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Abstract: Cones are among the significant and controversial landforms on Mars. Martian cones
exhibit various morphological characteristics owing to their complex origin, and their precise origin
remains an active research topic. A limited number of cones have been manually mapped from high-
resolution images in local areas, and existing detection methods are only applicable to a single type
of cone that has a similar morphology and spatial distribution, leading to the vast majority remaining
unidentified. In this paper, a novel cone identification approach is proposed that is specially designed
for adequately recognizing cones from different regions in high-resolution planetary images. First,
due to the lack of a publicly available cone database for reference, we annotated 3681 cones according
to the literature on manual interpretation and the cone information provided by the Lunar and
Planetary Laboratory (IRL) in HiRISE images. Then, the cone identification problem was converted
into an instance segmentation task, i.e., a cone identification approach was designed based on deep
neural networks. The Feature Pyramid Network-equipped Mask R-CNN was utilized as the detection
and segmentation model. Extensive experiments were conducted for fine recognition of Martian
cones with HiRISE. The results show that the proposed approach achieves high performance; it
especially efficiently detects multiple types of cones while generating accurate segmentation to
describe the geometry contour of cones. Finally, a Martian cone dataset with deep learning-based
instance segmentation (DL-MCD) was built, containing 3861 cones for exploring geological processes
on the surface of Mars.
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1. Introduction

Cones protruding from the surface of Mars are distinctive features of Martian geomor-
phology [1]. Compared to other typical landforms on Mars, cones exhibit various features
in different morphologies and are widely distributed on the surface of Mars, including in
high-latitude regions [2]. Cones can be classified into three types according to their origin,
i.e., volcanic (scoria/cinder cones [3,4], rootless cones [5,6], and tuff cones/rings [7]), sedi-
mentary (mud volcanoes [8-11]), and periglacial (pingos [12,13]). The formation of cones is
evidence of recent water/ice, hydrothermal, and related ore-forming processes on Mars,
and information has been recorded on the environment and climate change characteristics
of Mars [14-16]. The effective identification of Martian cones is a necessary and important
task for revealing the geological evolutionary history of Mars.

At present, the identification of cones is mainly focused on the utilization of the Mars
Reconnaissance Orbiter (MRO) data. Manual visual interpretation has always been the
main means of cone detection. As early as 1979, cones were first recognized by Allen and
Frey on the northern plains of Mars using Viking Orbiter imagery [17,18]. Three years later,
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Frey and Jarosewich [19] found many small cones in Acidalia and parts of Utopia-Isidis—
Elysium Planitia by interpreting more than 12,000 images transmitted back from the Viking
orbiter. In 2005, Farrand et al. [20] marked 180 cones in Acidalia Planitia and Cydonia
Mensae with the Mars Orbiter Camera (MOC), THEMIS images, and a TES-derived thermal
inertia map. Hauber et al. [21] presented observations of 100 cones and mounds on the floor
of Coprates Chasma, and the origin of these cones was inferred based on the crater/cone
diameter ratios. In 2021, Dapremont and Wray [22] used orbital remote sensing data to
assess 253 cones. On 15 May 2021, China’s Tianwen-1 successfully landed on the Martian
Utopian Plain. The Tianwen-1 orbiter is conducting a detailed survey of the landing area
via the High-Resolution Imaging Camera (HiRIC). More recently, Huang et al. [23] found a
total of 272 well-preserved cones in the landing area with HiRIC data.

Recently, machine learning (ML) has gradually been applied to the automatic identifica-
tion of cones [24-27] on two types of high-resolution MRO images, i.e., the High-Resolution
Imaging Science Experiment (HiRISE, 0.3 m/pixel) and Context Camera (CTX; 6 m/pixel).
Traditional machine learning methods such as artificial neural networks (ANNs) [24] and
support vector machines (SVMs) [25] combined with features extracted based on well-
established image processing techniques such as gradient features have been used for
the automatic recognition of Martian landforms. However, the feature extracted via tra-
ditional image processing techniques is a hand-designed feature with weak robustness.
With the great success of deep learning in the field of image processing, especially deep
convolutional neural networks (CNN5s), some researchers have tried to use CNNs for cone
recognition owing to their powerful feature extraction capabilities. For example, Palafox
et al. [25] demonstrated the utilization of a CNN and an SVM to classify volcanic rootless
cone groups in northeastern Elysium Planitia on HiRISE, and the results show that the
CNN is more advantageous for unknown cone detection. Palafox et al. [26] also classified
volcanic rootless cone groups with an SVM and a CNN on HiRISE and CTX. Such methods,
however, are still a two-stage model with a more laborious design process and lower
performance compared to end-to-end models. Therefore, the researchers only used CNNs
to accomplish cone recognition in an end-to-end manner. These types of methods can only
determine cone groups, and information such as the number, size, and location of cones
cannot be acquired. Pieterek et al. [27] automatically detected cones and impact craters with
CTX global mosaic images using a CNN, with a detection rate of 90% (7/8) and 80% (71/90)
for cones and impact craters, respectively. In general, little work has been performed to
develop generalized recognizers to identify Martian cones. It is necessary to design models
that can accurately recognize individual cones based on advanced artificial intelligence
techniques.

According to the current literature, three factors, i.e., the spatial differentiation of cones
for complex geological activities on Mars, various morphological characteristics owing to
their complex origin, and the limited number of recognized cones, should be considered in
the automatic identification of cones. The spatial distribution of Martian cones displays
area differences. Existing techniques for the automatic identification of cones can only be
applied to specific types in a small area. Meanwhile, the complex origin of cones leads to
their irregular shapes and degraded morphology with blurred boundaries and them being
connected to each other. This increases the difficulty of individual identification of cones,
and complete cone information is crucial for future analysis. More importantly, there are
relatively few marked Martian cones and no publicly available cone database for reference.
Detection models use limited and single types of typical cones as training samples, as other
types cannot be identified efficiently and comprehensively.

To address these issues, we annotated a Martian cone dataset that contains 3681 cones
according to the literature on manual visual interpretation. The cone information was
provided by the Lunar and Planetary Laboratory (IRL) at the College of Science, University
of Arizona, from HiRISE images. Then, we converted the cone identification problem into
an instance segmentation task and identified cones using the HiRISE images by means of
deep neural networks. The identification of Martian cones with an instance segmentation
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approach can distinguish different individual cones in a pixel-to-pixel manner, which
provides accurate information about the location and size of each cone, which is critically
important for subsequent research. The main contributions of this article are as follows.

(1) For the comprehensive identification of Martian cones, we use cones with different
origins and distributed in different spatial locations as training samples. The Feature
Pyramid Network-equipped Mask-RCNN model is introduced to Mars cone instance
segmentation. This model not only effectively detects the cones in the image but also
generates high-quality segmentation masks for each cone.

(2) The Feature Pyramid Network fuses the features extracted by the convolutional
network backbone at different levels in a top-down manner, which is suitable for the
different scales of cones in high-resolution images, and thus provides a higher cone
recognition performance.

(3) Instance segmentation of the Martian cone dataset was carried out based on deep
learning (DL-MCD) with 3681 cones, which is 180 more than the initial number of
annotated cones. In this dataset, the locations and morphological characteristics, e.g.,
cone width and basal dip angle, are provided to explore geological processes on the
surface of Mars.

2. Data and Methods
2.1. Description of Dataset

The imaging mode of the annotated Martian cone dataset is HiRISE images with a high
resolution of 0.25 to 0.5 m/pixel. We collected and selected 43 and 12 HiRISE images accord-
ing to Refs. [3,8,9,21,22,28-33] and the cone information provided by the IRL, in which 3355
and 326 cones were annotated, respectively. In this dataset, the origin of more than 40%
of cones has been inferred, such as scoria cones [3,9], rootless cones (pseudocraters) [31],
mud volcanoes [22-25], and tuff cones/rings [21], leading to the presentation of various
morphological characteristics. The spatial distribution and morphological characteristics
of Martian cones in the HiRISE images appear as isolated, clustered, chained, irregular,
and destroyed cones. Among these cones, clustered and isolated cones account for 50%
and 40%, respectively. Figure 1 shows the typical cones in the HiRISE images. It should be
emphasized that, in this study, we do not distinguish among the different origins of cones,
and all cones with different origins are identified as targets.

2.2. Identification of Cones with Deep Learning-Based Instance Segmentation

This subsection presents an intelligent Mars cone recognition method based on the
Mask R-CNN [34] instance segmentation model. The Mask R-CNN is an advanced instance
segmentation model extended from the Faster R-CNN [35] object detection model, which
can simultaneously perform object detection and semantic segmentation. To adapt to the
multi-scale characteristics of cones, the Mask R-CNN equipped with a Feature Pyramid
Network (FPN) [36] was adopted for cone recognition. The model mainly includes multi-
scale feature extraction, the region proposal network (RPN), the ROIAlign module, and the
instance segmentation head. The framework of the Feature Pyramid Network-equipped
Mask R-CNN is shown in Figure 2.

2.2.1. Multi-Scale Feature Extraction

The multi-scale feature extraction module uses a standard convolutional neural net-
work (ResNet50 [37] was used in this study) to extract features at different levels from
bottom to top and then fuses the features at different levels from top to bottom with the
FPN module to obtain a multi-scale feature representation of the image.

2.2.2. Region Proposal Network (RPN)

The RPN generates candidate boxes with different sizes and scales based on the
extracted multi-scale features and then classifies these potential candidate regions and



Remote Sens. 2024, 16, 227

40f14

ResNet

generates bounding boxes. Candidate boxes that may contain targets are selected and
integrated into the second stage framework for instance segmentation.

Figure 1. Cones in the HiRISE images. (a) A conventional and isolated cone; (b) clustered cones; (c) a
cone chain; (d) double cones; (e) an elongated cone; and (f) a destroyed or degenerated cone.
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Figure 2. Overall framework of the Feature Pyramid Network-equipped Mask R-CNN.

2.2.3. ROIAlign Module

The RolAlign module processes the candidate frames into features of the same size,
which are passed into the subsequent instance segmentation header. Specifically, RoIAlign
uses bilinear interpolation to obtain the feature values of each point in the feature map,
converting the feature aggregation operation into a continuous process instead of the two
quantization processes in the RolPooling operation in the Faster R-CNN model, which
improves the detection and segmentation accuracy of the model.
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2.2.4. Instance Segmentation Head

The instance segmentation head consists of two parts: the detection head and the
segmentation head. The detection head is implemented using a fully connected layer and
a Softmanx classifier, which is used to accurately obtain the size and location of the cone,
as well as the confidence level that the region is recognized as a cone. The segmentation
head is implemented with fully convolutional networks (FCNs) [38]. It firstly up-samples
the feature map via deconvolution to reduce the scale difference between the feature
map and the original image, thus alleviating the error in mapping the target region to the
original image, and then enhances the feature information of the object by utilizing multiple
convolutional layers with a 3 x 3 kernel size and ultimately achieves cone segmentation by
generating a prediction for every pixel of the feature map.

3. Experiments and Results
3.1. Experiment Design
3.1.1. Training Strategy

To effectively identify Martian cones with the deep learning-based instance segmenta-
tion cone identification approach, we adopted a cropping window size of 1024 x 1024, and
the image area of interest was automatically cropped based on the position of the cones and
the preset cropping window size for subsequent analysis. The cone images from different
adjacent detection maps had a 50% overlap with each other. Then, we obtained a total of
2024 cone images, from which 1798 cone images were randomly selected for training and
the remaining images for testing. It should be emphasized that the theoretical minimum
detection size of the model is 32 x 32 pixels due to the fact that the feature extraction
module of the model has five downsampling operations.

3.1.2. Evaluation Metrics

In this study, the normal instance segmentation criteria, i.e., the recall and precision
of object detection and object segmentation, were used to evaluate the performance of the
cone identification model.

In object detection, a bounding box (bbox) is usually used to describe the target
location. The evaluation metrics of the location of cones, including recall and precision, can
be formulated as follows:

TP
Recall = ———— 1
T TP EN M
... TP
Precision = T+ P 2)

where TP is the true positive cone, FP is the false positive cone, and FN is the number of
false negative cones. In the experiment, if the intersection over union (IoU) of the detection
result and the ground truth is more than 0.5, the sample is a TP. If the IoU is less than 0.5,
the sample is an FP. When there is no ground truth, the sample is an FN. A high recall or a
high precision suggests that the model has good performance.

In object segmentation, mAR and mAP were used to evaluate the segmentation results,
which can be calculated as follows:

C
mAR = 12 AR; )
€izo
1 C
mAP = -} AP, 4
i=0

where mAR and mAP are the average recall and average precision of pixel segmentation,
respectively, and c is the number of segmentation categories. The higher the mAR and mAP,
the better the segmentation results.
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3.1.3. Implementation Details and Parameter Settings

For the experiments in this study, the Mars cone recognition method was founded on
the ResNet50 backbone pretrained on ImageNet [39] and the FPN. The stochastic gradient
descent optimization algorithm was used to train the model, with momentum and weight
decay set to 0.9 and 0.0001, respectively. The learning rate was 0.02, and the batch size was
set to 2. The proposed method was implemented on a computer with an Intel(R) Core (TM)
i5-13400F 2.50 GHz CPU, an NVIDIA RTX 3060 GPU, and 16 GB of RAM.

3.2. Results

For the evaluation metrics mentioned above, the performance of the deep learning-
based instance segmentation cone identification achieved competitive object detection
accuracies, i.e., 92.1% in recall and 84.8% in precision, and object segmentation accuracies,
i.e., 92.2% in recall and 84.9% in precision (Table 1). The average identification time required
for each image was 0.52 s. For the recall, it indicated that almost all of the recognized cones
in the test set can be recovered with the proposed cone identification mode, whereas from
the precision, we could infer that the model identified many new Martian cones.

Table 1. Results of the proposed cone identification model and the other mainstream methods.

Object Detection Object Segmentation Time (s)
Recall (%) Precision (%) mAR (%) mAP (%)
0.52
92.1 84.8 92.2 84.9

Figure 3 shows the visualization results of the Martian cones with the proposed deep
learning-based instance segmentation approach. As can be seen from Figure 3, the identified
cones have two indicators, i.e., the detection box and the target edge, which can clearly
outline the cone base. For various spatial distributions and morphological characteristics
of Martian cones, it showed good recognition performance.

However, due to the complex morphological characteristics of Martian cones, it might
be expected that undetected and newly detected Martian cones are inevitable. Figure 4
shows undetected and newly detected Martian cones in the testing data. Green squares
represent the newly detected cones, and the blue squares represent the undetected cones.
One can observe that missed detection usually occurs when the shape of the cone is
not obvious (Figure 4a,b,d), e.g., double cones, destroyed or degenerated cones, or flat
isolated cones, and when the cones are densely distributed (Figure 4c,e), e.g., clustered
cones, densely adjacent cones, and especially cones with small sizes. For double cones, the
crater of the inner cone is relatively small, but destroyed or degenerated cones and flat
isolated cones present features of wide and shallow craters. Among the clustered cones,
densely distributed smaller cones exhibit cone chains or a pairwise distribution. Due to
the limitation of the minimum detection size of the identification model, these smaller
cones could not be detected. However, it should be noted that we could find many newly
detected Martian cones in the clustered cones.

Deep Learning-Based Instance Segmentation Martian Cone Dataset (DL-MCD)

Due to the effectiveness of the cone identification model, more Martian cones can be
recognized in the collected HiRISE images. The deep learning-based instance segmentation
model for Martian cone identification based on a derivation of learned features was used to
detect and segment cones simultaneously. This resulted in the identification of 3861 cones,
which is approximately 5% greater than the initial number of labeled cones. Then, the newly
identified cones, i.e., 180 cones that were not included in the labeled cones, were extracted
for manual assessment of the identification accuracy. The false positive rate (FPRs) of the
newly identified cones was 7.2 &= 3% and was derived with manual inspection by three
domain experts. This illustrates the reliability and stability of the cone identification model.
In conclusion, a deep learning-based instance segmentation Martian cone dataset (DL-
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MCD) of 3861 cones has been derived and made available (see Table S1 in Supplementary
Materials).

(a)

Figure 3. Visualization results of the Martian cones with deep learning-based instance segmentation
in the HiRISE images. (a) A conventional and isolated cone; (b) clustered cones; (c) a cone chain;
(d) double cones; (e) an elongated cone; and (f) a destroyed or degenerated cone. The red squares
show the detected cones, and the white outlines show the edges of segmented cones. The colors of
the cones are used to distinguish different ones.

In the DL-MCD, the geometry of the Martian cones, i.e., cone width (i.e., basal diame-
ter), can be quantified with the segmentation results. It is worth noting that the bases of
Martian cones often exhibit an irregular elliptical shape. To acquire accurate morphometric
features of cones, the pixel edges of cones were extracted, and two cone width parameters,
i.e., the long basal diameter (Lbd) and short basal diameter (Sbd), were measured in HiRISE
images. Meanwhile, the basal dip angle (Da) of cones also determined the distributed
direction of Martian cones. Moreover, derived parameters, i.e., flatness (Lbd/Sbd) of the
basal parameters, were also considered. Figure 5 shows the diagram of the given geometry
of the Martian cones.

For the DL-MCD, the range of Lbd is 14-2439 m, with a mean of 100 m, and the
range of Sbd is 13-2130 m, with a mean of 88 m. Figure 6 shows the frequency histograms
and cumulative percentages of basal and dig angle parameters. As can be observed from
Figure 6a,b, approximately 90% of identified cones have Lbd < 100 m and Sbd < 100 m. The
cone flatness (Lbd/Sbd) is also given in Figure 6¢ for measuring the shape of the Martian
cone. Nearly half of the cones, i.e., 2017 cones, appear circular with flatness (Lbd/Sbd) < 1.1
and present no special direction; a few cones exhibit an elongated elliptical shape, and three
cones present obvious flatness (Lbd/Sbd) > 1.9. For the cone distributed direction with Da
(Figure 6d), more than 55.24% of cones do not have apparent selectivity of direction, and
their flatness (Lbd /Sbd) is close to 1, whereas 48 and 150 cones face toward the northeast
or south-east, and 751 and 895 cones face toward the direction of north-south or east-west.
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Figure 4. Undetected and newly detected Martian cones in the testing data. (a) Double cones;
(b) destroyed or degenerated cones; (c) clustered cones; (d) flat isolated cones; and (e) densely
adjacent cones. The left images show the labeled cones, in which the red squares and white outlines
represent the labeled cones. The right images are the identified cones, the red squares show the
detected cones, and the white outlines show the edges of segmented cones. In the identified cone
images, the blue squares represent the individual undetected cones, and the green squares represent
the newly detected cones. The colors of the cones are used for distinction.
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Figure 5. The diagram of the given geometry of the Martian cones. (a) Example of a cone in HiRISE
image; (b) identification image of the cone; and (c) schematic diagram of the cone width parameters
(Lbd and Sbd) and dip angle of the cone (Da).
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Figure 6. Frequency histograms and cumulative percentages of (a) cone long basal diameter (Lbd),
(b) cone short basal diameter (Sbd), (c) cone flatness (Lbd /Sbd), and (d) cone distributed direction
with Da (north—south: 67.5~90° and —90~—67.5°; east-west: —22.5~22.5°; northeast: 22.5~65.5°; and
south-east: —22.5~—65.5°). Please note that cones with Lbd/Sbd > 1.1 were considered.

4. Discussion
4.1. Spatial Distribution Analysis
In this subsection, the spatial distribution of Martian cones in the DL-MCD is presented

with the acquired spatial location information. In the DL-MCD, the cones were identified
across six typical geographical regions on Mars. The distribution regions include (1) plains,
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Number of cones

such as Utopia Planitia, Amazonis Planitia, Isidis Planitia, Chryse Planitia, Elysium Planitia,
and the area between the Amazonis Planitia and Elysium Planitia; (2) valleys and canyons,
i.e., Athabasca Valles, Valles Marineris, and Coprates Chasma; (3) the Tharsis volcanic
province, i.e., Olympus Mons and Pavonis Mons; (4) the southern highlands of Mars known
as Terra Sirenum; (5) the areas near impact craters, such as Kamativi crater and Zunil crater;
(6) ridges, i.e., Tartarus Montes; (7) fossae, i.e., Ulysses Fossae; and (8) other regions, i.e.,
the Aetheria Region, the Cydonia Region, Hydraotes Chaos, and the Phlegra Dorsa Region.

Figure 7 shows the distribution scale of the Martian cones in the DL-MCD. The widely
distributed region of the identified cones is the Kamativi crater; nearly half of the cones are
located near this area. More than 600 cones are in the region near the Zunil crater. For the
plains, nearly 600 cones were identified in the western Elysium Planitia. A total of 273, 207,
and 142 cones were located in the Athabasca Valles, Tartarus Montes, and Phlegra Dorsa,
respectively. In other regions, there are fewer than 100 identified cones. Among these
identified cones, 360 distributed in the western Elysium Planitia, Phlegra Dorsa, Utopia
Planitia, Valles Marineris, and Terra Sirenum are not mentioned in the existing literature.
The newly identified cones are mainly in the area of the Elysium Planitia and Phlegra Dorsa,
where 157 and 142 cones are distributed, respectively.
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Figure 7. The distribution scale of the Martian cones in the DL-MCD. (a) Plains, (b) valleys and
canyons, Tharsis volcanic province, and the areas near impact craters. (c) The southern highlands,
ridges, fossae, and other regions.
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4.2. Morphological Parameter Analysis

To verify the analysis of the newly identified Martian cones, we compared the three
morphometric parameters, i.e., the long basal diameter (Lbd), short basal diameter (Sbd),
and basal dip angle (Da), for the cones in the regions that had not been described in the
existing literature. The western Elysium Planitia and Phlegra Dorsa are the two regions
that have a large number of newly identified cones.

Figure 8 shows the distribution of newly identified cones in western Elysium Planitia
and Phlegra Dorsa, also with the analogous cones in the existing literature [14,31]. In
the western Elysium Planitia, the 152 newly identified cones are mostly circular with no
direction, but elongated, irregular forms are also common. They are of varying sizes, with
Lbd and Sbd ranging from 25.55 m to 219.18 m and from 23.27 m to 212.32 m, respectively.
The analogous cones are located at Cerberus Palus within Elysium Planitia and determined
as pseudocraters on Mars, with basal diameters ranging from 20 m to 300 m [14]. Compared
with the middle upper image, the newly identified and analogous cones occur both in
isolated clusters or bands of cones and in direct contact with lava flows or lava plains [14].
For the Phlegra Dorsa, the 142 newly identified cones and the analogous cones near the
southern margin of Arcadia Planitia in the Tartarus Colles show unique characteristics,
i.e., chain structures, and have mainly been interpreted as rootless cones produced by
successive explosions as the crust was translating over a fixed steam source where the
explosions overlapped [31,33,40]. The identified cones are usually below 120 m in Lbd
and Sbd, and the diameter of rings ranges from 40 m to 120 m, similar to those in Ref [33].
Some cones in both Figure 8b and the lower middle of the image are elongated, with the
south-east and north-south directions merging into parallel wakes.

o

P, ,5('mnmr' 85 by
+ [——3PSP. 006748 2060

Figure 8. The distribution of newly identified cones and analogous cones in (a) western Elysium
Planitia (ESP_035521_1825, Lat: 2.4° Long: 146.8°) and Cerberus Palus within Elysium Planitia (MOC
PIA02341) [14], (b) Phlegra Dorsa (ESP_018457_2065, Lat: 26.3° Long: 173.6°), and near the southern
margin of Arcadia Planitia in the Tartarus Colles (PSP_006748_2060) [31] and of newly identified
cones with Da information (red: no direction; blue: south-east; green: north—south; yellow: east-west;
and orange: north-east).
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4.3. Further Discussion on the Experiments

Due to the complex morphological characteristics of Martian cones and the limited
HiRISE images, it is a challenge to identify Martian cone-like features. The DL-MCD is
a powerful support for the geological and geomorphic analysis of Mars. However, the
spatial distribution shows that the identified cones only account for a very small portion of
Mars. Moreover, the small targets, also with a limited number of training samples, degrade
the identification results. The identification of cones for expanding the DL-MCD will be a
long-term task with the release and collection of HiRISE images.

In addition, the basal diameter and dip angle of the cones have been provided in the
DL-MCD based on the cone identification model. There are other morphometric parameters,
e.g., crater width and cone height, which are also crucial to studying the features of cones.
The elevation data are crucial for the comprehensive analysis of cones, and the generation
of elevation data will be investigated in the future. This can further improve the accuracy
of cone identification.

From a data perspective, the field of view and coverage of HiRISE images are limited
and cannot meet the requirements for the large-scale mapping of cones [41]. The HiRIC
onboard China’s Tianwen-1 will be used to acquire new Martian cones [23].

5. Conclusions

This study focuses on mapping Martian cones in high-resolution images. To identify
cones sufficiently, we collected Martian cones with various morphological characteristics
in HiRISE images. Meanwhile, a deep learning-based instance segmentation approach,
i.e., the Feature Pyramid Network-equipped Mask R-CNN, was utilized. To identify
different scales of the Martian cones efficiently, the network was built by fusing the features
extracted by the convolutional network backbone at different levels in a top-down manner.
Meanwhile, the Martian cones were detected, and their basal outline was segmented.
The cone identification model based on the Feature Pyramid Network-equipped Mask
RCNN effectively and accurately detected and segmented conventional and isolated cones,
clustered cones, cone chains, double cones, elongated cones, and destroyed or degenerated
cones. The detection recall, precision, and segmentation mAR and mAP of the cone
identification model were 92.1%, 84.8%, 92.2%, and 84.9%, respectively, and the average
run-time was 0.52 s per image. Meanwhile, the morphometric parameters of cones were
accurately calculated for building the DL-MCD. Finally, 3861 identified cones in the DL-
MCD were analyzed with detailed surveys of the spatial distribution and morphological
characteristics. These cones can be used in a comparative study to analyze their possible
origin to advance the understanding of Martian geology.

In the future, we will collect more HiRISE images to acquire new cones to overcome
the limitations of the deep learning-based instance segmentation approach and refine the
cone identification model to obtain other crucial morphometric parameters. Additionally,
we plan to study a cone detection model based on transfer learning so that it can recognize
new cones in other high-resolution images that lack cone information, e.g., HiRIC images
on Tianwen-1.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/rs16020227 /s1; Table S1: locations and morphometric parameters
of the 3861 cones identified in this study.
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