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Abstract: As one of the most important techniques for hyperspectral image dimensionality reduction,
band selection has received considerable attention, whereas self-representation subspace clustering-
based band selection algorithms have received quite a lot of attention with good effect. However,
many of them lack the self-supervision of representations and ignore the multi-level spectral–spatial
information of HSI and the connectivity of subspaces. To this end, this paper proposes a novel self-
supervised multi-level representation learning fusion-based maximum entropy subspace clustering
(MLRLFMESC) method for hyperspectral band selection. Firstly, to learn multi-level spectral–spatial
information, self-representation subspace clustering is embedded between the encoder layers of
the deep-stacked convolutional autoencoder and its corresponding decoder layers, respectively,
as multiple fully connected layers to achieve multi-level representation learning (MLRL). A new
auxiliary task is constructed for multi-level representation learning and multi-level self-supervised
training to improve its capability of representation. Then, a fusion model is designed to fuse the multi-
level spectral–spatial information to obtain a more distinctive coefficient matrix for self-expression,
where the maximum entropy regularization (MER) method is employed to promote connectivity and
the uniform dense distribution of band elements in each subspace. Finally, subspace clustering is
conducted to obtain the final band subset. Experiments have been conducted on three hyperspectral
datasets, and the corresponding results show that the proposed MLRLFMESC algorithm significantly
outperforms several other band selection methods in classification performance.

Keywords: hyperspectral imagery; band selection; multi-level representation learning; multi-level
self-supervised learning; maximum entropy subspace clustering

1. Introduction

A hyperspectral image (HSI) is a unified image of interest targets captured by a
specific wavelength of an optical sensor, consisting of hundreds of continuous bands with
a fine resolution [1,2]. These bands are rich in available spectral and spatial information,
allowing the identification of subtle differences between features. In recent years, due to
the higher and higher spectral resolution of HSI, it has been successfully used in numerous
applications, including military monitoring [3], food safety [4], medical diagnosis [5], etc.
However, the strong inter-band correlation and high-dimensional hyperspectral data lead
to a large amount of information redundancy, heavy computational and storage burdens,
and dimensional catastrophe problems, which pose a great deal of difficulty and challenges
to the development of HSI processing methods. Hyperspectral dimensionality reduction is
of great significance as a form of preprocessing to address the above challenges.

The most commonly used methods for HSI dimensionality reduction to reduce spectral
band redundancy include band selection (BS) [6,7] and feature extraction (FE) [8,9], where
BS-based methods are based on the criteria of selecting the most representative band subset
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directly from the original HSI data without any transformation, and the obtained sub-bands
are informative, distinguishable, and beneficial for subsequent tasks. Compared with FE, BS
can reduce data dimensionality while preserving the physical meaning, inherent properties,
and spectral characteristics of the original data, which is beneficial for interpreting the
selected subset of bands in subsequent analysis and has been widely used in practical
applications [10,11]. According to whether labeled information is used or not, the existing
BS methods include three types as follows: supervised [12–14], semi-supervised [15–17],
and unsupervised [18–21]. Owing to the fact that labeled HSI data are difficult to obtain,
this paper focuses on unsupervised BS methods with the advantage of being more flexible,
feasible, and effective in practice.

As a popular technique for unsupervised band selection, self-representation is imple-
mented using the self-expression properties of data and different regularization constraints,
where the most representative algorithms include fast and robust self-representation
(FRSR) [22], robust dual graph self-representation (RDGSR) [23], and self-marginalized
graph self-representation (MGSR) [24]. In addition, self-representation-based subspace clus-
tering (SSC) has achieved a large number of successful results in unsupervised BS [25–27],
where under the representation-based framework, the clustering structure of the spec-
tral band can be learned in the low-dimensional subspace with the robustness of noise
and outliers, and can effectively cluster high-dimensional data. However, in practical
applications, the HSI data to be processed typically have great spectral variability and
are located in nonlinear subspace, where traditional SSC-based BS methods with linear
characteristics are not applicable for the nonlinear relationships of HSI, failing to achieve
satisfactory performance.

Recently, deep neural networks have demonstrated superiority in handling high-
dimensional data because of their remarkable ability to extract complex nonlinear rela-
tionships of features in an end-to-end learnable way. Deep learning models for HSI band
selection have achieved tremendous success [28–31]. Although these methods are able
to learn the complex nonlinear structure information of HSI, they ignore the correlation
between bands, resulting in a large number of band redundancies. In view of this issue,
deep learning-based clustering methods are introduced into band selection [32–35], con-
sidering the spatial information inherent in band images. However, they also have certain
limitations. On the one hand, the representation learning of these models is embedded
in the deep convolutional autoencoder, leading to a lack of an effective self-supervised
representation ability; on the other hand, without considering the subspace clustering
representation of the low-level and high-level information of the input HSI, these models
ignore the meaningful multi-scale information embedded in different layers of deep convo-
lutional autoencoders, imposing a waste of information that is conducive to clustering. In
addition, due to the ignorance of the connectivity within the subspace, the existing models
are blocked from further improving the clustering performance.

To solve the above problems, a self-supervised deep multi-level representation learn-
ing fusion-applying maximum entropy subspace clustering (MLRLFMESC) algorithm is
proposed for BS in this paper, with the main contributions as follows:

(1) Considering the multi-level spectral–spatial information of hyperspectral data, self-
representation-based subspace clustering, comprising multiple fully connected layers,
is respectively inserted between the encoder layers of the deep stacked convolutional
autoencoder and its corresponding decoder layers, respectively, to realize multi-level
representation learning (MLRL), which can fully extract low-level and high-level infor-
mation and obtain more informative and discriminative multi-level representations.

(2) Self-supervised information is provided to further enhance the representation capa-
bility of the MLRL, and a new auxiliary task is constructed for MLRL to perform
multi-level self-supervised learning (MLSL). Furthermore, a fusion module is de-
signed to fuse the multi-level spectral–spatial information extracted by the proposed
MLRL to obtain a more informative subspace representation matrix.
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(3) To enhance the connectivity within the same subspace, the MER method is applied
to ensure that the elements within the same subspace are uniformly and densely
distributed, which is beneficial for subsequent spectral clustering.

The remainder of this paper is organized as follows. Section 2 gives a detailed de-
scription of the proposed MLRLFMESC algorithm. Section 3 presents the experiments and
corresponding analysis of the proposed algorithm with other state-of-the-art BS methods.
Finally, the conclusions and discussions are drawn in Section 4.

2. Proposed Method

This section describes in detail the proposed MLRLFMESC method for BS. The
flowchart of this method is shown in Figure 1. The main steps are as follows: firstly,
considering the low-level and high-level spatial information of hyperspectral data, the
proposed method inserts multiple fully connected layers between the encoder layers and
their corresponding decoder layers to achieve multi-level representation learning (MLRL),
thus generating multiple sets of self-expression coefficient matrices at different levels of
the encoder layers to obtain more informative and discriminative subspace clustering
representations. Secondly, a new auxiliary task is constructed based on the MLRL, which
provides multi-level self-supervised information to further enhance the representation
ability of the model, termed multi-level self-supervision learning (MLSL). Finally, a fusion
module is designed to integrate the multi-scale information extracted from different layers
of representation learning to obtain a more differentiated self-expression coefficient matrix,
where maximum entropy regularization (MER) is introduced to ensure that elements of
the same subspace are evenly and densely distributed, thereby enhancing connectivity
within each subspace and facilitating subsequent spectral clustering to determine the most
representative band subset.
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2.1. Multi-Level Representation Learning (MLRL)

The proposed MLRLFMESC method exploits a deep stacked convolutional autoen-
coder (SCAE) constructed by the structure of a symmetrical encoder–decoder as the core
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network for feature extraction to sufficiently extract the spectral–spatial information of
HSI data. The original HSI data cube X =

{
xi
∣∣xi ∈ RW×H }B

i=1 contains W × H spatial
dimensions and B spectral band dimensions. To ensure that the input of HSI samples X can
be constructed by the deep SCAE, the definition of the loss of function is as follows:

LSCAE =
1
2

∥∥X − X̂
∥∥2

F, (1)

where the Frobenius norm is expressed as ∥·∥F, and the reconstructed HSI samples are
denoted as X̂.

Self-representation-based subspace clustering assumes that all data points belong
to a combination of linear or affinity subspaces, which is typically represented as a self-
representative model. Let the spectral bands

{
xi
∣∣xi ∈ RW×H }B

i=1 come from the union
of n different subspaces ∪n

j=1
{

Sj
}

with the dimension
{

dj
}n

j=1 in RB. In order to extract
spatial information, considering the nonlinear relationships of HSI, the self-representative
model is embedded in the latent space of the deep SCAE to implement self-representation
properties and obtain representations of subspace clustering; then, the potential clusters
are recovered with spectral clustering.

Inspired by the fact that the encoder with different layers can learn more complicated
feature representations of the input HSI data, a self-representation model, comprising
multiple fully connected layers, is inserted between the encoder layers of the deep stacked
convolutional autoencoder and its corresponding decoder layers, respectively, to achieve
MLRL; thus, the multi-level spectral–spatial information can be extracted. In order to
capture the shared information between encoders and generate unique information for each

layer, the consistency matrix CC ∈ RB×B and the discrimination matrix
{

Dl
}L

l=1
∈ RB×B

are defined, respectively. In view of the above-mentioned consideration, MLRL can be
performed by the following loss function:

Lexp =
L

∑
l=1

∥∥∥Zl − Zl
(

CC + Dl
)∥∥∥2

F
s.t. diag

(
CC + Dl

)
= 0, l ∈ {1, . . . , L}, (2)

where Zl =
[
zl

1, zl
2, . . . , zl

B

]T
∈ Rm×B represents the latent representation matrix and m is

the dimension of the deep spatial feature.
The loss of self-expression Lexp is used to promote the learning of self-expression fea-

ture representations at different encoder levels. As for the discrimination matrix
{

Dl
}L

l=1
,

the Frobenius norm is employed; thus, the connectivity of subspace representations related
to each fully connected layer can be ensured. Meanwhile, to generate the sparse representa-
tion of the HSI, the l1-norm is used in the consistency matrix CC. Accordingly, the regular
terms added to the model are shown as follows:

LCC = ∥CC∥1, (3)

LD =
L

∑
l=1

∥∥∥Dl
∥∥∥2

F
, (4)

The multi-level spectral–spatial information of HSI is obtained via MLRL to facilitate
the feature learning process, thereby obtaining multiple sets of information representa-
tions accordingly.

2.2. Multi-Level Self-Supervised Learning (MLSL)

Aiming at the further improvement of the representation ability of the proposed
model, MLSL is used as a self-supervised method to better learn self-expression feature
representations by constructing auxiliary tasks for MLRL.
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To perform MLSL, the auxiliary tasks are constructed as follows: Firstly, positive
and negative sample pairs are formulated for the inputs and outputs of the MLRL. For a

given input Zl
i and its corresponding set of outputs

{
Gl

j = Zl
(

CC j + Dl
j

)}B

j=1
at layer l of

MLRL, Zl
i and Gl

j are matched as a positive pair, while Zl
i and

{
Gl

j

}B

j=1,j ̸=i
are treated as a

negative pair. Subsequently, the MLSL is implemented by formulating a self-supervised
loss function, expressed as follows:

LS = −
L

∑
l=1

log

exp

((→
Z

l

i

)T→
G

l

i/σ

)

∑B
j=1 exp

((→
Z

l

i

)T→
G

l

j/σ

) , (5)

where σ is a temperature parameter that controls the distribution of the concentration level.
→
Z

l

i and
→
G

l

i are normalizations of Zl
i and Gl

i , respectively.

An l2-normalization layer is used to satisfy
∥∥∥∥→Z l

i

∥∥∥∥ = 1 and
∥∥∥∥→Gl

i

∥∥∥∥ = 1. The classifier of

B-way softmax is exploited to classify Zl
i as Gl

i in the loss function of MLRL.

2.3. Fusion Module with Maximum Entropy Regularization (MER)

Considering that the coefficient matrices of the information representations obtained
from MLRL have multiple information of the input HSI data, it is preferable to fuse these
matrices into a more discriminative and informative coefficient subspace representation
matrix as the input of the subspace clustering.

The matrices CC and
{

Dl
}L

l=1
learned using MLRL are fused through the fusion

module. Stacking CC and
{

Dl
}L

l=1
along the channel dimension can help acquire the

stacked matrix CS. Then, the channels of CS are merged using a convolutional kernel k
to realize the fusion. Finally, a more informative subspace representation matrix CF is
obtained via channel fusion learning, expressed as follows:

CF ∈ RB×B = k ⊗ CS, (6)

where ⊗ is the convolution operation.
By using an appropriate kernel size k, CF is able to capture more local information on

CC and each
{

Dl
}L

l=1
with the block diagonal structure.

Entropy is a measure of uncertain information contained within a random vari-
able, where for a discrete random variable X, the entropy can be calculated as H(X) =
−∑y∈Y p(x) log p(x) with p(X) as the probability distribution function of X. The similarity
between hyperspectral data samples i and j in the subspace representation matrix CF can
be expressed as CFi,j , and the MER method is applied to the subspace representation matrix.
According to the fact that maxH(C) = min − H(C), the following loss function for CF can
be obtained as follows:

LCF =
B

∑
i=1

B

∑
j=1

CFi,j ln CFi,j s.t. CFi,j ≥ 0, (7)

where CFi,j = 0 satisfies CFi,j ln CFi,j = 0. The MER forces the equal strength of connections
between elements from the same subspace. Simultaneously, it ensures a uniform dense
distribution of elements belonging to the same subspace.
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2.4. Implementation Details

The final loss function of the proposed MLRLFMESC method is expressed as follows:

L
(
θ, θ̂, CF

)
= LSCAE + λ1Lexp + λ2LCC + λ3LD + λ4LS + λ5LCF , (8)

where λ1, λ2, λ3, λ4, λ5 are parameters that balance the trade-off between the earlier-
mentioned different losses. θ and θ̂ are the parameters updated by the standard back-
propagation of the network trained with the Adam gradient.

Once the network has been trained to obtain the matrix CF, a symmetric affinity matrix
can be created for spectral clustering,

A =
1
2

(
|CF|+ |CF|T

)
, (9)

Matrix A shows the pairwise relationship between the bands. Given the above, the
spectral clustering algorithms can be utilized to recover the underlying subspaces and
cluster the samples into respective subspaces to obtain the clustering results. The clustering
centers can be obtained via the average of the spectrum in each cluster. Then, the distances
between the cluster center and each band in the same cluster can be calculated to find the
closest band as the selected representative band of the cluster, and the final subset of bands
can be obtained.

3. Experiments and Results
3.1. Hyperspectral Datasets

Comparative experiments are conducted on three publicly available HSIs with differ-
ent scenarios to prove the effectiveness of the proposed algorithm, including the Indian
Pines (IP) dataset, the Pavia University (PU) dataset, and the Salinas (SA) dataset. Detailed
descriptions of the three hyperspectral datasets are given in Table 1.

Table 1. Descriptions of three HIS datasets.

Descriptions IP PU SA

Size 145 × 145 610 × 340 512 × 227
Bands 200 103 204

Classes 16 9 16
Samples 10,249 42,776 54,129

Resolution 20 m 1.3 m 3.7 m
Sensors AVIRIS ROSIS AVIRIS

Wavelength 0.4–2.5 µm 0.43–0.86 µm 0.36–2.5 µm

3.1.1. Indian Pines (IP) Dataset

The IP dataset was captured using the AVIRIS sensor in Northwestern Indiana on 12
June 1992, containing 220 spectral bands with wavelengths of 0.4 to 2.5 µm and containing
145 × 145 pixels with a spatial resolution of 20 m. After the removal of 20 water absorption
bands, 200 bands with 16 classes of crops are left for experiments. Figure 2 shows the IP
dataset’s pseudo-color map as well as the true image feature class distribution.

3.1.2. Pavia University (PU) Dataset

The PU dataset was collected via the ROSIS sensor for the city of Pavia in North Italy
during a flying activity in 2003, consisting of 115 bands with wavelengths of 0.43 to 0.86 µm
and containing 610 × 340 pixels with a spatial resolution of 1.3 m. After the removal of
12 noise bands, there are 9 types of objects available in the remaining 103 bands (the types
of objects are shown in the label of Figure 3). The pseudo-color map and real image feature
class distribution of the PU dataset are shown in Figure 3.
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with labels.

3.1.3. Salinas (SA) Dataset

The SA dataset was gathered using the AVIRIS sensor in Salinas Valley, California,
in 1998, which comprises 224 bands with wavelengths of 0.36 to 2.5 µm and contains
512 × 217 pixels with spatial resolution of 3.7 m. After deleting 20 water absorption bands,
the remaining 204 bands containing 16 classes are utilized for experiments. The pseudo-
color map and real image feature class distribution of the SA dataset are shown in Figure 4.

3.2. Experimental Setup

In order to prove the effectiveness of the proposed BS algorithm, five existing BS
methods are used for comparison. Considering search-based, clustering-based, and ranking-
based, as well as the comparison between traditional methods and deep learning methods,
the selected comparable algorithms are UBS [18], E-FDPC [19], ISSC [25], ASPS_MN [5]
and DSC [32], as these algorithms have open-source implementations provided by their
respective authors. Performance analysis is conducted on a subset of bands obtained from
various BS approaches using the same SVM classifier in [36] with an open-source code.

To quantitatively assess the quality of the selected band subsets, indicators of classifi-
cation accuracy are used in this section, including overall accuracy (OA), average accuracy
(AA), and the kappa coefficient (Kappa). For a fair comparative purpose, identical training
and testing data subsets within each round are utilized when evaluating different BS algo-
rithms. Specifically, 10% of samples from each class are randomly chosen as the training
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set, with the remaining samples allocated to the testing set. The experimental results are
averaged via ten independent runs to reduce the randomness.
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with labels.

The deep SCAE network of the proposed method is composed of three symmetric
layers of the stacked encoder and decoder with the following parameter settings: the
stacked encoder consists of 10, 20, and 30 filters with corresponding kernel sizes of 5 × 5,
3 × 3, and 3 × 3, respectively. The network learning rate is 1.0 × 10−4. The trade-off
parameters are λ1 = 1.0 × 10−1, λ2 = 1.0 × 10−2, λ3 = 1.0 × 10−2, λ4 = 1.0 × 10−2, and
λ5 = 1.0 × 10−2. The kernel size k is 3 × 3.

3.3. Randomness Validation by Random Selection of Training and Testing Sets

As for classification results, the training and testing sets have a significant influence
on the classification performance. Therefore, before the comparison of various algorithms,
this section gives the average and variance of OA across 10 distinct runs, allowing the
assessment of disparities between experiment runs where each run involves alterations to
the training and testing sets.

Figure 5a–c illustrates the box plots depicting the OA results for the six algorithms
utilizing 35 bands across the three HSI datasets in 10 separate runs. The experiments entail
the repeated random selection of training and testing datasets. To ensure an equitable
comparison, the training and testing sets for all six algorithms within the same round
remain identical. Sub-figures demonstrate that the proposed MLRLFMESC obtains the
optimal mean OA with a perfect criteria bias, especially for IP and PU datasets, as shown
in Figure 5a–c.
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3.4. Ablation Study of the Proposed MLRLFMESC Method

To separately verify the effectiveness of maximum entropy regularization and self-
supervised learning in the proposed MLRLFMESC method, ablation studies are conducted
in this section. As can be shown in Equation (8) in Section 2, the proposed method
adopts partial loss functions from the DSC method, namely LSCAE, Lexp, LCc , and LD,
collectively referred to as LDSC in this paper. Building upon this foundation, the proposed
method introduces the following two innovative techniques: the multi-level self-supervised
learning model (MLSL) and maximum entropy regularization (MER). In MLSL, the LS is
introduced to obtain improved self-supervised features. In MER, the LCF is introduced
to promote connectivity within the same subspace while ensuring a uniform and dense
distribution of elements within the subspace, which is beneficial for subsequent spectral
clustering. As a result, the ablation study should be implemented with/without the LS
and the LCF loss in Table 2.

Table 2. Ablation study for maximum entropy regularization and self-supervised learning.

Ablation Components Number of Selected Bands (OA Values)
LDSC(LSCAE,Lexp,LCc ,LD) LCF LS 5 10 15 20 25

√
× × 70.67 ± 1.43 79.16 ± 1.28 81.20 ± 0.65 82.98 ± 0.42 83.88 ± 0.52√ √

× 73.02 ± 1.40 81.19 ± 1.64 82.77 ± 1.95 84.41 ± 2.54 85.09 ± 1.33√
×

√
73.16 ± 1.48 80.94 ± 0.93 83.44 ± 0.08 84.72 ± 0.63 84.95 ± 0.86√ √ √
74.15 ± 1.59 82.90 ± 1.58 85.05 ± 1.25 85.77 ± 1.61 86.00 ± 1.79

The following conclusions are given from Table 2: Firstly, when adding either the MER
into the model (as shown in the second line in Table with the form of LCF ) or the multi-level
self-supervised learning model (as shown in the third line in the Table with the form of LS),
the OA performance can be better than the DSC method. The classification performance
of the proposed MLRLFMESC with both MER and MLSL (as shown in the fourth line in
Table with the form of LS and LCF ) has the best OA performance with bold fonts under the
selection with a different number of selected band subsets. These experiments demonstrate
the effectiveness of maximum entropy regularization and self-supervised learning in the
proposed MLRLFMESC approach.

3.5. Classification Results Analysis for Different BS Algorithms

In this section, comparative experiments are conducted on three publicly available
HSIs with different scenarios to prove the effectiveness of the proposed algorithm, including
the Indian Pines (IP) dataset, the Pavia University (PU) dataset, and the Salinas (SA)
dataset. However, limited by the number of pages and considering the reproducibility of
conclusions, only the results of the IP dataset are shown in this section, with the results of
the PU and SA datasets in Appendices A and B.

3.5.1. BS Results with Different Number of Selected Bands

To evaluate the classification accuracy of the proposed MLRLFMESC algorithm while
comparing it with the existing BS methods, the quantity n of selected bands in different BS
methods is varied in the region of [5,35] with a step of five. The reason why we chose 35 as
the maximum is that when using virtual dimension (VD) analysis, which is a widely used
technique for selecting the number of bands, the VD is typically less than 35.

In Figure 6, the suggested MLRLFMESC technique clearly outperforms the other five
BS approaches in terms of classification accuracy for OA, AA, and Kappa. In Figure 6a
of the IP dataset, the proposed MLRLFMESC has the highest and most stable OA with a
significant improvement over the other five comparable BS methods, especially when n = 5,
30, 35, and the proposed MLRLFMESC has better accuracies of 3.42%, 3.56%, and 2.83%
compared to the suboptimal approach. The AA accuracy is shown in Figure 6b, and the
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MLRLFMESC technique exhibits the “Hughes” phenomena that grows and then drops as
the number of bands increases. In terms of the Kappa given in Figure 6c, the MLRLFMESC
approach has a growing advantage over the suboptimal approach as the number of chosen
bands grows, notably when n = 30, 35, MLRLFMESC has 3.56% and 2.83% greater accuracy
than the suboptimal approach, respectively. The other five BS approaches exhibit some
“Hughes” phenomena in the OA, AA, and Kappa curves, indicating the necessity for
band selection.
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(c) Kappa.

3.5.2. Classification Performance Analysis by Band Subsets Using Various BS Algorithms

To further assess the efficacy of the proposed MLRLFMESC approach for the analysis,
Figure 7 shows the index distribution of the 30 bands selected from the IP dataset via
various band selection approaches. It is usually regarded as a bad strategy if the selected
bands are scattered across a relatively short range.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 7. Distribution of bands selected using various BS algorithms on IP data. 

Figure 8 presents the labeled image, the classification result maps for the various 

band selection methods, and all bands, which may be used to visually analyze the classi-

fication performance of various band selection methods on the IP dataset. There is some 

visual deviance, especially regarding the fact that the proposed algorithm has the best 

performance of the corn-min class with the orange color in the lower left corner and the 

better performance of the wood class with the brown color in the lower right corner. Fur-

ther quantitative analysis is conducted for a fair comparison. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 8. Classification result maps, (a) labeled image, and (b–h) classification result maps on IP-

selected 30 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands, respec-

tively. 

In order for a quantitative comparison, Table 3 displays the average classification re-

sults of 10 runs with OA, AA, and Kappa, using various band selection methods (UBS, E-

FDPC, ISSC, ASPS_MN, DSC, and the proposed MLRLFMESC, respectively) and all 

bands, where the best classification results are blacked out and the second-best results are 

underlined. 

Figure 7. Distribution of bands selected using various BS algorithms on IP data.

As can be seen in Figure 7, most band selection approaches pick bands that span a
broad range of all bands.

Figure 8 presents the labeled image, the classification result maps for the various band
selection methods, and all bands, which may be used to visually analyze the classification
performance of various band selection methods on the IP dataset. There is some visual
deviance, especially regarding the fact that the proposed algorithm has the best perfor-
mance of the corn-min class with the orange color in the lower left corner and the better
performance of the wood class with the brown color in the lower right corner. Further
quantitative analysis is conducted for a fair comparison.
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Figure 8. Classification result maps, (a) labeled image, and (b–h) classification result maps on
IP-selected 30 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands,
respectively.

In order for a quantitative comparison, Table 3 displays the average classification
results of 10 runs with OA, AA, and Kappa, using various band selection methods (UBS,
E-FDPC, ISSC, ASPS_MN, DSC, and the proposed MLRLFMESC, respectively) and all
bands, where the best classification results are blacked out and the second-best results
are underlined.

Table 3. Comparison of classification results from various BS approaches on the IP dataset.

Algorithms UBS E-FDPC ISSC ASPS_MN DSC MLRLFMESC All Bands

OA 82.98 ± 1.37 83.85 ± 1.53 81.52 ± 1.15 83.39 ± 1.27 83.72 ± 1.51 86.95 ± 1.09 88.43 ± 1.24
AA 81.86 ± 2.67 83.48 ± 1.73 81.55 ± 3.80 82.65 ± 2.18 82.11 ± 3.97 86.43 ± 2.87 86.69 ± 3.23

Kappa 80.06 ± 1.58 81.09 ± 1.67 78.35 ± 1.36 80.53 ± 1.49 80.91 ± 1.80 84.68 ± 1.27 86.42 ± 1.47

1 76.30 ± 25.74 85.47 ± 15.58 85.26 ± 34.62 81.20 ± 24.44 78.16 ± 36.84 86.28 ± 23.90 91.89 ± 8.11
2 76.49 ± 4.96 77.40 ± 5.65 76.78 ± 4.17 75.85 ± 3.22 78.58 ± 3.31 82.45 ± 3.23 84.83 ± 1.95
3 73.75 ± 7.15 77.19 ± 6.32 71.97 ± 4.14 75.46 ± 7.01 71.73 ± 10.16 80.19 ± 4.80 83.54 ± 2.35
4 61.55 ± 10.41 61.71 ± 13.52 60.35 ± 7.00 60.51 ± 8.64 56.46 ± 10.96 68.03 ± 13.12 66.93 ± 3.82
5 79.61 ± 8.40 87.84 ± 5.70 81.81 ± 8.37 86.96 ± 6.40 88.57 ± 7.68 89.94 ± 7.35 92.48 ± 3.06
6 95.61 ± 3.33 93.65 ± 2.78 91.36 ± 5.34 94.05 ± 2.75 95.58 ± 2.79 96.47 ± 3.31 96.10 ± 1.42
7 92.80 ± 18.75 86.72 ± 27.27 93.18 ± 20.00 93.27 ± 14.29 87.56 ± 25.00 93.24 ± 14.29 87.73 ± 5.13
8 96.98 ± 2.64 98.29 ± 2.92 94.76 ± 3.51 97.42 ± 1.77 97.43 ± 3.95 98.53 ± 2.12 97.19 ± 1.83
9 63.60 ± 38.96 77.04 ± 34.44 76.29 ± 50.00 63.45 ± 40.00 67.75 ± 44.64 75.43 ± 34.34 71.39 ± 18.61

10 73.09 ± 4.83 73.26 ± 6.68 69.52 ± 2.84 74.68 ± 2.33 74.67 ± 4.87 77.00 ± 4.61 80.28 ± 1.91
11 86.69 ± 3.09 87.79 ± 4.41 85.33 ± 2.83 86.28 ± 2.25 87.46 ± 3.62 89.38 ± 3.08 91.93 ± 1.18
12 78.99 ± 9.31 78.34 ± 8.03 75.92 ± 11.73 81.29 ± 9.21 75.12 ± 7.63 83.69 ± 9.58 81.97 ± 3.31
13 98.10 ± 3.66 96.52 ± 6.93 94.52 ± 5.75 95.62 ± 4.92 96.97 ± 8.07 97.91 ± 4.49 97.45 ± 2.55
14 96.86 ± 1.77 96.15 ± 1.83 96.48 ± 1.64 96.43 ± 1.72 96.89 ± 1.75 97.11 ± 1.33 97.50 ± 0.94
15 63.32 ± 18.33 63.06 ± 15.95 57.77 ± 10.63 64.37 ± 16.38 66.52 ± 13.70 71.87 ± 10.09 68.07 ± 6.64
16 95.95 ± 7.69 95.27 ± 5.25 93.49 ± 9.20 95.53 ± 12.20 94.26 ± 12.20 95.34 ± 9.30 97.77 ± 2.23
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It can be easily seen from Table 3 that the proposed method outperforms all previous
band selection methods except all bands in terms of OA, AA, and Kappa, as well as classifi-
cation accuracy in most classes. The proposed MLRLFMESC approach provides the highest
classification accuracy in classes 8, 12, and 15 when compared to existing approaches.

3.6. Time Consuming for Different BS Algorithms

In this section, a comparison of computing times across different band selection
algorithms is conducted to discern their respective computational complexity. Table 4 lists
the average computation time for ten runs of various BS approaches on the IP dataset,
where the ISSC has the lowest running time with bold font. Since MLRLFMESC and DSC
use deep neural networks, the running time is longer compared to traditional BS methods.
However, the runtime of MLRLFMESC is significantly less than that of DSC, efficiently
obtaining the desired bands within an acceptable timeframe while achieving a superior
classification performance.

Table 4. Comparison of time consumption from various BS approaches on the IP dataset.

Algorithms MLRLFMESC DSC ASPS_MN ISSC E-FDPC UBS

Time (s) 26.07 39.81 0.54 0.49 1.54 N/A

4. Conclusions and Discussion

This paper presents a novel MLRLFMESC framework for unsupervised hyperspec-
tral band selection. Self-representation subspace clustering is applied in deep SCAE to
enable the learning of hyperspectral nonlinear spectra–spatial relationships in a trainable
deep network.

(1) From the results in Section 3, it can be seen that the proposed MLSL model retains
good band subsets with multi-level spectral–spatial information and multi-level
discriminative information representations.

(2) A fusion module is employed to fuse the multi-level discriminative information
representations, where the MER method is applied to enhance the objectiveness of the
bands in each subspace while ensuring the uniform and dense distribution of bands
in the same subspace, which was shown to be successful in the ablation study.

(3) Comparable experiments indicate that the proposed MLRLFMESC approach performs
better than the other five state-of-the-art BS methods on three real HSI datasets for
classification performance.

Although this work, and even other existing BS methods, have been extensively
studied and achieved excellent performance in classification tasks, there has been limited
research on integrating BS algorithms into tasks such as hyperspectral image target de-
tection, target tracking, unmixing, etc. An important research direction in the future is
to apply band selection algorithms to different task requirements while considering high
performance. Furthermore, this paper does not pay attention to the problem of the uneven
distribution of samples in classification-oriented tasks, resulting in the better performance
of large categories and the poor performance of small categories. Therefore, the expansion
of small category samples and the design or improvement of targeted models are the
direction of focus in further research.
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Appendix A. BS Results and Analysis for PU

In this appendix, the performance of different BS algorithms is compared using the
PU dataset.

As shown in Figure A1, the OA, AA, and Kappa curves generated via various BS
approaches with varying numbers of bands selected on the PU dataset are computed and
recorded. The proposed MLRLFMESC method’s performance for OA, AA, and Kappa
initially and gradually improves as selected bands grow, then shows a downward trend
from n = 20 to n = 25, followed by an upward trend; this is the behavior known as the
“Hughes” phenomenon. The proposed MLRLFMESC algorithm wins over the other five
comparable BS methods with a significant classification priority in terms of OA, AA, and
Kappa performance on the PU dataset, as illustrated in Figure A1, especially when n = 5,
10, 15, 20, and the OA, AA, and Kappa values have a clear advantage compared to the
sub-optimal approach.
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Figure A1. Classification performance of PU dataset with a different number of selected bands,
(a) OA, (b) AA, (c) Kappa.

The index distribution of the six band selection algorithms for selecting 20 bands of the
PU dataset is shown in Figure A2. The selected bands are distributed widely and discretely
in the proposed MLRLFMESC algorithm.

Figure A3 shows the real label image, the visual classification maps for six BS methods
and 20 selected bands, and full bands on the PU dataset, illustrating that the classification
maps contain many misclassified samples, and the proposed MLRLFMESC method has a
slightly better classification result map than the other five BS methods.

The same comparison is conducted for the PU dataset to quantitatively compare the
performance of different BS algorithms, where the average classification results for all bands
and all 20 BS algorithm-selected 20 bands are listed in Table A1 using OA, AA, and Kappa
performance. The best values of OA, AA, and Kappa in each category are blacked out,
and the second-best values are underlined. It can be seen that the proposed MLRLFMESC
algorithm achieves the highest classification accuracy in most categories, except for all

https://github.com/YuleiWang1
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bands. Compared with the DSC algorithm, the MLRLFMESC algorithm exhibits 1.43%,
1.47%, and 2.13% improvements in OA, AA, and Kappa, respectively.
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Table A1. Comparison of classification results from various BS approaches on the PU dataset.

Algorithms UBS E-FDPC ISSC ASPS_MN DSC MLRLFMESC All Bands

OA 89.88 ± 0.50 89.38 ± 0.94 90.88 ± 0.49 92.23 ± 0.36 92.63 ± 0.21 94.06 ± 0.38 95.71 ± 0.31
AA 86.39 ± 0.71 85.88 ± 1.13 87.17 ± 0.74 88.33 ± 0.54 89.01 ± 0.43 90.48 ± 0.56 92.95 ± 0.82

Kappa 84.94 ± 0.66 84.12 ± 1.32 86.41 ± 0.73 88.42 ± 0.57 88.99 ± 0.37 91.12 ± 0.55 93.57 ± 0.43

1 96.10 ± 0.56 95.85 ± 1.00 95.88 ± 0.72 96.16 ± 0.90 96.23 ± 0.81 96.70 ± 0.74 97.23 ± 0.63
2 95.16 ± 0.45 94.40 ± 0.36 96.01 ± 0.60 97.15 ± 0.38 97.19 ± 0.55 98.09 ± 0.55 98.82 ± 0.23
3 77.67 ± 4.26 75.45 ± 4.22 78.62 ± 2.46 80.28 ± 3.50 80.86 ± 2.74 82.85 ± 2.36 87.37 ± 3.99
4 82.13 ± 4.74 85.88 ± 2.95 85.77 ± 3.82 90.16 ± 3.63 90.81 ± 2.41 91.85 ± 3.03 94.10 ± 2.87
5 99.81 ± 0.53 99.79 ± 0.53 99.79 ± 0.36 99.82 ± 0.35 99.80 ± 0.70 99.77 ± 0.54 99.87 ± 0.19
6 70.20 ± 4.49 68.49 ± 7.46 73.34 ± 4.82 77.17 ± 3.77 78.36 ± 2.08 83.61 ± 2.06 88.14 ± 1.43
7 76.76 ± 4.18 74.60 ± 4.47 74.86 ± 5.72 73.81 ± 3.12 76.65 ± 2.89 79.09 ± 5.35 85.05 ± 4.85
8 79.70 ± 2.78 78.50 ± 1.93 80.32 ± 2.67 80.47 ± 2.02 81.19 ± 2.34 82.47 ± 1.53 86.00 ± 2.60
9 100.00 ± 0.00 100.00 ± 0.00 99.97 ± 0.25 99.92 ± 0.25 100.00 ± 0.00 99.90 ± 0.50 99.95 ± 0.25

Appendix B. BS Results and Analysis for SA

In this appendix, the performance of different BS algorithms is compared using the SA
dataset.
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Figure A4 compares the classification curves for the proposed MLRLFMESC method
and alternative BS methods selecting different numbers of bands, as well as the classification
performance of all bands. For the SA dataset, the proposed MLRLFMESC algorithm shows
the stable and best OA and Kappa accuracy performance when compared to the other five
comparable BS methods, as seen in Figure A4; as n increases, the proposed MLRLFMESC
method gradually increases in terms of the OA and Kappa performance. Notably, when
n = 15, E-FDPC outperforms MLRLFMESC in terms of AA, and MLRLFMESC outperforms
ASPS_MN in terms of AA when n = 20. However, the MLRLFMESC method outperforms
the other five methods in terms of the AA performance for the majority of selected bands.
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(a) OA, (b) AA, (c) Kappa.

Figure A5 provides the index distribution of the six band selection methods with
30 bands selected, where similar conclusions can be given as IP and PU datasets.
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Figure A5. Distribution of bands selected using various BS algorithms for SA dataset.

Figure A6 shows the true label image and the classification result maps for six BS meth-
ods, selecting 30 bands and all bands on the SA dataset. The visual map of the classification
results shows that all bands and the other six methods have several clear misclassifications.
All bands maintain better regional consistency and provide a visualization closer to the
ground truth.

The quantitative average classification results of all BS algorithms for 30 bands and all
bands are shown in Table A2, with the best results blacked out and the second-best results
underlined. Compared with DSC, MLRLFMESC has a slightly higher OA, AA, and Kappa
accuracy. For each category of accuracy, all BS methods achieved a performance of 98% or
above except for categories 8 and 15, and the proposed MLRLFMESC approach achieved
the best category accuracy in categories 8 and 15 compared to the other five approaches.
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Figure A6. Classification result maps with a (a) labeled image of SA, and (b–h) classification result
maps with 30 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands.

Table A2. Comparison of classification results from various BS approaches on SA dataset.

Algorithms UBS E-FDPC ISSC ASPS_MN DSC MLRLFMESC All Bands

OA 92.05 ± 0.85 92.18 ± 0.50 91.80 ± 0.62 92.12 ± 0.53 92.11 ± 0.56 92.49 ± 0.73 94.02 ± 0.35
AA 97.10 ± 0.44 97.27 ± 0.32 97.08 ± 0.39 97.30 ± 0.33 97.21 ± 0.23 97.40 ± 0.32 97.79 ± 0.21

Kappa 90.83 ± 0.98 90.97 ± 0.59 90.53 ± 0.69 90.90 ± 0.62 90.89 ± 0.64 91.32 ± 0.84 93.10 ± 0.41

1 100.00 ± 0.00 99.92 ± 0.12 99.98 ± 0.12 99.95 ± 0.12 99.97 ± 0.23 99.99 ± 0.12 99.95 ± 0.12
2 99.92 ± 0.24 99.92 ± 0.19 99.88 ± 0.34 99.92 ± 0.24 99.92 ± 0.29 99.95 ± 0.19 99.95 ± 0.24
3 99.04 ± 1.27 99.80 ± 0.70 99.68 ± 0.47 99.76 ± 0.57 99.61 ± 0.80 99.78 ± 0.80 99.87 ± 0.34
4 99.36 ± 0.99 99.44 ± 0.99 99.45 ± 0.97 99.43 ± 1.30 99.38 ± 0.83 99.49 ± 0.98 99.38 ± 1.14
5 99.01 ± 1.53 99.50 ± 0.86 99.48 ± 0.77 99.48 ± 1.02 99.46 ± 1.28 99.50 ± 1.11 99.53 ± 1.03
6 99.97 ± 0.13 99.96 ± 0.13 99.96 ± 0.09 99.94 ± 0.18 99.96 ± 0.13 99.96 ± 0.09 99.96 ± 0.13
7 99.97 ± 0.05 99.98 ± 0.05 99.99 ± 0.05 99.94 ± 0.21 99.96 ± 0.10 99.99 ± 0.10 99.97 ± 0.15
8 84.46 ± 2.67 84.34 ± 2.59 83.56 ± 1.67 83.95 ± 2.49 84.48 ± 2.40 84.73 ± 2.59 89.96 ± 1.57
9 99.67 ± 0.14 99.67 ± 0.19 99.62 ± 0.26 99.65 ± 0.14 99.68 ± 0.17 99.73 ± 0.19 99.73 ± 0.21
10 98.07 ± 1.22 98.71 ± 0.88 98.38 ± 1.48 98.48 ± 1.55 98.52 ± 1.11 98.58 ± 0.65 98.37 ± 1.29
11 98.86 ± 2.08 99.23 ± 0.85 98.56 ± 1.91 99.94 ± 0.22 99.36 ± 1.69 99.21 ± 1.06 99.62 ± 1.48
12 99.71 ± 0.70 99.61 ± 0.81 99.78 ± 0.70 99.64 ± 0.59 99.62 ± 0.83 99.62 ± 1.16 99.69 ± 0.47
13 99.67 ± 0.78 99.80 ± 0.51 99.75 ± 0.78 99.90 ± 0.52 99.75 ± 0.74 99.95 ± 0.26 99.80 ± 0.51
14 98.84 ± 2.67 98.73 ± 2.86 98.69 ± 2.12 98.92 ± 2.67 98.57 ± 3.04 99.03 ± 1.86 98.52 ± 2.23
15 77.39 ± 2.79 77.88 ± 1.54 76.95 ± 3.71 78.14 ± 2.22 77.36 ± 2.30 79.08 ± 2.59 80.80 ± 1.78
16 99.68 ± 0.87 99.77 ± 0.63 99.62 ± 0.63 99.75 ± 0.51 99.75 ± 0.64 99.75 ± 0.77 99.47 ± 1.25

References
1. Wang, J.; Liu, J.; Cui, J.; Luan, J.; Fu, Y. Multiscale fusion network based on global weighting for hyperspectral feature selection.

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 2977–2991. [CrossRef]
2. Yu, C.; Zhou, S.; Song, M.; Gong, B.; Zhao, E.; Chang, C.-I. Unsupervised hyperspectral band selection via hybrid graph

convolutional network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5530515. [CrossRef]
3. Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing:

From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [CrossRef]
4. Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing:

A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [CrossRef]
5. Wang, Q.; Li, Q.; Li, X. Hyperspectral band selection via adaptive subspace partition strategy. IEEE J. Sel. Top. Appl. Earth Observ.

Remote Sens. 2019, 12, 4940–4950. [CrossRef]
6. Li, S.; Liu, Z.; Fang, L.; Li, Q. Block diagonal representation learning for hyperspectral band selection. IEEE Trans. Geosci. Remote

Sens. 2023, 61, 5509213. [CrossRef]

https://doi.org/10.1109/JSTARS.2023.3251442
https://doi.org/10.1109/TGRS.2022.3179513
https://doi.org/10.1109/MGRS.2018.2867592
https://doi.org/10.1109/MGRS.2017.2762087
https://doi.org/10.1109/JSTARS.2019.2941454
https://doi.org/10.1109/TGRS.2023.3266811


Remote Sens. 2024, 16, 224 17 of 18

7. Ma, M.; Mei, S.; Li, F.; Ge, Y.; Du, Q. Spectral correlation-based diverse band selection for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2023, 61, 5508013. [CrossRef]

8. Deng, Y.-J.; Li, H.-C.; Tan, S.-Q.; Hou, J.; Du, Q.; Plaza, A. t-Linear tensor subspace learning for robust feature extraction of
hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501015. [CrossRef]

9. Yu, W.; Huang, H.; Shen, G. Deep spectral–spatial feature fusion-based multiscale adaptable attention network for hyperspectral
feature extraction. IEEE Trans. Instrum. Meas. 2023, 72, 5500813. [CrossRef]

10. Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-objective unsupervised band selection method for hyperspectral images
classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [CrossRef]

11. Li, S.; Peng, B.; Fang, L.; Zhang, Q.; Cheng, L.; Li, Q. Hyperspectral band selection via difference between intergroups. IEEE Trans.
Geosci. Remote Sens. 2023, 61, 5503310. [CrossRef]

12. Habermann, M.; Fremont, V.; Shiguemori, E.H. Supervised band selection in hyperspectral images using single-layer neural
networks. Int. J. Remote Sens. 2019, 40, 3900–3926. [CrossRef]

13. Esmaeili, M.; Abbasi-Moghadam, D.; Sharifi, A.; Tariq, A.; Li, Q. Hyperspectral image band selection based on CNN embedded
GA (CNNeGA). IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 1927–1950. [CrossRef]

14. Sun, W.; Yang, G.; Peng, J.; Du, Q. Hyperspectral band selection using weighted kernel regularization. IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens. 2019, 12, 3665–3676. [CrossRef]

15. Sellami, A.; Farah, I.R. A spatial hypergraph based semi-supervised band selection method for hyperspectral imagery semantic
interpretation. Int. J. Comput. Inf. Eng. 2016, 10, 1839–1846.

16. He, F.; Nie, F.; Wang, R.; Jia, W.; Zhang, F.; Li, X. Semisupervised band selection with graph optimization for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10298–10311. [CrossRef]

17. Cao, X.; Wei, C.; Ge, Y.; Feng, J.; Zhao, J.; Jiao, L. Semi-supervised hyperspectral band selection based on dynamic classifier
selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1289–1298. [CrossRef]

18. Chein, I.C.; Su, W. Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1575–1585.
[CrossRef]

19. Jia, S.; Tang, G.; Zhu, J.; Li, Q. A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans. Geosci.
Remote Sens. 2016, 54, 88–102. [CrossRef]

20. Fu, H.; Zhang, A.; Sun, G.; Ren, J.; Jia, X.; Pan, Z.; Ma, H. A novel band selection and spatial noise reduction method for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535713. [CrossRef]

21. Ji, H.; Zuo, Z.; Han, Q.L. A divisive hierarchical clustering approach to hyperspectral band selection. IEEE Trans. Instrum. Meas.
2022, 71, 5014312. [CrossRef]

22. Sun, W.; Tian, L.; Xu, Y.; Zhang, D.; Du, Q. Fast and robust self-representation method for hyperspectral band selection. IEEE J.
Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5087–5098. [CrossRef]

23. Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Robust dual graph self-representation for unsupervised hyperspectral band selection.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538513. [CrossRef]

24. Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Marginalized graph self-representation for unsupervised hyperspectral band selection.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5516712. [CrossRef]

25. Sun, W.; Zhang, L.; Du, B.; Li, W.; Lai, Y.M. Band selection using improved sparse subspace clustering for hyperspectral imagery
classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2784–2797. [CrossRef]

26. Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 1723–1740. [CrossRef]

27. Huang, S.; Zhang, H.; Pižurica, A. A structural subspace clustering approach for hyperspectral band selection. IEEE Trans. Geosci.
Remote Sens. 2022, 60, 5509515. [CrossRef]

28. Sun, H.; Ren, J.; Zhao, H.; Yuen, P.; Tschannerl, J. Novel gumbel-softmax trick enabled concrete autoencoder with entropy
constraints for unsupervised hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5506413. [CrossRef]

29. Zhang, H.; Sun, X.; Zhu, Y.; Xu, F.; Fu, X. A global-local spectral weight network based on attention for hyperspectral band
selection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6004905. [CrossRef]

30. Zhang, X.; Xie, W.; Li, Y.; Lei, J.; Du, Q.; Yang, G. Rank-aware generative adversarial network for hyperspectral band selection.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5521812. [CrossRef]

31. Feng, J.; Bai, G.; Li, D.; Zhang, X.; Shang, R.; Jiao, L. MR-selection: A meta-reinforcement learning approach for zero-shot
hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5500320. [CrossRef]

32. Zeng, M.; Cai, Y.; Cai, Z.; Liu, X.; Hu, P.; Ku, J. Unsupervised hyperspectral image band selection based on deep subspace
clustering. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1889–1893. [CrossRef]

33. Das, S.; Pratiher, S.; Kyal, C.; Ghamisi, P. Sparsity regularized deep subspace clustering for multicriterion-based hyperspectral
band selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 4264–4278. [CrossRef]

34. Dou, Z.; Gao, K.; Zhang, X.; Wang, H.; Han, L. Band selection of hyperspectral images using attention-based autoencoders. IEEE
Geosci. Remote Sens. Lett. 2021, 18, 147–151. [CrossRef]

https://doi.org/10.1109/TGRS.2023.3263580
https://doi.org/10.1109/TGRS.2023.3233945
https://doi.org/10.1109/TIM.2022.3222480
https://doi.org/10.1109/TIP.2023.3258739
https://doi.org/10.1109/TGRS.2023.3242239
https://doi.org/10.1080/01431161.2018.1553322
https://doi.org/10.1109/JSTARS.2023.3242310
https://doi.org/10.1109/JSTARS.2019.2922201
https://doi.org/10.1109/TGRS.2020.3037746
https://doi.org/10.1109/JSTARS.2019.2899157
https://doi.org/10.1109/TGRS.2006.864389
https://doi.org/10.1109/TGRS.2015.2450759
https://doi.org/10.1109/TGRS.2022.3189015
https://doi.org/10.1109/TIM.2022.3184353
https://doi.org/10.1109/JSTARS.2017.2737400
https://doi.org/10.1109/TGRS.2022.3203207
https://doi.org/10.1109/TGRS.2021.3121671
https://doi.org/10.1109/JSTARS.2015.2417156
https://doi.org/10.1109/TGRS.2018.2868796
https://doi.org/10.1109/TGRS.2021.3102422
https://doi.org/10.1109/TGRS.2021.3075663
https://doi.org/10.1109/LGRS.2021.3130625
https://doi.org/10.1109/TGRS.2022.3142173
https://doi.org/10.1109/TGRS.2022.3231870
https://doi.org/10.1109/LGRS.2019.2912170
https://doi.org/10.1109/JSTARS.2022.3172112
https://doi.org/10.1109/LGRS.2020.2967815


Remote Sens. 2024, 16, 224 18 of 18

35. Goel, A.; Majumdar, A. K-means embedded deep transform learning for hyperspectral band selection. IEEE Geosci. Remote Sens.
Lett. 2022, 19, 6008705. [CrossRef]

36. Kang, X.D.; Li, S.T.; Benediktsson, J.A. Spectral—Spatial Hyperspectral Image Classification with Edge-Preserving Filtering. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LGRS.2022.3165313
https://doi.org/10.1109/TGRS.2013.2264508

	Introduction 
	Proposed Method 
	Multi-Level Representation Learning (MLRL) 
	Multi-Level Self-Supervised Learning (MLSL) 
	Fusion Module with Maximum Entropy Regularization (MER) 
	Implementation Details 

	Experiments and Results 
	Hyperspectral Datasets 
	Indian Pines (IP) Dataset 
	Pavia University (PU) Dataset 
	Salinas (SA) Dataset 

	Experimental Setup 
	Randomness Validation by Random Selection of Training and Testing Sets 
	Ablation Study of the Proposed MLRLFMESC Method 
	Classification Results Analysis for Different BS Algorithms 
	BS Results with Different Number of Selected Bands 
	Classification Performance Analysis by Band Subsets Using Various BS Algorithms 

	Time Consuming for Different BS Algorithms 

	Conclusions and Discussion 
	Appendix A
	Appendix B
	References

