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Abstract: Space probes are always obstructed by floating objects in the atmosphere (clouds, haze,
rain, etc.) during imaging, resulting in the loss of a significant amount of detailed information in
remote sensing images and severely reducing the quality of the remote sensing images. To address
the problem of detailed information loss in remote sensing images, we propose an end-to-end
detail enhancement network to directly remove haze in remote sensing images, restore detailed
information of the image, and improve the quality of the image. In order to enhance the detailed
information of the image, we designed a multi-scale detail enhancement unit and a stepped attention
detail enhancement unit, respectively. The former extracts multi-scale information from images,
integrates global and local information, and constrains the haze to enhance the image details. The
latter uses the attention mechanism to adaptively process the uneven haze distribution in remote
sensing images from three dimensions: deep, middle and shallow. It focuses on effective information
such as haze and high frequency to further enhance the detailed information of the image. In
addition, we embed the designed parallel normalization module in the network to further improve
the dehazing performance and robustness of the network. Experimental results on the SateHaze1k
and HRSD datasets demonstrate that our method effectively handles remote sensing images obscured
by various levels of haze, restores the detailed information of the images, and outperforms the current
state-of-the-art haze removal methods.

Keywords: remote sensing image; haze removal; normalization; attention mechanism; convolutional
neural network

1. Introduction

With the rapid development of space-based Earth observation technology, there has
been a revolutionary advancement in acquiring surface information of the Earth. Satellites
and other space probes have captured a vast amount of remote sensing (RS) images with
high spatial and spectral resolution [1,2]. Remote sensing images contain a wide range
of surface information and have been widely applied in various fields such as geological
exploration [3,4], urban planning [5,6], and meteorological observations [7,8]. However,
when optical remote sensing imaging sensors capture reflected light from the Earth’s
surface through the atmosphere, they inevitably encounter interference from atmospheric
particles such as haze, rain, and clouds. These particles absorb and scatter the reflected
light, leading to issues in remote sensing images such as texture blurring, low contrast,
and color distortion [9]. The degradation of RS image quality brings huge obstacles
to subsequent computer vision tasks such as image analysis and understanding [10,11].
Therefore, removing haze in RS images and improving RS image quality have important
research significance and application value.

Recently, image haze removal technology has been extensively studied, and many
haze removal methods have been proposed [12,13]. Currently, these dehazing methods
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can be categorized into two types: prior-based dehazing methods and learning-based
dehazing methods. Prior-based dehazing methods estimate the transmission map and
global atmospheric light based on prior assumptions. Atmospheric scattering model (ASM)
is then used to recover a clear image. These methods have achieved good haze removal
effects. However, in real-world hazy environments, the optimal choice of prior knowledge
is still unclear. The extent to which these priors conform to image statistics and how they
affect dehazing performance is still unknown [14]. With the rapid development of deep
learning, learning-based haze removal methods have been widely studied. Although
existing learning-based methods have achieved significant success, most of them remove
haze from natural scenes [15,16]. Compared with ground-imaged natural scenes, RS images
are always in large scale and complex scenes, and the haze intensity distribution of RS
images is changeable and irregular. Therefore, the existing end-to-end haze removal
methods may not be suitable for blurry RS images [17].

Therefore, we propose an end-to-end detail enhancement dehazing network (EDED-
Net) for remote sensing images. The designed network uses U-net as the skeleton and
contains a detail enhancement block (DEB), which combines a multi-scale detail enhance-
ment unit (MSDEU) and a stepped attention detail enhancement unit (SADEU). The detail
enhancement block is a transformer-style block. We replace the multi-head self-attention
mechanism in the transformer with our designed MSDEU, and replace the feedforward net-
work in the transformer with our designed SADEU. MSDEU can not only extract different
scale features of the input haze image, but also has a large receptive field. In the MSDEU,
we utilize dilated convolutions with dilation rates of 1, 4, 9, and 16 to integrate global
features and detail features. Additionally, we employ simple local residuals to enhance
high-frequency details and edge information in the image. SADEU utilizes channel atten-
tion (CA) to extract global shared information from the original features and pixel attention
(PA) to extract position-related local information from the original features. Inspired by
the pixel attention (PA) mechanism proposed in FFA-Net [18], we further designed deep
pixel attention (DPA) and shallow pixel attention (SPA) in SADEU. They are parallelly
connected with pixel attention (PA) to focus on haze and high-frequency information from
three different levels: deep, middle, and shallow. Furthermore, we design a novel paral-
lel normalization module (PNM), which is integrated into the network architecture and
helps enhance robustness to appearance changes while retaining important content-related
information. We embed PNM into MSDEU and SADEU, respectively, to improve the
generalization ability and robustness of EDED-Net.

The main contributions presented in this article are listed as follows:

(1) We design a new multi-scale detail enhancement unit. It can extract multi-scale fea-
tures of input images and integrate global and detailed features. Parallel dilated
convolutions have large receptive fields and long-range modeling capabilities, en-
abling the network to capture contextual information across a wide spatial scale and
effectively enhance details in images.

(2) We design a new stepped attention detail enhancement unit. It adaptively focuses
on the high-frequency information of images from three dimensions: deep, middle,
and shallow. It can flexibly handle images with uneven haze distribution and is more
suitable for removing haze in RS images.

(3) We design a new parallel normalization module. It can simultaneously learn features
that are relevant to content and not affected by appearance changes, which can
effectively improve the generalization ability and robustness of the network.

(4) We design a new end-to-end detail-enhanced dehazing network for remote sensing
images. We embed MSDEU and SADEU into EDED-Net to handle image dehazing in
remote sensing scenarios. On challenging benchmark datasets (SateHaze1k [19] and
HRSD [20]), our method outperforms state-of-the-art methods and is able to remove
haze in RS images more effectively.

The remainder of this article is organized as follows. Section 2 provides an overview
of related work. Section 3 presents the proposed methods, including MSDEU and SADEU.
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Section 4 conducts a series of experiments to evaluate the performance of the proposed
method. Finally, Section 5 concludes the paper.

2. Related Work

Currently, image dehazing methods can be mainly classified into two categories.
The first category is the prior-based methods, which rely on manually summarizing the
statistical differences between blurry and clear images to establish empirical priors. The
second category is the learning-based methods, which directly or indirectly learn the
mapping functions from large-scale datasets of blurry and clear images. The former is
generally referred to as prior-based methods, while the latter is generally referred to as
learning-based methods.

Prior-based methods rely on prior knowledge about clean images to estimate the trans-
mission map and global atmospheric light. They typically depend on atmospheric scattering
models and handcrafted priors. He et al. [21] discovered that most local patches in outdoor
haze-free images contain pixels with very low intensities in at least one color channel. Based
on this observation, they proposed the dark channel prior (DCP). Zhu et al. [22] proposed
the color attenuation prior (CAP) method, which utilizes the differences in pixel brightness
and saturation within a hazy image and establishes a linear model based on the linear color
attenuation prior. This method aims to recover depth information by exploiting the color
attenuation in hazy scenes. However, it may not achieve satisfactory dehazing results under
non-uniform atmospheric conditions. Berman et al. [23] discovered that when haze occurs,
clusters of pixels in haze-free images transform into haze lines. Based on this observation,
they proposed a non-local prior to characterizing clean images. Xu et al. [24] proposed an
iterative dehazing method for a single RS image and defined the concept of “virtual depth”.
It is beneficial for measuring the surface coverage of objects and enables the estimation of
the transmission map and dehazing of RS images through the iterative process.

In recent years, deep learning technology has been highly praised by researchers
in the field of image haze removal. Due to its powerful learning ability, it can directly
restore blurred input images into clear images in an end-to-end manner [25,26]. Therefore,
learning-based dehazing methods generally have better dehazing effects compared to
prior-based methods. Cai et al. [27] were the first to apply convolutional neural networks
(CNNs) to the task of image dehazing and proposed an end-to-end dehazing network. It
takes the hazy image as input and generates the transmission map as output. It leverages
multi-scale convolutions to extract haze-specific features. By relying on the atmospheric
scattering model to recover the haze-free image, this approach significantly improves the
dehazing performance compared to traditional methods. Ren et al. [28] designed a coarse-
scale network and a fine-scale network model to achieve dehazing by extracting and fusing
coarse transmission maps and fine transmission maps. Li et al. [29] proposed the AOD-
Net dehazing network, which integrates the atmospheric light value and transmittance
into one parameter through the unit transformation of the formula, effectively improving
the quality of the restored image. Liu et al. [30] proposed the GridDehaze-Net dehazing
network, which generates learning inputs with better diversity and more relevant features.
This method effectively alleviates the limitations of traditional multi-scale estimation
methods and improves the quality of the generated dehazed images. By leveraging the
attention mechanism, it can selectively focus on information-rich regions and capture more
relevant features, thereby enhancing the dehazing performance. Qin et al. [18] proposed
an end-to-end feature fusion attention network (FFA-net). They designed a novel feature
attention module that can selectively enhance information regions and suppress the effects
of haze, thereby improving dehazing performance. Mei et al. [31] proposed a U-Net-type
encoder–decoder deep network based on progressive feature fusion to directly learn the
highly nonlinear transformation function from the observed blurred image to the blur-free
image. Chen et al. [32] proposed a detail-enhanced attention block composed of detail-
enhanced convolution and content-guided attention to enhance feature learning, thereby
improving dehazing performance. Song et al. [33] proposed DehazeFormer by analyzing
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the Swin transformer and improving the normalization layer and activation function, which
achieved good dehazing effects. Lu et al. [34] used multi-scale parallel large convolution
kernel modules and enhanced parallel attention modules to solve the problem of uneven
haze distribution. Guo et al. [35] proposed a new self-paced semi-curriculum attention
network, which focused on enhancing haze-occluded areas by constructing an attention
generator network and a scene reconstruction network. Li et al. [36] designed a two-stage
defogging neural network, first coarse and then fine, to improve the quality of optical
RS images. Zhang et al. [20] proposed a new dynamic collaborative inference learning
framework that can significantly recover real surface information from dense blurred
RS images. Sun et al. [37] proposed a partial Siamese multi-scale dual codec dehazing
network, which solves the color and texture deviation problems of dehazed images through
the partial Siam framework and the multi-scale dual codec information fusion module.
Song et al. [38] proposed an RS image dehazing transformer architecture, called RSDformer.
The architecture exploits detail-compensated diverted attention designed to capture global
and local region dependencies to improve image content recovery.

3. EDED-Net Architecture

Figure 1 illustrates our proposed end-to-end detail-enhanced dehazing network ar-
chitecture for RS images. EDED-Net is an improved 5-stage U-net, where we replace
the convolutional blocks of U-net with our designed DEB. DEB consists of MSDEU and
SADEU, which are used to adaptively extract multi-scale high-frequency, edge, and other
detailed information. In addition, a previous study [33] proposed SK Fusion and soft
reconstruction (Soft Recon.) to demonstrate better feature fusion capabilities and haze
constraint capabilities, so we similarly use SK Fusion to fuse the skip branch and the main
branch, and use soft reconstruction for image reconstruction to improve EDED-Net haze
removal performance.
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Figure 1. Overall structure of EDED-Net. I  is the haze image; J  is the restored clear image. The 
input size is H W× . Down-sampling is 3 3Conv×  with a stride of 2. Up-sampling is point-
wise convolution and PixelShuffle. ( )1, 2, , 5iN i× = ⋅ ⋅ ⋅  is the number of DEBs connected sequen-

tially. 

3.1. Multi-Scale Detail Enhancement Unit 
Figure 2 shows the multi-scale detail enhancement unit, which has the ability to obtain 

multi-scale information of input features and large receptive fields and enhance detailed in-

formation. First, let F∗
 be the original input feature of MSDEU; we normalize it using PNM. 

Figure 1. Overall structure of EDED-Net. I is the haze image; J is the restored clear image. The
input size is H × W. Down-sampling is 3 × 3Conv with a stride of 2. Up-sampling is point-wise
convolution and PixelShuffle. ×Ni(i = 1, 2, · · ·, 5) is the number of DEBs connected sequentially.

3.1. Multi-Scale Detail Enhancement Unit

Figure 2 shows the multi-scale detail enhancement unit, which has the ability to
obtain multi-scale information of input features and large receptive fields and enhance
detailed information. First, let F∗ be the original input feature of MSDEU; we normalize it
using PNM.

∨
F = PNM(F∗) (1)



Remote Sens. 2024, 16, 225 5 of 20Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 20 
 

 

Multi-scale detail enhancement unit

C

PN
M

3
3C
on
v

× R
EL

U

3
3C
on
v

×

1

4

9

16

3
3C
on
v

×
3

3C
on
v

×
3

3C
on
v

×
3

3C
on
v

×

3
3C
on
v

×3
3C
on
v

× R
EL

U

3
3C
on
v

× R
EL

U

1
1C
on
v

×
1

1C
on
v

×
1

1C
on
v

×
1

1C
on
v

×

Stepped attention detail enhancement unit

PN
M

C
A PA

SP
A

D
PA

C

3
3C
on
v

×3
3C
on
v

× R
EL

U

3
3C
on
v

× R
EL

U

Dilation rate

C Concatenate

Element-wise Sum

 
Figure 2. Structure of DEB. It contains MSDEU and SADEU. 
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PNM combines instance normalization and batch normalization, which can improve
the generalization ability and robustness of the network and prevent overfitting. Then, we
use a local residual to initially enhance the extraction of detailed information:

F1 =
∨
F + σ

(
Conv3

(∨
F
))

(2)

where σ is the RELU nonlinear function; Conv3 is 3 × 3 convolution.
Inspired by the hierarchical dilated network (HDN) proposed by Chalavadi et al. [39],

we concatenate 1 × 1Conv with parallel dilated convolutions to learn information at differ-
ent scales. The small dilated convolution focuses on restoring textured detailed information,
while the large dilated convolution has a large receptive field and the ability to model
distant information. It pays more attention to global features and large hazy regions.

F2 = Concat(Convi(Conv1(Conv3(F1)))) (3)

where Convi is 3 × 3Conv with dilation rate i = (1, 4, 9, 16) and Conv1 is the point-wise
convolution. At this time, we concatenate the multi-scale information in the channel
dimension. The number of channels of F2 is four times that of F1.

Therefore, we use a 3 × 3Conv to fuse the concatenated multi-scale information and
convert the number of channels to the same number as F1. RELU function is used to prevent
gradient vanishing.

F3 = σ(Conv3(F2)) (4)

In order to enhance the fused detailed information with multi-scale characteristics,
we again use a local residual to capture the detailed features, and after passing through
3 × 3Conv, sum it with F1 and F3. In this way, the secondary enhancement of detailed
information after multi-scale feature fusion is achieved.

F4 = Conv3(F3 + σ(Conv3(F3))) + F3 + F1 (5)

Inspired by Wang et al. [40], we designed PNM, as shown in Figure 3. PNM combines
instance normalization and batch normalization. Instance normalization allows the network
to learn features that are invariant to appearance variations, while batch normalization helps
preserve features that are content related. By combining the advantages of both techniques,
PNM enhances the dehazing performance of the network. In PNM, the input feature Fin
is first processed to generate an intermediate feature Fmid. Secondly, PNM divides the
channels of Fmid into two equal parts, with one half of the channels forming feature Fmid1
and the other half forming feature Fmid2. In the Fmid1 branch, instance normalization (IN)
and SELU nonlinearity are used, while in the Fmid2 branch, parameterized learnable batch
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normalization (BN) and SELU nonlinearity are applied. The SELU function can achieve
internal normalization by adjusting the mean and variance, effectively speeding up the
convergence of the network. Then, the features obtained from both branches are fused.
In this way, features related to the content can be retained, and features not affected by
appearance changes can be learned. Finally, a 3 × 3Conv and a skip connection are used to
prevent the gradient from disappearing.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 20 
 

 

techniques, PNM enhances the dehazing performance of the network. In PNM, the input 

feature inF is first processed to generate an intermediate feature midF . Secondly, PNM 

divides the channels of midF  into two equal parts, with one half of the channels forming 

feature 1midF  and the other half forming feature 2midF . In the 1midF  branch, instance 

normalization (IN) and SELU nonlinearity are used, while in the 2midF  branch, param-
eterized learnable batch normalization (BN) and SELU nonlinearity are applied. The SELU 
function can achieve internal normalization by adjusting the mean and variance, effec-
tively speeding up the convergence of the network. Then, the features obtained from both 
branches are fused. In this way, features related to the content can be retained, and fea-
tures not affected by appearance changes can be learned. Finally, a 3 3Conv×  and a skip 
connection are used to prevent the gradient from disappearing. 

IN Instance Normalization
BN Batch Normalization

Element-wise Sum

BN

SELU

2midF

SELU

3 3conv×

IN

3 3conv×

1midF
midF

inF

outF
 

Figure 3. Structure of PNM. 

3.2. Stepped Attention Detail Enhancement Unit 
Figure 2 illustrates the structure of the stepped attention detail enhancement unit, 

which primarily consists of PNM, CA, pixel attention at different depths, and local resid-
ual connections. The unit can focus on global information, adaptively extract haze infor-

mation, and enhance detailed information. Let F  be the input feature of SADEU; we use 

PNM to normalize it by ( )PNMF F
∨

= . CA can effectively extract global information 

and assign different weights to different channel features. We use the CA proposed by 

FFA [18] to redistribute the channel features of F
∨

: 

1 CASF F
∨ =  

 
 (6)

Pixel attention can adaptively extract unevenly distributed haze, effectively focus on 
local features related to location, and is suitable for processing remote sensing images with 
uneven haze distribution. Figure 4a,c show the shallow pixel attention and deep pixel at-
tention that we have designed. Let the feature map shape of 1SF  be H W C× × . In SPA, 
the feature map shape is transformed to 1H W× ×  after passing 1 1Conv× . In PA, the 

feature map shape is transformed to 
8
CH W× ×  through the first 1 1Conv× , and the 

feature map shape is transformed into 1H W× ×  after the second 1 1Conv× . In DPA, 

Figure 3. Structure of PNM.

3.2. Stepped Attention Detail Enhancement Unit

Figure 2 illustrates the structure of the stepped attention detail enhancement unit,
which primarily consists of PNM, CA, pixel attention at different depths, and local residual
connections. The unit can focus on global information, adaptively extract haze information,
and enhance detailed information. Let F be the input feature of SADEU; we use PNM to

normalize it by
∨
F = PNM

(
F
)
. CA can effectively extract global information and assign

different weights to different channel features. We use the CA proposed by FFA [18] to

redistribute the channel features of
∨
F:

FS1 = CA
(∨

F
)

(6)

Pixel attention can adaptively extract unevenly distributed haze, effectively focus
on local features related to location, and is suitable for processing remote sensing images
with uneven haze distribution. Figure 4a,c show the shallow pixel attention and deep
pixel attention that we have designed. Let the feature map shape of FS1 be H × W × C. In
SPA, the feature map shape is transformed to H × W × 1 after passing 1 × 1Conv. In PA,
the feature map shape is transformed to H × W × C

8 through the first 1 × 1Conv, and the
feature map shape is transformed into H × W × 1 after the second 1 × 1Conv. In DPA, the
feature map shape after the first 1 × 1Conv is H × W × C

4 , the feature map shape after the
second 1 × 1Conv is H × W × C

16 , and the feature map shape after the third 1 × 1Conv is
H × W × 1.

SPA = FS1 ∗ δ(conv1(FS1)) (7)

PA = FS1 ∗ δ(conv1(σ(conv1(FS1)))) (8)

DPA = FS1 ∗ δ(conv(σ(conv(σ(conv(FS1)))))) (9)

where δ is the sigmoid function, which is used to assign weights. Since SPA, PA, and DPA
are akin to a staircase connected in the channel direction, we named them as stepped fusion
pixel attention (SFPA). We consider SPA, PA, and DPA to focus on the distribution of haze
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from three dimensions: deep, middle, and shallow, respectively. Their fusion can extract
haze information more effectively.

PAFusion = Concat(SPA, PA, DPA) (10)

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 20 
 

 

the feature map shape after the first 1 1Conv×  is 
4
CH W× × , the feature map shape 

after the second 1 1Conv×   is 
16
CH W× ×  , and the feature map shape after the third 

1 1Conv×  is 1H W× × . 

(a) SPA (b) PA (c) DPA

1 1conv× 1 1conv×
RELU

1 1conv×

1 1conv×
RELU

1 1conv×
RELU

1 1conv×

Sigmoid Element-wise Product

 
Figure 4. Stepped fusion pixel attention (SFPA). 

( )( )1 1SPA * 1S SF conv Fδ=  (7)

( )( )( )( )1 1PA * 1 1S SF conv conv Fδ σ=  (8)

( )( )( )( )( )( )1 1DPA *S SF conv conv conv Fδ σ σ=  (9)

where δ  is the sigmoid function, which is used to assign weights. Since SPA, PA, and 
DPA are akin to a staircase connected in the channel direction, we named them as stepped 
fusion pixel attention (SFPA). We consider SPA, PA, and DPA to focus on the distribution 
of haze from three dimensions: deep, middle, and shallow, respectively. Their fusion can 
extract haze information more effectively. 

( )FusionPA SPA, PA, DPAConcat=  (10)

At this moment, the shape of FusionPA   is 3H W C× ×  . Therefore, we use 
3 3Conv×  to fuse the haze information of concatenated pixels of interest, and transform 
the number of channels to C . RELU function is used to prevent gradient vanishing. 

( )( )2 Fusion3 PASF Convσ=  (11)

We use a local residual to enhance the haze information after pixel attention. Then, 

we sum it with the output of 3 3Conv×  and the input feature F  to achieve focused at-
tention on the haze region and preserve detailed information. 

( )( )( )3 2 2 23 3S S S SF Conv Conv F F F Fσ= + + +  (12)

3.3. Detail Enhancement Block 
The structure of DEB is shown in Figure 2, which consists of a multi-scale detail en-

hancement unit and a stepped attention detail enhancement unit. MSDEU can obtain 

Figure 4. Stepped fusion pixel attention (SFPA).

At this moment, the shape of PAFusion is H × W × 3C. Therefore, we use 3 × 3Conv to
fuse the haze information of concatenated pixels of interest, and transform the number of
channels to C. RELU function is used to prevent gradient vanishing.

FS2 = σ(Conv3(PAFusion)) (11)

We use a local residual to enhance the haze information after pixel attention. Then, we
sum it with the output of 3 × 3Conv and the input feature F to achieve focused attention
on the haze region and preserve detailed information.

FS3 = Conv3(σ(Conv3(FS2)) + FS2) + FS2 + F (12)

3.3. Detail Enhancement Block

The structure of DEB is shown in Figure 2, which consists of a multi-scale detail
enhancement unit and a stepped attention detail enhancement unit. MSDEU can obtain
multi-scale information of images, capture haze in different areas, and restore texture
details of images. SADEU is capable of effectively handling complex and diverse haze
distributions in RS images. It can simultaneously focus on the global shared information
of the original features and the position-related local information, thereby highlighting
the detailed information in the image. Additionally, we have embedded PNM in the DEB.
This integration allows DEB to learn features that are invariant to appearance variations
while preserving content-related features. As a result, the capability of DEB to handle haze
in RS images is improved. Our proposed EDED-Net containing DEB structure achieves
state-of-the-art results on Haze1k and HRSD remote sensing dehazing datasets.

3.4. Loss Function

Nowadays, most dehazing networks utilize multiple loss functions to optimize the
network, such as using MSE loss and perceptual loss simultaneously [41]. However, among
some dehazing methods, the simple L1 loss achieves excellent performance in image
restoration tasks [18,32]. Compared with loss functions such as L2, the L1 function has a
faster convergence speed. It can promote sparse model parameters and achieve feature
selection [42]. Therefore, in our implementation, we use L1 loss to normalize the learning
direction of EDED-Net during training, correcting pixel differences between images.

L1 = ∥J − GT∥1 (13)
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where J is the haze-free RS image restored using EDED-Net and GT is the ground truth
RS image.

4. Experiments Results
4.1. Datasets and Metrics

We evaluate the proposed EDED-Net on two publicly available synthetic haze RS
datasets: SateHaze1k [19] and Hazy Remote Sensing Dataset (HRSD) [20]. The Sate-
Haze1k dataset consists of three sub-datasets with different haze levels: SateHaze1k-thin,
SateHaze1k-moderate, and SateHaze1k-thick. In each sub-dataset, the training set contains
320 RGB images and the test set contains 45 RGB images. For synthetic thin-fog images,
haze masks are fog-extracted from real cloud images. For the synthesized moderate haze
image, samples overlap with mist and medium fog. For synthetic thick-fog images, their
transmittance maps are extracted from dense haze. HRSD consists of two sub-datasets:
Light Hazy Image Dataset (LHID) and Dense Hazy Image Dataset (DHID). LHID is a
dataset synthesized based on the atmospheric scattering model. By randomly sampling the
atmospheric light value A ∈ [0.7, 1] and transmittance t ∈ [0.35, 0.65], the corresponding
blurred RS image is generated. These RS images were collected from Google Earth with res-
olution 0.12 − 153m and size 512 × 512. LHID contains 30517 training images and 500 test
images. DHID is obtained by adding 500 transmittance maps extracted from real-haze
RS images and random atmospheric light values A ∈ [0.7, 1] to clear images. These clear
images come from the Munich Vehicle Aerial Imagery Dataset (MVAID). DHID contains
14,990 images, of which 14,490 images are used as the training set, 500 images are used as
the test set, and the image size is 512 × 512. An example of their training samples is shown
in Figure 5. In each dataset, we show four haze images and their corresponding ground
truth images.

To evaluate the performance of our EDED-Net, we use Peak Signal Noise Ratio (PSNR),
Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) as
evaluation metrics for quantitative evaluation. The higher the PSNR and SSIM values, the
better the recovered image quality. The smaller the value of LPIPS, the more similar the
two images. PSNR can be expressed as:

PSNR = 10 × log

(
Max2

I
MSE

)
(14)

where Max2
I represents the maximum value of the image point color, and MSE represents

the mean square error between images.
SSIM comprehensively considers the three key characteristics of the image: luminance,

contrast, and structure. The definition of SSIM is as follows:

SSIM(x, y) =

(
2uxuy + C1

)(
2σxy + C2

)(
u2

x + u2
y + C1

)(
σ2

x + σ2
y + C2

) (15)

where u is the mean, σxy is the covariance, σ2 is the variance, and C1 and C2 are constants
that maintain stability.

LPIPS is used to evaluate the similarity between the restored image and the ground
truth. LPIPS can be expressed as:

d(JG, J) = ∑
n

1
HnWn

∑
h,w

∥φn • (ŷn
hw − ŷn

0hw)∥
2

2

(16)

where JG and J are the ground truth RS image and the restored RS image, respectively;
ŷn

hw, ŷn
0hw ∈ RHn∗Wn∗Cn , φn ∈ RCn .
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Figure 5. Examples of training samples for SateHaze1k and HRSD datasets. The first row is an
example of the thin fog dataset. The second row is an example of the moderate fog dataset. The third
row is an example of thick fog dataset. The fourth row is an example of the LHID dataset. The fifth
row is an example of the DHID dataset.

We compared the EDED-Net with seven other state-of-the-art dehazing methods,
including DCP [21], AOD-Net [29], FCTF-Net [36], PFF-Net [31], GridDehaze-Net [30],
FFA-Net [18], and SCA-Net [35]. To ensure a fair comparison, we trained the deep learning-
based method using the official code provided by the authors.

4.2. Experiment Details

We train and test our EDED-Net using the Pytorch framework with NVIDIA RTX8000
GPU. To augment the training dataset, we applied random rotations of 90, 180, and 270 de-
grees, as well as horizontal flipping. The input of our EDED-Net consists of RGB RS images
that have been cropped to size 240 × 240. In DEB, we set [N1, N2, N3, N4, N5] = [2, 2, 4, 2, 2],
and their corresponding embedding channel is [32, 64, 128, 64, 32]. The Adam optimizer
(β1 = 0.9, β2 = 0.999) is used to train our EDED-Net on each sub-dataset, and the batch
size is set to 4. We set the initial learning rate as 1.0 × 10−4 and utilize the cosine annealing
strategy to gradually decrease the initial learning rate to 0.

Figure 6 shows the learning curves plotted for the five sub-datasets through the PSNR
and SSIM values obtained every 1000 steps. It is observed that our EDED-Net achieves the
best learning performance on the LHID dataset and the worst learning performance on
the Haze1k-thick dataset. This is because the Haze1k-thick dataset contains a significant
amount of haze, making dehazing more challenging. On the other hand, the LHID dataset
has less haze, making dehazing relatively easier. Overall, our EDED-Net exhibits stable
performance during the training process.
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4.3. Quantitative Evaluations

Tables 1 and 2 present the quantitative evaluation results on the SateHaze1k dataset
and HRSD dataset, respectively. We provide PSNR, SSIM, and LPIPS indicators and their
average values for different haze density datasets. In Table 1, our EDED-Net achieves
state-of-the-art dehazing performance on the thin fog, moderate fog, and thick fog datasets.
Compared with thin fog and moderate fog, our method has a slightly lower dehazing
effect on thick fog. Thick haze causes more severe image degradation, making it more
challenging to remove heavy haze from RS images. DCP and PFF-Net have the worst haze
removal performance. FFA-Net and SCA-Net achieve good dehazing results. However,
when compared to the dehazing results obtained using our method, they still fall slightly
insufficient. For example, our PSNR and SSIM are 0.63 and 0.021 higher than those of the
second-best FFA-Net in the thick fog dataset, respectively. These results demonstrate that
our EDED-Net is competitive in RS dehazing performance.

Table 1. Quantitative comparison of dehazing results on the SateHaze1k dataset. The bold number
represents the best result, the blue number represents the second-best result, and the red number
represents the worst result.

Methods
Thin Fog Moderate Fog Thick Fog Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DCP 15.99 0.835 0.10 14.75 0.821 0.13 10.99 0.617 0.27 13.91 0.758 0.17
AOD-Net 18.47 0.863 0.08 17.63 0.855 0.12 15.75 0.742 0.23 17.28 0.820 0.14
FCTF-Net 19.71 0.875 0.10 23.10 0.926 0.06 18.56 0.800 0.20 20.46 0.867 0.12
PFF-Net 16.01 0.821 0.17 18.59 0.688 0.49 16.06 0.575 0.61 16.89 0.695 0.42
GridDehaze-Net 19.36 0.857 0.09 21.91 0.905 0.07 17.83 0.773 0.20 19.70 0.845 0.12
FFA-Net 24.26 0.910 0.06 25.39 0.930 0.08 21.83 0.836 0.16 23.83 0.892 0.10
SCA-Net 19.70 0.882 0.06 24.75 0.934 0.05 18.40 0.812 0.13 20.95 0.876 0.08
Ours 24.81 0.924 0.05 25.65 0.939 0.05 22.46 0.857 0.13 24.31 0.907 0.08

4.4. Qualitative Evaluations

In this section, we qualitatively compare our EDED-Net with seven other advanced
dehazing methods on the SateHaze1k and HRSD remote sensing haze image datasets.

Figure 7 shows the qualitative results of each method on the thin fog test set. DCP
and PFF-Net exhibit significant residual haze in the dehazed images. AOD-Net, FCTF-Net,
GridDehaze-Net, and SCA-Net achieve some level of dehazing effect, but when compared
to the ground truth images, the overall restoration effect still retains a small amount of
haze. FFA-Net demonstrates good dehazing performance. However, compared with the
ground truth image, the grass in the middle-right side of the image restored using FFA-Net
is obviously whiter. Our method generates dehazed images that exhibit results closer to
the ground truth images, achieving a higher level of detail restoration.
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Table 2. Quantitative comparison of dehazing results on the HRSD dataset. The bold number
represents the best result, the blue number represents the second-best result, and the red number
represents the worst result.

Methods
LHID DHID Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DCP 17.03 0.723 0.16 14.23 0.661 0.28 15.63 0.692 0.22
AOD-Net 21.46 0.808 0.11 17.05 0.731 0.18 19.26 0.770 0.15
FCTF-Net 28.33 0.874 0.09 22.52 0.833 0.12 25.43 0.854 0.11
PFF-Net 22.31 0.770 0.22 19.12 0.680 0.35 20.72 0.725 0.29
GridDehaze-Net 26.10 0.864 0.07 25.75 0.870 0.09 25.93 0.867 0.08
FFA-Net 27.38 0.866 0.09 27.07 0.863 0.09 27.22 0.864 0.09
SCA-Net 25.16 0.847 0.08 23.26 0.789 0.19 24.21 0.818 0.14
Ours 27.91 0.877 0.07 27.26 0.886 0.09 27.59 0.882 0.08
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Figure 8 shows the qualitative results of each method on the moderate fog test set.
Moderate levels of haze obscure some important information in the RS image. DCP clearly
shows average dehazing performance, with a large amount of haze remaining in the
restored image. AOD-Net has a certain dehazing effect, but there is still obviously a lot of
haze remaining in some local areas. PFF-Net suffers from obvious color distortion, such
as the roof in the upper right corner of the image. FCTF-Net, GridDehaze-Net, FFA-Net,
and SCA-Net all achieve good dehazing results. However, when compared to the ground
truth images, there are some noticeable differences. In the images restored via FCTF-Net,
the red roof in the bottom right corner appears slightly whiter. In the images restored
via GridDehaze-Net and SCA-Net, the roofs in the middle left section appear noticeably
redder. In the images restored via FFA-Net, there is a distinct shadow on the grass in
the middle right section. In comparison, our method achieves excellent dehazing results,
demonstrating better color fidelity and preserving texture details that are closer to the
ground truth images.
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Figure 9 shows the qualitative results of each method on the thick fog test set. The
dataset mainly consists of RS images that are obscured by dense haze, and a large amount of
textured detailed information is lost. The image recovered using DCP still has a significant
amount of haze residue. AOD-Net exhibits noticeable color distortion, such as an intensified
depth of the blue color in the roof. PFF-Net and GridDehaze-Net show significant color
shifts in the recovered images. For example, compared to the ground truth images, the
color information of the blue roof is almost entirely lost in the recovered images. FCTF-Net,
SCA-Net, and FFA-Net all achieve good image quality restoration. However, compared
to the ground truth images, the images generated by FCTF-Net and SCA-Net are overall
whiter, and the ground on the left side of the image generated by FFA-Net is partially
whiter. Our method exhibits a high level of similarity to the ground truth images in terms
of overall structure, local details, and color fidelity.
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(j) ground truth.
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Figure 10 shows the qualitative results of each method on the LHID test set. The
images restored using DCP and AOD have obvious excessive dehazing, and the original
texture details of the image are lost. Compared with the ground truth image, the image
restored using PFF-Net has a noticeable dark tone, the road on the upper side of the image
restored using FCTF-Net and FFA-Net is partially whiter, and the trees in the lower middle
of the images generated by GridDehaze-Net and SCA-Net are darker. Our proposed EDED-
Net addresses the challenges of texture restoration, enhances image details, and improves
overall image quality in RS blurry images.
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Figure 11 shows the qualitative results of each method on the DHID test set. DHID
is composed of RS images obscured by dense and uniform haze. The image restored
using DCP is still blurry and it is difficult to distinguish the detailed information of the
image. The image restored using AOD-Net obviously loses a large amount of texture
details. The image restored using PFF-Net fails to retain the color of the original image.
The image restored using SCA-Net has a certain degree of color shift in local areas, such
as the roof in the middle of the bottom of the image. FCTF-Net, GridDehaze-Net, and
FFA-Net effectively remove the dense and uniform haze. FCTF-Net, GridDehaze-Net, and
FFA-Net remove dense and uniform haze better. But the images they generate still retain
more black shadows than ground truth images, such as the roof of the building on the left
side of these images. Our EDED-Net performs extremely well in terms of color fidelity and
texture detail, especially in restoring roof colors and lawn colors under dense haze.

In order to test the haze removal performance of our method in real RS haze images,
we uniformly used the pre-trained model under the LHID dataset to restore real RS haze
images, as shown in Figure 12. There is still a lot of haze in the image restored with DCP,
and the ground in the image has lost its original color. The image restored with AOD-Net
shows obvious excessive dehazing. AOD-Net shows obvious excessive dehazing, and
the restored image appears too dark. FCTF-Net, PFF-Net, GridDehaze-Net, FFA-Net, and
SCA-Net have all achieved good dehazing effects. However, the orange roof in the lower
left corner of the image recovered by FCTF-Net appears whiter. PFF-Net and SCA-Net
suffer from slight over-dehazing, and the ground on the right side of the images they
recover is darker. The image recovered by GridDehaze-Net has darker ground shading
in the red box. The blue roof in the red box of the image recovered by FFA-Net is bluer.
The images recovered by our method show excellent results in terms of color and texture
preservation, which are more consistent with real-world visual effects.
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4.5. Ablation Study

To validate the effectiveness of our proposed method, we conducted an ablation study
on the DHID dataset to analyze the performance of our designed MSDEU, SADEU, and
PNM. The quantitative evaluation results are presented in Table 3. To accelerate the training
speed, we cropped the RGB image size to 60 × 60 as input, and other configurations were
the same as our implementation details.
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Table 3. Ablation study on DHID dataset. Bold numbers represent the best results.

Methods
DHID

PSNR SSIM LPIPS

Base 18.76 0.649 0.17
Base + LR 19.02 0.700 0.20

Base + LR + PNM 22.84 0.848 0.18
EDED-SK Fusion 22.15 0.833 0.12
EDED-Soft Recno. 23.13 0.852 0.12

Base + LR + PNM + SFPA 23.21 0.852 0.12

First, we constructed a basic network in which local residuals, PNM, and SFPA were
removed, denoted as “Base” in Table 3. Then, we sequentially added local residuals, PNM,
and SFPA to the base network, which are represented as “Base + LR”, “Base + LR + PNM”,
and “Base + LR + PNM + SFPA”, respectively, in Table 3. In addition, we removed the
introduced SK Fusion and soft reconstruction from our EDED-Net, respectively, to verify
their impact on the network dehazing performance, as shown in Table 3 for “EDED-SK
Fusion” and “EDED-Soft Recno”.

Figure 13 shows the visual comparison of quantitative results of ablation experiments
for different modules to more intuitively illustrate the effectiveness of each module of our
network. According to the results of the ablation study in the DHID dataset in Table 3 and
Figure 13, we can draw the following conclusions:

(1) When our proposed method does not include local residuals, PNM, and SFPA, PSNR
and SSIM are the lowest, the image is severely distorted, and the quality is poor.
However, the LPIPS metric is relatively low, indicating a higher similarity to the
ground truth images.

(2) When local residuals are added to the “Base” network, PSNR and SSIM are improved,
and image quality is improved. It has been proven that local residual can improve the
detailed information of the image. However, LPIPS is large and cannot maintain the
similarity with ground truth images well.

(3) When local residuals and PNM are added to “Base” at the same time, the network
contains the MSDEU we designed. Compared with the results of the “Base” network,
PSNR and SSIM have been greatly improved, with PSNR increasing by 4.08 and
SSIM increasing by 0.203. The image quality has been significantly improved, which
proves that the PNM and MSDEU we designed can effectively improve the dehazing
performance of the network and restore the detailed information of RS blurred images.

(4) When local residuals, PNM, and SFPA are added to “Base” at the same time, the
network now contains SADEU, which is the EDED-Net we designed. Compared with
the results of the “Base + LR + PNM” network, PSNR and SSIM have been further
improved, and LPIPS has been significantly reduced, which proves the effectiveness
of our designed SADEU and EDED-Net in enhancing image details and improving
image quality. They can maintain the similarity with ground truth images very well.

(5) When our EDED-Net removes SK Fusion and converts to pixel-wise additive fusion,
the PSNR and SSIM values are significantly reduced by 1.06 and 0.019, respectively,
compared to the results of our EDED-Net. This result fully demonstrates that SK
Fusion can effectively improve the dehazing performance of the network.

(6) When Soft Recno. was removed from our EDED-Net, although its SSIM and LPIPS
results are the same as those of our method, the PSNR decreased by 0.08. This suggests
that Soft Recno. is capable of fine-tuning the generated image to further enhance the
quality of the image.
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In Table 2, DCP exhibits the lowest PSNR and SSIM values on the LHID and DHID
datasets, indicating the worst haze removal performance. PFF-Net obtains the highest
LPIPS value, which indicates that it is the least similar to ground truth images. GridDehaze-
Net and FFA-Net each have their own advantages in dehazing. However, when considering
the average performance on the LHID and DHID datasets, FFA-Net exhibits higher PSNR
values, indicating better image quality. On the other hand, GridDehaze-Net demonstrates
better SSIM and LPIPS values, indicating a closer resemblance to the ground truth im-
ages. Our method achieves the best results on both DHID and LHID datasets, except for
LHID, where its PSNR value is the second best. Although FCTF-Net achieves the best
PSNR on the LHID dataset, it performs poorly on the DHID dataset, indicating unstable
dehazing performance.

Based on the analysis of both Tables 1 and 2, it can be concluded that SCA-Net and
FFA-Net exhibit good dehazing performance on the SateHaze1k dataset. On the HRSD
dataset, GridDehaze-Net demonstrates better results compared to SCA-Net. Unlike SCA-
Net and GridDehaze-Net, which are suitable for different datasets, our EDED-Net achieves
the best dehazing performance on SateHaze1k and HRSD, and it has better robustness.
These results highlight the competitive dehazing capabilities of our method for RS images.

5. Discussion

In this paper, we propose an end-to-end detail-enhanced dehazing network for remote
sensing images. Figures 7–11 show the results of seven state-of-the-art dehazing methods (b–
h) and our proposed EDED-Net (i) for removing haze from synthetic RS haze images. The
traditional haze removal method (b) based on the atmospheric scattering model has poor
effect in removing RS haze images, and a large amount of haze is left in the restored images,
as shown in Figures 7–11b. Among the widely used learning-based dehazing methods,
AOD-Net and PFF-Net have relatively unsatisfactory dehazing effects. The images they
restore either lose the color and texture details of the original image, or are excessively
dehazed, such as Figures 9c,e, 10c and 11e. FCTF-Net, GridDehaze-Net, and SCA-Net can
achieve certain haze removal effects. However, their haze removal performance is unstable
and they are subject to certain limitations when processing RS images with thick fog and
dense haze. FCTF-Net is difficult to effectively restore images obscured by thick fog, and
obvious haze still remains, as shown in Figure 9d. GridDehaze-Net and SCA-Net recovery
of images obscured by thick fog and dense haze experienced color shifting phenomena, as
shown in Figures 9f and 11h. FFA-Net and our EDED-Net have achieved good dehazing
effects in five synthetic remote sensing haze datasets and have excellent dehazing stability.
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However, the images recovered by FFA-Net have light haze left behind in the recovery of
thin fog and moderate fog images. The recovery of some local details is slightly worse, as
shown in Figures 7g and 8g. Experiments show that our method has better robustness in
dehazing performance, is suitable for processing RS haze images in different challenging
environments, and outperforms state-of-the-art dehazing methods. However, our method
is still subject to certain limitations in the recovery of color and local details in moderate
fog and thick fog images. The grass in Figure 8i is darker, and a small amount of haze still
remains in the grass in the lower right corner of Figure 9i. This is because RS images are
obscured by medium fog and thick fog, and their detailed information is lost more seriously.
It is difficult for the network to effectively capture part of the detailed information of the
image, resulting in a greatly increased difficulty in recovery. The next step of our research
will further focus on the recovery of RS images obscured by moderate and thick fog, in
order to solve this challenging problem that RS thick haze images are difficult to recover.

The dehazing results of each method on real RS haze images are shown in Figure 12.
DCP loses the texture details of the image, as shown in Figure 12b. AOD-Net removes
haze excessively, as shown in Figure 12c. PFF-Net and SCA-Net have better haze removal
performance, but the images they recover are slightly darker, deviating from the real-world
visual perception, as shown in Figure 12e,h. FCTF-Net, GridDehaze-Net, FFA-Net, and our
EDED-Net all have good haze removal performance, as shown in Figure 12d,f,g,i. But in
terms of some local details, our method is closer to the real-world visual effects.

Figure 14 shows the qualitative results of ablation experiments on the DHID dataset.
The “base” and “Base + LR” networks have a certain dehazing effect, but obviously change
the color of the image, leaving a lot of shadows, as shown in Figure 14b,c. However, when
the “Base + LR” network is integrated into our PNM so that the network contains the
MSDEU we designed, the quality of the restored image is greatly improved, as shown in
Figure 14d. This result is attributed to the fact that our PNM is able to efficiently learn
features that are independent of appearance changes and relevant to the content, and our
MSDEU facilitates the effective improvement of image quality by extracting and enhancing
the detailed information of the image with multi-scale characteristics. SFPA is integrated
into the “Base + LR + PNM” network to form our EDED-Net, which includes SADEU.
Compared with the image restored with “Base + LR + PNM”, the details of the image
restored with EDED-Net have been further improved. As shown in Figure 14g, its red box
part is obviously more similar to the ground truth image. It can be seen that our SADEU
relies on the attention mechanism to form effective constraints on haze from the three
dimensions of deep, medium, and shallow, further improving the retention of an image’s
detailed information, allowing our EDED-Net to more effectively restore RS haze image.
When removing SK Fusion from our EDED-Net, the haze of the recovered images increased
significantly, as shown in Figure 14e. This result reflects the good feature fusion capability
of SK Fusion, which can substantially contribute to the improvement of image quality. We
removed Soft Recno. from our EDED-Net, and the image quality was slightly degraded
compared to our EDED-Net recovered image, such as the roadway in the right center of
Figure 14f. It can be seen that Soft Recno. achieves a fine-tuning of the image quality so
that the recovered image is as close as possible to the ground truth image.
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6. Conclusions

In this paper, we propose an end-to-end detail enhancement network to address the
haze removal problem in RS images. EDED-Net contains a detail enhancement block con-
sisting of a multi-scale detail enhancement unit and a stepped attention detail enhancement
unit. The multi-scale detail enhancement unit obtains multi-scale information and retains
detailed features. The stepped attention detail enhancement unit adaptively processes
unevenly distributed haze in RS images and outputs useful features to the U-Net back-
bone. In order to enhance the stability and generalization ability of the model, a novel
parallel normalization module is designed in the network. The results demonstrate that the
MSDEU is effective in capturing haze-related information and achieving good dehazing
performance. The SADEU can focus on and enhance the main information in the dehazing
process, further improving the quality of dehazed RS images. The experiments show that
our method achieves the most advanced haze removal effect and significantly restores an
image’s detailed information on the SateHaze1k and HRSD benchmark RS blur datasets.
In future work, we plan to design a novel RS image haze addition algorithm and construct
a more realistic public large-scale RS haze dataset to promote research in the field of RS
image dehazing.
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https://github.com/Shan-rs/DCI-Net
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