 74.84 81.95

5 September 2021 69.48 74.22

Results are expressed as %. 1 The early season stands for classification using only Sentinel-2 extracted NDVI from
April to June 2021.

3.3. Crop Maps with Addition of Two Predictions in the Critical Phenological Period

We tested the performance of the crop maps with the addition of two predictions. The
predictions of 30 July and 30 August were used together with the data of the early season
(Figure 10). Notably, the prediction for 31 August can be fused in two ways: obtained only
from the early original NDVI (Individual Forecast, I_F) and obtained from the early NDVI
and fused NDVI on 30 July (Sequential Forecast, S_F). From a visual perspective, there was
no obvious difference in the crop maps between I_F and S_F, whereas the effect of adding
fused NDVI via STR_B was better than that via STR_A for both I_F and S_F. However,
adding one prediction in the critical phenological period resulted in crop maps with fused
data from both I_F and S_F in different strategies (STR_A and STR_B) with higher accuracy
than maps without fused data.
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Figure 10. Crop maps from adding two predictions on 30 July and 31 August 2021 together. The label
and crop map using only Sentinel-2 extracted NDVI from the early season are used for comparison.
The early season stands for classification using only Sentinel-2 extracted NDVI from April to June
2021. I_F represents individual forecasts, and S_F represents sequential forecasts.
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Table 4 presents the quantitative evaluation results of the kappa coefficient, which
directly correspond to the crop maps in Figure 10. The addition of two predictions was
better than the addition of only one prediction. For STR_A, individual predictions improved
relatively, whereas for STR_B, sequential predictions improved relatively.

Table 4. Kappa coefficient for classification by incorporating two predictions on 30 July and 31 August
2021 together.

STR_A STR_B

Individual forecast 74.64 84.07
Sequential forecast 78.15 82.53

Results are expressed as %.

4. Discussion
4.1. Other Strategies

In the spatiotemporal fusion strategy, training data can be temporally linearly interpo-
lated to make their time series consistent with the predicted data. The predicted data can
be temporally linearly interpolated to make their time series consistent with the training
data. Simultaneously, the training and prediction data were interpolated to correspond to
each other (STR_C). In addition, data with missing times can be replaced with the closest
data in time. These alternative methods can be divided into STR_D and STR_E based on
whether they are used for training data or both training and prediction data. The specific
strategies are illustrated in Figure 11.
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Figure 11. Other training data and prediction data schemes, taking 31 August 2021 as an example.
Data in 2020 were used for training and data in 2021 for testing.

The classification results obtained by adding the predicted NDVI via STR_C, STR_D,
and STR_E to the early season NDVI sequence are shown in Figure 12, and the quantitative
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evaluation results are listed in Table 5. Overall, the addition of one or two predicted NDVI,
STR_C, had a higher and more stable improvement in classification accuracy compared
to STR_D and STR_E. Sequential forecasting had a significant additive effect on STR_C,
directly increasing the kappa coefficient from 82.65% to 85.30%.
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Figure 12. Crop maps from adding one or two predictions using STR_C, STR_D, and STR_E. Label
and crop maps using only Sentinel-2 extracted NDVI from the early season are used for comparison.
The early season stands for classification using only Sentinel-2 extracted NDVI from April to June
2021. I_F represents individual forecasts, while S_F represents sequential forecasts.
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Table 5. Kappa coefficient for classification by incorporating one or two predictions using STR_C,
STR_D, and STR_E.

without Fusion Data
with Fusion Data

STR_C STR_D STR_E

Early season 1 69.20

30 July 2021 82.95 83.61 76.74
31 August 2021 82.65 78.52 82.05

5 September 2021 71.59 71.13 69.63
Individual forecast 84.26 84.70 82.13
Sequential forecast 85.30 83.80 78.33

Results are expressed as %. 1 The early season stands for classification using only Sentinel-2 extracted NDVI from
April to June 2021.

The kappa coefficients obtained from all fusion data strategies are displayed in a bar
chart in Figure 13. All five strategies improved the classification accuracy. Among them,
STR_A showed the smallest improvement, followed by STR_E. STR_B, STR_C, and STR_D
were more accurate and more stable. In most cases, the addition of two predictions was
better than using the addition of one. Based on the data from five strategies, the end of June
and early July are the stages of rapid changes in crop growth curves. STR_A and STR_E
corresponded to the data from the end of June 2021 and early July 2020 in time, resulting in
a relatively low improvement. STR_C had slightly higher accuracy than STR_B on 30 July
and 31 August 2021, while the opposite was evident on 5 September. From the training
and prediction data, it can be seen that the time-series data for STR_C started as early as
May, while STR_B started as early as April. This may be because the data for May and
June were more similar to the data for July and August, and the data for April were more
similar to the data for September. STR_D was higher than STR_B and STR_C on 30 July and
lower than STR_B and STR_C on 31 August and 5 September. This is because STR_D used
data from 19 August 2020 to correspond to data from 2021, while STR_B and STR_C used
interpolated data from 19 August and 10 September 2020. It is obvious that the data on 19
August 2020 are closer to the data on 30 July 2021, and the interpolated data are closer to
the data on 31 August and 5 September 2021. In general, during the vigorous growth stages
of crops, it is more appropriate to choose STR_D if the corresponding reference image time
is later than the predicted time and STR_C if the corresponding reference image time is
earlier than the predicted time. For STR_C, the sequential forecast is more suitable than the
individual forecast, while STR_D is the opposite. This should also be because the selection
of data for the peak growth period of crops in 2021 is different.

4.2. Advantages and Disadvantages of the Model

TSSTFN combines UNet, LSTM, and CBAM to achieve the spatiotemporal fusion of
MODIS and Sentinel-2 NDVI. The main objective was to enhance the accuracy of crop
identification by incorporating high spatial resolution NDVI data from critical phenological
periods of crops into the early NDVI data. Traditional spatiotemporal fusion models
require the design of time-series models when using multiple pairs of time-series images.
These models rely on the number of reference image pairs and relatively simple change
patterns [25]. Additionally, existing methods cannot utilize information from previous
years’ data and usually only allow the use of data with a consistent crop distribution within
a single year. In contrast, TSSTFN has two advantages. Firstly, it can learn the temporal
variation of ground features from the data pairs of previous years with cloudless NDVI
data during critical phenological periods of the crops, even when the crop types in the
area remain unchanged, or crop rotation is adopted. Secondly, it allows for the timely
generation of NDVI data for critical phenological periods, using early reference data pairs
and low-resolution NDVI data from critical phenological periods that are rarely captured.
Although the time inconsistency between the data series from the previous year and the
current year poses some challenges to the fusion process, the four data strategies proposed
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in this study have been experimentally proven to effectively improve the accuracy of crop
identification. Although there may be a network structure that is more suitable for multi-
time-series spatiotemporal fusion to further enhance crop classification, the experimental
results of this study demonstrate that TSSTFN can generate fusion NDVI data for critical
phenological periods in a timely manner during the crop growth period, thereby improving
crop mapping accuracy. Due to the similarity in growth cycle and spectrum, it is difficult to
distinguish between corn and soybean [41]. The accuracy we have achieved in mapping
corn and soybeans is sufficient to demonstrate the superiority of TSSTFN.
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However, this method assumes that the crop species in the area remain the same and
that high-resolution images are available from previous years for the critical phenological
period. Before using this method, the crop phenology of the area must be analyzed to
distinguish the critical phenological period. In addition, this model requires more input
data pairs and involves several preprocessing tasks. Notably, this study specifically focused
on the fusion of NDVI data, considering the relatively stable pattern of vegetation growth
and the unique characteristics of NDVI. Therefore, whether it is suitable for other vegetation
indices or reflectance data requires further investigation.

5. Conclusions

This study proposes a novel time-series NDVI spatiotemporal fusion model, TSSTFN,
to discover the phenological patterns and correspondences between high- and low-resolution
data. The goal was to improve crop classification accuracy in a timely manner using the
fused TSSTFN-NDVI of the critical phenological period. The issue of inconsistent data
times between different years of the original satellite data prompted the design of four
additional data strategies to process the fused data. Adding the TSSTFN-NDVI of the
critical phenological period to the NDVI sequence of the early season improved the crop
classification accuracy. Furthermore, time alignment strategies improved the accuracy more
significantly. This study demonstrates the potential of deep learning in the spatiotemporal
fusion of NDVI sequences for crop classification.
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