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Abstract: Soil moisture is important for understanding climate, water resources, water storage, and
land use management. This study used Sentinel-2 (S-2) satellite optical data to retrieve surface
soil moisture at a 10 m scale on grassland sites with low hydraulic conductivity soil in a climate
dominated by heavy rainfall. Soil moisture was estimated after modifying the Optical Trapezoidal
Model to account for mixed land cover in such conditions. The method uses data from a short-wave
infra-red band, which is sensitive to soil moisture, and four vegetation indices from optical bands,
which are sensitive to overlying vegetation. Scatter plots of these data from multiple, infrequent
satellite passes are used to define the range of surface moisture conditions. The saturated and dry
edges are clearly non-linear, regardless of the choice of vegetation index. Land cover masks are
used to generate scatter plots from data only over grassland sites. The Enhanced Vegetation Index
demonstrated advantages over other vegetation indices for surface moisture estimation over the
entire range of grassland conditions. In poorly drained soils, the time lag between satellite surface
moisture retrievals and in situ sensor soil moisture at depth must be part of the validation process.
This was achieved by combining an approximate solution to the Richards’ Equation, along with
measurements of saturated and residual moisture from soil samples, to optimise the correlations
between measurements from satellites and sensors at a 15 cm depth. Time lags of 2–4 days resulted
in a reduction of the root mean square errors between volumetric soil moisture predicted from S-2
data and that measured by in situ sensors, from ~0.1 m3/m3 to <0.06 m3/m3. The surface moisture
results for two grassland sites were analysed using statistical concepts based upon the temporal
stability of soil water content, an ideal framework for the intermittent Sentinel-2 data in conditions
of persistent cloud cover. The analysis could discriminate between different natural drainages and
surface soil textures in grassland areas and could identify sub-surface artificial drainage channels.
The techniques are transferable for land-use and agricultural management in diverse environmental
conditions without the need for extensive and expensive in situ sensor networks.

Keywords: soil moisture; temporal stability; remote sensing; agriculture; vegetation

1. Introduction

Soil moisture is an Essential Climate Variable [1]. It is highly variable in space with
scales ranging from centimetres to kilometres, and time scales from minutes to years [2].
It impacts the exchange of water, carbon and energy [3,4] and influences the distribution
of rainwater between run-off, evapotranspiration and infiltration [5]. Soil moisture pro-
vides input into models for crop growth and grassland production [6], and it dictates the
management of cattle grazing [7].

Soil moisture can be directly measured in the laboratory using thermogravimetric tech-
niques on field samples or in the field using ground-based methods, such as electromagnetic
sensors [8]. The availability of low-cost sensors has driven the development of regional
soil moisture networks, allowing measurements at many sites and at several depths [9].
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These measurements, however, have uncertainties due to salinity variations, variable local
contact with the soil and site-specific calibration and they only provide measurements at
depths > 5 cm in the soil, with a few exceptions [10]; moreover, local (~10 cm) sampling
around the sensor is not always representative of the surrounding area [11]. Nevertheless,
networks with systematic observations of soil moisture have long been useful to support
agricultural decision making [12].

Satellite remote sensing technology provides a solution to measure soil moisture across
scales such as a field (100s of m2), catchment (0.1–1 km2), sub-watershed (1–80 km2) and
beyond. Reviews of recent satellite soil moisture products have summarised the different
methods of estimation, the limitations, the advantages/disadvantages, the trends in the
evolution of thermal and optical sensors [13] or microwave sensors [14], and the potential
synergies from multi-sensor fusion [15]. Most of the currently employed techniques have
been deployed at relatively coarse scales (>3 km) in the optical [16], thermal [17] and
microwave [18] parts of the electromagnetic spectrum. Microwave sensors, on satellite
missions such as Soil Moisture and Ocean Salinity (SMOS) [19], Soil Moisture Active
Passive (SMAP) [18] and Advanced Scatterometer (ASCAT) [20], have the advantage of
operating in all weather conditions as they are not affected by cloud or variable solar
illumination. Sentinel-1 synthetic aperture radar satellites have been used for higher
resolution soil moisture estimation [21,22], but are sensitive to fine-scale features and
(currently) need fusion with other microwave sensors and resampling to ~1 km scale to
reduce the complexity in the interpretation of their data [23,24]. The use of satellite radar
soil moisture products for field-scale agricultural decision support is therefore limited but
is an active area of research [25].

In situ soil moisture networks are invaluable for validating satellite soil moisture
retrievals [26,27]. The comparison of in situ and satellite measurements with different
spatial and temporal resolutions is complicated [28], and its investigation is partially
driven by requirements for datasets at sub-daily temporal and <1 km spatial resolutions, at
multiple soil depths and with consistent error information.

The objective of this study was to investigate high-resolution (10 m to 20 m) nor-
malised Surface Soil Moisture (nSSM) at depths < 0.2 cm from Sentinel-2 (S-2) data using a
modification of the Optical Trapezoid Model (OPTRAM; [16]) and very sparse soil mois-
ture networks over grassland sites. The sites are in Ireland, a country which typifies a
temperate, high-rainfall climate [29] with intensive agriculture. OPTRAM has been used
to estimate soil moisture from Landsat [16], S-2 [30,31] and MODIS [32–34]. These studies
were conducted in crop fields in arid or semi-arid climates, which are quite different from
the climatic conditions in this study. They tend to follow the original OPTRAM formulation
of [16] which incorporates the Normalised Difference Vegetation Index (NDVI). This study
explored the use of other vegetation indices appropriate for temperate climate and poorly
draining soil conditions. Previous studies [16,18,35] have obtained typical correlations
between in situ Volumetric Soil Moisture (VSM) measurements and satellite-derived SSM
(~0.2–0.8) but they did not take into account the sensor depths beneath the surface. This
study combined laboratory measurements of saturated and residual VSM in representative
soil samples with an approximate solution to the Richards’ Equation [36,37] to establish
relationships between optically derived nSSM and in situ sensor VSM. This deals with the
time lag between a satellite pass and a sensor measurement to reduce uncertainties in the
validation process [38], especially in poorly draining soils.

This study also introduced an analysis of temporal stability (TS) [39] to the S-2 nSSM.
TS studies have been used for improving hydrological models, filling of missing in situ
data and some limited environmental management [40] but tend to be based upon in situ
sensor networks [41]. This study is the first to use the TS of S-2 nSSM to explore 10 m scale
variations in grassland to identify locations where the soil is consistently wetter or dryer
than the average; this could be useful in decisions for targeted irrigation and drainage. We
recognise that grassland occupies one third of the global land surface area and plays an
important role in carbon sequestration, food production and other ecosystem services [42].
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2. Data and Methods
2.1. Study Area

The Republic of Ireland in North-West Europe borders the Atlantic Ocean which
results in humid weather all year round with abundant rainfall: ~1000–1400 mm/year in
the west and ~750–1000 mm/year in the east [43]. The CORINE Land Cover 2018 inventory
shows agriculture as the dominant type in Ireland, accounting for ~67% of the national
land cover. Within agriculture, pastureland (grassland) is the major class (~55%) followed
by pastureland interspersed with other natural vegetation (6.9%) and arable land (4.5%).
The other major land cover categories include wetlands (14.9%) and forests (9.5%) [44].

The study focuses on two areas (Figure 1) ~7.5 km2 and 16 km2 in size surrounding
two farms, Rossmore (52◦N, 8◦W) and Stradone (53◦N, 7◦W), respectively. Both farms
are part of the Teagasc Heavy Soils Programme [45] and are ~50 ha. The objective of
this programme is to improve the sustainability of grassland farms dominated by poorly
drained soils used for grazing livestock. Rossmore is flat and contains loam and sandy loam
soils, while Stradone has elevation differences less than ~ 3 metres and is comprised of loam
and clay loam soils. A high-resolution soil survey of each farm was carried out following
the protocol of the Irish Soil Information System [46]. The soils are classified [47,48] as
poorly drained (those that reach saturation during rainfall events and hold excess water
for multiple days following rainfall events) or moderately drained (those that hold excess
water during rainfall events but not afterwards). The farms are equipped with in situ soil
moisture sensors providing daily estimates of VSM and a weather station recording daily
estimates of rainfall, evapotranspiration (ET) and wind speed.
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Figure 1. Locations of (a) Rossmore and (b) Stradone sites. Yellow polygons indicate zones of forests
and water bodies excluded from the analysis. Note the different scales for each area.

2.2. Satellite and In Situ Data

The S-2 mission comprises two satellites (2A and 2B) that offer global coverage from
56◦S to 84◦N. The S-2 level 1C product [49] was downloaded from the United States
Geological Survey (USGS) Earth Explorer platform. All the data were atmospherically
corrected in QGIS using the Semi-automatic Classification Plugin (SCP) and the Dark Object
Subtraction (DOS) algorithm [50]. S-2 band 12 is resampled from 20 m to 10 m using the
nearest neighbour algorithm in the SCP tool [51] and as suggested by other studies [52].
The cloudy S-2 data were masked using a cloud mask available with the S-2 Level-1C
product as part of the quality information [53]. The method in this study requires two S-2
datasets. The first dataset consists of cloud-masked images of the two sites, available since
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the launch of the S-2 satellites in 2015. A total of 30 S-2 images for Rossmore are available,
out of which 17 are cloud free; for Stradone, 25 images are available, out of which 23 are
cloud free (Table S1). The second dataset consists of S-2 data, resampled onto 12 windows
of 3 by 3 10 m pixels, with each window covering an area of 900 m2 and centred on each
in situ sensor since the start of VSM monitoring; the centre of the central pixel in each
window is therefore directly above its corresponding in situ sensor. This dataset is only
used to establish relationships between OPTRAM nSSM estimates and in situ VSM for the
validation of the model; it consists of 13 and 12 S-2 images from January 2021 to the end of
2022 for Rossmore and Stradone, respectively (Table S1).

Two fields in each of the two farm sites are each equipped with three in situ sensors
(vertically aligned according to the manufacturer’s instructions), which were placed in
representative of the soil types at the sites. The in situ VSM (m3/m3) sensor data are
acquired at a depth of ~15 cm to avoid disturbing the high-intensity dairy farms. Four soil
samples representative of the two sites were used to calibrate the sensors. The samples
were saturated in a laboratory and allowed to dry at room temperature over several weeks
during which VSM was measured using the gravimetric technique [8]. This allowed a
calibration of sensor readings from saturated to residual VSM for each sample.

2.3. OPTRAM Basics

The OPTRAM method [54]) estimates nSSM from optical satellite data based upon the
Kubelka–Munk radiative transfer theory and vegetation indices (VI) which are spectral
imaging transformations of two or more satellite image bands. OPTRAM represents a
linear relationship between normalised surface soil moisture, W over bare soil, and short
wavelength infrared (SWIR) transformed reflectance, STR:

W = (θ − θres)/(θsat − θres) =
(

STR − STRdry

)
/
(

STRwet − STRdry

)
(1)

STR = (1 − RSWIR)
2/2RSWIR (2)

where 0 ≤ W ≤ 1, θ is the VSM at the surface (<0.2 cm), θres is the residual VSM, θsat is the
saturated VSM, RSWIR is the reflectance at an SWIR wavelength, and STRdry and STRwet
are the STRs in soils with θres and θsat, respectively. Equation (1) is valid for vegetated soil if
there is also a linear relationship between root zone VSM and vegetation volumetric water
content [16]. This assumption is based on studies which suggest that SWIR reflectance is
sensitive to vegetation water content (and leaf internal structure), and that STR reflectance
is linearly correlated with vegetation water content. In this study, following [16], SWIR
Band 12 was used to compute STR.

The water content of vegetation, and therefore vegetation spectral characteristics, is
dependent on soil moisture status [55]. Such changes can be captured by a VI required
in OPTRAM. If the VI does not change, Equation (1) assumes that a change in the STR is
a linear function of nSSM. If the value of a VI changes due to a change in water content
or fractional surface area of vegetation in a pixel, the values of STRdry and STRwet will
change. Therefore, the estimation of nSSM over vegetated soil requires a close assessment
of how time-varying rainfall, evapotranspiration and infiltration has different effects on
the changes in the amplitude of the STR for changes in the VI and associated VSM. This
is partly achieved in OPTRAM using a scatter plot in the STR-VI space based on many
different hydro-meteorological conditions to estimate STRdry and STRwet (Figure 2).

Optical scenes may include oversaturated pixels (e.g., due to standing surface water
after heavy precipitation) above the wet edge which will increase the STR. As nSSM is
only valid for partially and fully saturated soils (0 ≤ W ≤ 1) and VSM cannot increase
beyond θsat, all pixels on and above the wet edge are assumed to be saturated (W = 1).
The dry edge represents pixels with θres. Equation (1) demonstrates that the nSSM for a
pixel with an STR value is equivalent to the fractional distance between the two edges at
the coincident VI. The geometry of the two edges changes with the choice of VI.
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2.4. Relationships between VSM and nSSM

Linear correlations between a VI and its associated VSM from multiple in situ sensors
within the root zone (<1 m) beneath a pixel can be optimised if the VSM has a time-delay
after the VI acquisition date. [55] attribute this delay to the time required by plants to adjust
their biological processes to match the surface conditions and water availability in the soil.
Correlations between nSSM and VSM from sensors within the root zone used to investigate
uncertainties in the satellite retrievals must therefore account for time delays between the
surface signal and the sensor response. These could be days depending upon, e.g., vegetation
and soil hydraulic conductivity. This study addresses this problem using a solution to a
model based on a 1-dimensional Richards’ Equation, originally developed to retrieve root
zone VSM from NASA’s AirMOSS mission [37]. This establishes the relationship between
satellite-derived nSSM and in situ sensor VSM at depth. The solution is:

θ(z) = [c1z + c2exp(z/hcM) + c3]
1
/

P (3)

K = Ksat

(
θ − θres

θsat − θres

)P
= KsatSP (4)

exp
(

−h
PhcM

)
=

(
θ − θres

θsat − θres

)
(5)

where z is the depth; P is related to the soil pore size distribution and is an empirical
parameter that defines a relationship between saturated hydraulic conductivity, Ksat, and
unsaturated conductivity, K; hcM is the effective capillary drive; c1, c2 and c3 are time-
invariant constants; S is the effective saturation; and h is the pressure head. The solution is
most accurate during soil drying, i.e., concurrent evapotranspiration and infiltration after a
rainfall event. It represents a common scenario for acquiring optical satellite data above
persistent cloud cover.

First, we estimate the VSM at the surface z ∼ 0 from the nSSM, W :

θ = θres + (θsat − θres) W (6)
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For VSM measured at a sensor at depth zS, Equation (6) can be written as:

θzS = [c1zS + c2exp(zS/hcM) + c3]
1
/

P (7)

and at z = 0:

θ = [ c2 + c3]
1
/

P (8)

Therefore,

θzS =

{
[a1zS + a2exp(zS/hcM) + a3]

1
/

P
}

θ (9)

θzS = AzS [θres + (θsat − θres) W] = θmin + g W (10)

where θmin is the intercept, g is the gradient and AzS is a positive scalar calibration constant
to transform nSSM to VSM at the sensor. This establishes the relationship between satellite-
derived nSSM and in situ sensor VSM at depth. In principle, if θres and θsat are known, AzS

can be estimated using Equation (10) from a nSSM-VSM plot for multiple satellite estimates
of nSSM and coincident VSM measurements under different hydro-meteorological con-
ditions. In practice, this still requires some winnowing of data (Section 2.5) to guarantee
that the VSM measurements are responding to infiltration at the S-2 acquisition date. In
these scenarios, AzS > 1, i.e., the VSM at the sensor depth zS is greater than the VSM at the
surface at the time of the S-2 data acquisition. This implies that the soil reaches saturation
at zS, when the nSSM WzS < 1 so that:

θsat = AzS [θres + (θsat − θres) WzS ] (11)

which is only true when

WzS = (θsat − AzS θres)/AzS(θsat − θres) (12)

For a value of nSSM such that WzS < W ≤ 1, the soil reaches saturation at a depth zsat,
where zS > zsat ≥ 0. The volumetric soil moisture at depths ≥ zsat is constant (θsat). The
model is like Case B in ([37]; Figure 7). The approach is sufficient to predict VSM at a sensor
from nSSM and requires no knowledge of P or hcM.

2.5. Considerations for Implementing OPTRAM
2.5.1. Choice of Vegetation Index

Alongside the most popularly used Normalised Difference Vegetation Index (NDVI),
we evaluated a suite of other VIs: Enhanced Vegetation Index (EVI), Modified Soil Adjusted
Vegetation Index (MSAVI) and, since the S-2 satellite provides the only freely available
optical dataset containing the red-edge band, Normalised Difference Red-Edge Index
(NDREI). Their computation is summarised in Table S2. The aim was to determine which
VI is least correlated with its concurrent and coincident STR to maximise the sensitivity
of the soil moisture estimate from the STR in the presence of vegetation water content
which influences the VI. The choice for optimum VI was quantified through Spearman’s
and distance correlations between STR and VI, and the smoothness, shape, and practical
range of the wet and dry edges.

2.5.2. Determination of Edge Curves and Calculation of nSSM

The original OPTRAM was developed with linear edge curves and recent studies
have explored the use of non-linear edges. Some studies have shown that the VI-STR
relationship with high vegetation cover may be non-linear [30,56] and that non-linear
parametrization of OPTRAM leads to better accuracies in soil moisture estimates compared
to linear parametrization [57]. After the choice for an appropriate VI, the STR-VI couplets
were allocated to an appropriate bin with a width of 1% of the range in the VI and STR.
We used a numerical method which sweeps over the STR bins and then across the VI
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bins in the scatter plot to guide our selection of the dry and wet edges. A double logistic
function (Equation (14); [58]) was fitted to each empirically determined edge, defined as
the curves below and above which 1% of the couplets are regarded as noise (e.g., cultural
or over-saturated pixels beyond the wet edge). Each edge was fitted using ‘trial and error’
forward modelling with the 7 free parameters in the function:

STRj = STRj
min +

STRj
mid − STRj

min
1 + exp(−aVI + b)

+
STRj

max − STRj
mid

1 + exp(−cVI + d)
(13)

The free parameters in the double logistic function are flexible to approximate linear,
exponential, or sigmoidal behaviour that is sufficiently complex to characterise the observed
edge curves. The nSSM for each pixel was calculated as a linear distance between the dry
and wet edges.

2.5.3. Land Cover Masks

Vegetation growth and root water uptake play an important role in soil moisture temporal
dynamics at the field scale [59]. An application of OPTRAM at the field scale needs to focus on
classes within a complex land cover, e.g., grassland, forests, and water bodies, to minimise soil
moisture variations associated with distinct types of vegetation or stages of growth. Therefore,
a mask was created for forests and water bodies to identify ‘exclusion zones’ (Figure 1). Other
land cover classes were not considered since they represent less than 1% of the areas and do
not influence the scatter between the VI and STR significantly.

2.5.4. Normalised SSM and Time-Delayed VSM Data

For validation of satellite-derived nSSM and in situ VSM, the nSSM was estimated
at the central pixel over a window of 3 × 3 pixels, centred above each sensor, by fitting
a second order polynomial over the window to minimise any local spatial heterogeneity
at a scale of 10 m. This becomes the variable W (Equation (10)). A coincident VSM can
be chosen if the time series of daily sensor readings for δt (0 ≤ δt ≤ 5) days after the
date of the S-2 acquisition shows a monotonic decrease in VSM implying consistent drying
conditions which are the most suitable for the model. The VSM, θzS (Equation (10)), is
a weighted average of any two consecutive daily VSM observations delayed by δt days
to capture infiltration times from the surface to the sensor. The weights on the two VSM
values represent the proportion of the day contributing to the weighted average.

The time-delay, δt, and calibration constant, AzS , for each field can then be estimated
from a linear regression of θzS vs.W for the three sensors at depth zS by iteratively adjusting
their values so that θmin = θres when W = 0, and θmax = θsat at WzS ; this is the nSSM which
results in saturation at the sensor depth (Equation (12)). The final values are those which
minimise the Root Mean Square Error (RMSE), maximise the coefficient of determination
(R2) and are consistent with Equations (9) and (10) and laboratory measurements of VSM
from the soil samples.

2.6. Temporal Stability (TS) Metrics

Temporal stability is traditionally used in hydrology [2]. It is based on a statistical
approach to analyse any time-varying dataset. This study used TS equations to analyse
the nSSM dataset. TS is a result of complex interactions among local (<30 m) and nonlocal
weather, soil properties, vegetation, surface topography, sub-surface hydrology and agri-
cultural practices [2].The grassland sites have minimal topographic variations, so the prima
facie assumption is that TS is primarily controlled by time-invariant soil properties. The
Mean Relative Difference (MRD) and the Standard Deviation Relative Difference (SDRD)
are the most popular metrics to evaluate the TS of soil [40]:

RDij =
(
Wij − Wj

)
/Wj (14)
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MRDi = (1/J)
j=J

∑
j=1

RDij (15)

SDRDi =

√√√√1/(J − 1)
j=J

∑
j=1

(
RDij − MRDi

)2 (16)

where RDij is the relative difference between the nSSM, W, at pixel i, satellite pass j and
J is the number of passes. We modified these equations to obtain the Median Relative
Difference

(
Ŵi

)
and Median Absolute Deviation Relative Difference (σi).

3. Results
3.1. Satellite and VSM Data

The nSSM interpolated onto the centres of the central pixels in each of the 3 × 3 windows
(Section 2.5.4) surrounding each sensor showed minor differences (~0.01) from nSSM values
at each pixel in the corresponding window. This indicates that (1) interpolation of the 10–20 m
optical data onto a 10 m grid does not introduce significant uncertainties, and (2) surface
moisture conditions are homogeneous over 30 m scales. For the validation exercise only, the
nSSM value was calculated for the centre of the central pixel and is directly located above the
in situ VSM measurement.

The laboratory calibrations (Table 1) indicate that the soils have higher than average
values for saturated VSM (e.g., [37]; Table 1), consistent with the characteristics of poorly
drained soils which dominate these sites. The hydro-meteorological time series (Figure 3)
showed that the VSM ranged from 0.03 to 0.49 m3/m3 for Rossmore and 0.10 to 0.67 m3/m3

for Stradone. Although the normalised linear correlations for the six sensors at both sites
were >0.96, some sensors had significantly different amplitudes from the other sensors in
the same field. The differences (≲0.2 m3/m3) in concurrent VSM values are explained by
heterogeneity in soil hydraulic properties and a possible systematic difference between the
sensor used for laboratory calibration and the sensor in the field.

Table 1. Laboratory measurements of soil samples around sensors at the two sites. The measurement
uncertainties are <±0.02 m3/m3. Ross = Rossmore, Stra = Stradone.

Sensors Soil Type Soil Texture Saturated VSM
(m3/m3)

Residual VSM
(m3/m3)

Ross 1–3 Brown Earth Loam 0.64 0.06

Ross 4–6 Surface Water Gley Sandy Loam 0.50 0.04

Stra 1–3 Luvisol Loam 0.59 0.09

Stra 4–6 Stagnic Brown Earth Clay Loam 0.57 0.08

3.2. Choice of Vegetation Index

The results (Table 2) of the pair-wise correlations between STR and VIs show that the
STR-EVI Spearman’s coefficients for Rossmore and Stradone were consistently negative and
had lower values compared to the MSAVI and NDREI. STR was negatively correlated with
NDVI and NDREI at Stradone and positively at Rossmore. The difference in scatter plots
between the two sites is responsible for the change in sign in the Spearman’s coefficients
(Section 4.1). The average STR-EVI distance correlation coefficient from the two sites was
consistently at the low end.
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Figure 3. (a) VSM and (b) daily rainfall and evapotranspiration for Rossmore; (c,d) equivalent time
series for Stradone. Vertical lines date S-2 observations since the installation of the network. Stra1, Stra3
and Stra5 VSM sensors record values > saturated VSM after high rainfall/low ET events, indicating
over-saturated conditions with free water at the surface. ET peaks and VSM is at its minimum in
mid-summer (July); cumulative rainfall is higher in winter (October–March) than summer.
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Table 2. Distance correlation coefficient dcor and Spearman’s rank correlation coefficient ρcor (in
brackets) between STR and VIs for Rossmore (lower triangle with orange background) and Stradone
(upper triangle with blue background). Coefficients are for data that have been masked to remove
exclusion zones.

NDREI MSAVI EVI NDVI STR

STR 1.00 (1.00) 0.89 (0.92) 0.58 (0.87) 0.96 (0.95) 0.27
(−0.07) NDREI

NDVI 0.23 (0.17) 1.00(1.00) 0.69 (0.93) 0.90 (0.96) 0.36
(−0.29) MSAVI

EVI 0.26
(−0.13) 0.51 (0.53) 1.00 (1.00) 0.57 (0.90) 0.30

(−0.08) EVI

MSAVI 0.32
(−0.18) 0.79 (0.83) 0.80 (0.83) 1.00 (1.00) 0.30

(−0.15) NDVI

NDREI 0.31 (0.34) 0.88 (0.89) 0.51 (0.53) 0.71 (0.73) 1.00 (1.00) STR
STR NDVI EVI MSAVI NDREI

3.3. Fitting of Edge Curves

The STR-EVI scatter plots (Figure 4) for both sites show that the edges are non-linear.
The double logistic function defined the wet and the dry edges well. For both sites, a bulge in
the scatter was seen around an EVI of 0.7 and STR of 20 and 15 for Rossmore and Stradone
(Figure 4a,c), respectively, indicating the effect of water bodies and forests. After masking
these land cover classes, the bulges in the EVI-STR scatter plots were removed (Figure 4b,d).
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Figure 4. STR-EVI scatter plots. (a) Rossmore without land cover masks; (b) Rossmore with land
cover masks; (c) Stradone without land cover masks; and (d) Stradone with land cover masks.

The STR-VI scatter plots for the other VIs (Figure 5) demonstrated complicated be-
haviour at the wet edges for NDVI and NDREI; it is difficult to meaningfully fit edge curves.
The STR-MSAVI scatter plots are comparable to the STR-EVI scatter plots, as expected from
the correlations in Table 2. We noted that the maximum values of MSAVI and EVI were
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~0.85 and ~1.0, respectively. The low STR-EVI correlations, the smoothness, shape, and full
range of the edge curves for the EVI scatter plots led us to choose EVI as the preferred VI
for further analyses.
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Figure 5. Scatter plots of STR-VI with land cover masks at each site. (a) Rossmore STR-MSAVI,
(b) Stradone STR-MSAVI, (c) Rossmore STR-NDVI, (d) Stradone STR-NDVI, (e) Rossmore STR-
NDREI, (f) Stradone STR-NDREI.

3.4. Relationships between Satellite and In Situ Sensor Soil Moisture

Regressions between VSM and normalised SSM after choosing an AzS consistent
with Equation (6) and the laboratory measurements of θres and θsat were used to make
a quantitative judgement on uncertainties in the relationship between S-2 estimates and
in situ VSM measurements. The results (Figure 6) suggest that a linear transformation
of nSSM to VSM is associated with RMSE uncertainties of ~0.06 m3/m3 for regressions
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limited to nSSM < 0.5. Without the introduction of time lags, the RMSE uncertainties were
~0.1 m3/m3. The best fit line started at the residual VSM and finished at the saturated VSM
determined from the laboratory measurements of the soil sample in each of the four fields.
The calibration constants were 1.0 ≤ AzS < 1.65.
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Figure 6. Correlations between VSM and nSSM for the two farm sites. Each circle corresponds to a
sensor reading. The S-2 data that did not meet the conditions of drying (Section 2.5.4), i.e., during
a period with an increase in VSM, were excluded from the regression (blue circles). The absolute
differences in the means (MD m3/m3), the unbiased Root Mean Square Deviations (m3/m3) and
Percent Bias (PB) between the predicted VSM and observed VSM are, respectively, (a) 0.001, 0.05 and
0.23, (b) 0.003, 0.06 and −1.25, (c) 0.001, 0.06 and 0.19, (d) 0.003, 0.06 and −0.96. The MD and PB
between the predicted and observed VSM are insignificant in the limited range of 0.1 < nSSM < 0.5.

3.5. Maps of nSSM

Figure 7 shows examples of nSSM values derived from the STR-EVI scatter plots with
land cover masks after events of high and low net water flux (NWF; the difference between
cumulative infiltration and evapotranspiration) over 5 days prior to and including the day
of the S-2 pass. The maps show the overall differences in nSSM and a spatial variability in
nSSM that was correlated strongly with high and low NWF conditions within farm areas.
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Transverse Mercator (ITM) projection.

3.6. Temporal Stability of nSSM

The maps of Median Relative Difference, Ŵ, and Median Absolute Deviation Relative
Difference, σ, showed spatial variations (Figure 8) that were less noisy than the maps of
MRD and SDRD. Linear features (roads and field boundaries) and buildings could be
identified, and variations within fields were visible.

The distinctive patterns in the TS behaviour can be better appreciated by focusing
on the farm sites with Ŵ and σ, shown with Great Soil Groups (GSGs) based on the
extrapolation of data from auger points and soil pits, and local expert knowledge (Figure 9).
In Rossmore, features 2 (Figure 9a) and 4 (Figure 9b) represent areas of high TS (Ŵ ∼ 0
and σ ∼ 0), associated with roads and a sub-surface artificial drain, respectively. Feature 1
(Figure 9b) with σ ∼ 0.2 represents one of the driest areas on this farm over moderately
drained soil, while feature 3 (Figure 9b) with σ ∼ 0.5 represents an area of low TS over
poorly drained soil. In Stradone (Figure 9d), feature 1 with Ŵ ∼ −0.1 was associated with
a dry area on this farm, feature 2 with Ŵ ∼ −0.7 was associated with a building, feature
4 with Ŵ > 1 was associated with a wet area around small tree patches which were not
excluded by masking, and feature 5 with Ŵ ∼ 0 was associated with sparse vegetation
(scrub) and/or bare soil. Feature 3 (Figure 9e) with σ ∼ 0.5 is in an area of low TS over
poorly drained soil. In both sites, individual fields could be identified from Ŵ and σ, and
variations in TS could be observed within the presumed Great Soil Groups.



Remote Sens. 2024, 16, 220 14 of 22
Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 8. Temporal Stability for Rossmore (a) Ŵ and (b) 𝜎, and Stradone (c) Ŵ and (d) 𝜎. Farm 
boundaries shown by solid black lines. White areas are exclusion zones. Co-ordinates are in meters 
in the Irish Transverse Mercator (ITM) projection. 

The distinctive patterns in the TS behaviour can be better appreciated by focusing on 
the farm sites with Ŵ and 𝜎, shown with Great Soil Groups (GSGs) based on the 
extrapolation of data from auger points and soil pits, and local expert knowledge (Figure 
9). In Rossmore, features 2 (Figure 9a) and 4 (Figure 9b) represent areas of high TS (Ŵ~0 
and 𝜎~0), associated with roads and a sub-surface artificial drain, respectively. Feature 1 
(Figure 9b) with 𝜎 ~ 0.2 represents one of the driest areas on this farm over moderately 
drained soil, while feature 3 (Figure 9b) with 𝜎 ~ 0.5 represents an area of low TS over 
poorly drained soil. In Stradone (Figure 9d), feature 1 with Ŵ ~ − 0.1 was associated with 
a dry area on this farm, feature 2 with Ŵ~ − 0.7 was associated with a building, feature 
4 with Ŵ > 1 was associated with a wet area around small tree patches which were not 
excluded by masking, and feature 5 with Ŵ~0  was associated with sparse vegetation 
(scrub) and/or bare soil. Feature 3 (Figure 9e) with 𝜎 ~ 0.5 is in an area of low TS over 
poorly drained soil. In both sites, individual fields could be identified from Ŵ and 𝜎, and 
variations in TS could be observed within the presumed Great Soil Groups. 

Figure 8. Temporal Stability for Rossmore (a) Ŵ and (b) σ, and Stradone (c) Ŵ and (d) σ. Farm
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discussed in the text.
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Features or areas that are moderately- to well-drained were associated with a high
TS of surface moisture whereas poorly drained areas had a low TS, although there is
insufficient evidence to rigorously quantify these associations.

4. Discussion
4.1. Edge Curves and Vegetation Index

The choice of the most appropriate VI for our study sites, EVI, was based on correlation
analyses between STR and the selected VIs (Table 2) and the simplicity of the shape of the
edge curves over the largest range of the VI (Figure 4).

If the edge curves are approximately linear, a non-zero Spearman’s or distance corre-
lation would result from a non-zero algebraic sum of the (signed) slopes of the two edge
curves, e.g., if the wet edge has a negative slope whose magnitude is greater than the
positive slope of the dry edge, the STR is negatively correlated with the VI in proportion to
the difference. Electromagnetic radiative transfer theory requires a non-zero correlation
between STR and a VI due to interactions with a vegetated canopy over soil. The reflectance
from soil increases monotonically with wavelengths from ~500–900 nm (the range encom-
passing the VIs considered here), plateaus, dips and then peaks at ~2200 nm [60] in the
S-2 SWIR Band 12 used to compute the STR. Vegetation with increasing leaf water content
is associated with increasing canopy reflectance, particularly at wavelengths > 700 nm,
which increases the VI values [61] and decreases the SWIR band reflectance [62]; the canopy
reflectance can even exceed that from the soil at a high VI [63]. The negative STR-EVI (and
STR-MSAVI) Spearman’s correlation coefficients are therefore consistent with theory. As
EVI increased (e.g., in the growing season), the reduced transmittance through the canopy
lowered the sensitivity of the STR to soil conditions. The reduced STR difference between
the wet and dry edges in an STR-EVI scatter plot is therefore also consistent with theory.

Other studies [64] have documented the limitations of NDVI (it plateaus over areas
with high vegetation density, it is influenced by soil in sparsely vegetated areas and is
affected by atmospheric noise) and the benefits of EVI, which was developed to mitigate
against these shortcomings. Our study showed that there was no improvement using
NDREI within OPTRAM. A comparison of Figures 4 and 5 also demonstrates that there is
little practical difference between the scatter plots of STR-EVI and STR-MSAVI at low values
of vegetation cover, probably because grass is present at all stages of the agricultural/cattle
grazing cycle for the study areas. The study also corroborates results from Sentinel-1 and
S-2 imagery which indicate that EVI is optimum for the classification of Irish grassland [65].

4.2. Variable Vegetation Cover and Soil Moisture

The use of land cover masks to exclude water bodies and forests demonstrates that
STR values associated with forests are higher than those over grassland with the same EVI
(Figure 4). A previous study on peatlands [66] concluded that OPTRAM is insensitive to
water table depth, especially for high (>50%) tree-cover areal density. This result also implies
insensitivity to soil moisture in tree-covered areas and justifies the use of land masks to focus
the analysis on grassland. Where data from small tree patches were included in the analysis
(e.g., feature 4 in Figure 9d), they showed high values of soil moisture TS. This is consistent
with observations which demonstrate that soil moisture below trees is higher than that below
grassland in pasture landscapes because of reduced soil evaporation, greater soil infiltrability
and groundwater recharge, and preferential water flow under trees [67].

In grassland with high vegetation cover at high values of EVI, there was stronger
coupling of soil moisture to vegetation water content; in these conditions, it was more
accurate to categorise ‘normalised surface soil moisture’ estimated from OPTRAM as
‘normalised surface moisture’.

4.3. Time-Delayed VSM and nSSM

Previous studies have identified the problem of deriving soil moisture at depth from
(near-) surface remote sensing data [25,68,69]. At present, there are limitations in our under-
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standing of water fluxes in near-surface, variably saturated, porous soil. These are due to
complex interactions among wetting and drying which can create large transient downward
and upward water fluxes, respectively [70,71], bioturbation and water uptake by plant
roots [55]) and time-varying pore structure dynamics of, e.g., soil bulk density, pore size
distribution and connectivity [72]. In agricultural regions, tillage, compaction due to animal
and vehicle traffic, freeze/thaw events, periods of bare soil, etc., are common [73] and can
exacerbate changes in soil structure dynamics. The theory under-pinning numerical models
for relationships between soil moisture in the upper few cm and the deeper root zone is
lacking and while classical approaches (e.g., Richards’ Equation) can deal with variable
soil hydraulic parameters, they are limited when dealing with root water [74],an important
mechanism for controlling VSM in the top 15 cm and deeper. This study demonstrated that
there is a (weak) statistical correlation between nSSM satellite retrievals with in situ VSM
measurements at a depth of 15 cm. It can provide reasonably accurate estimates of the time
lags introduced to account for vertical flow of water between the surface and the in situ
sensor. In general, time lags may be considerable, e.g., 15 to 20 days at depths of 20 cm to
100 cm, respectively [68], or 5–10 days depending on chlorophyll content, growth rate and
previous weather conditions [55]. In our study with sensors at a depth of 15 cm, the optimal
choice of time lags was ~2–3 days and ~3–4 days for the fields in Rossmore and Stradone,
respectively. These lags correspond to an effective unsaturated hydraulic conductivity of
~4–7 cm/day. The resulting uncertainties in the correlations between nSSM and VSM are
comparable with those from the agriculture study of [35] and regional studies in the United
States [32] and China [33]. The maximum reliable value of nSSM in our dataset to establish the
nSSM–VSM relationships was ~0.5 because of the unavailability of S-2 data due to persistent
cloud cover during and after heavy rainfall events when the soil approaches saturation. This
is a source of bias in the linear regressions which can only be remedied by additional data. The
permanent wilting point and field capacity are also critical reference points for soil moisture,
but we have no data on these variables.

4.4. Satellite-Derived Surface Moisture TS for Land-Use Management

Whilst most land-use managers would probably prefer to work with temporal stability
of volumetric soil moisture, this is not practical for high spatial resolution temporal stability
analysis over large areas. VSM is the time-varying volumetric soil moisture that exists
at a point in the soil. Satellite-derived VSM, predicted using correlations in Figure 6, are
estimates of VSM at specific times and at specific locations/pixels of the in situ sensors. A
map of predicted VSM for an area would have the same pattern of colours as the map of
nSSM if (a) there is a perfect correlation, and (b) the residual and saturated VSM is constant
over the whole area; the only difference would be in the values allocated to the colours in
the colour bar. In OPTRAM, residual and saturated VSM are assumed to have the same
value in every pixel with the same VI because vegetation is a major contributor to soil
moisture in the top few cm. The OPTRAM’s use of nSSM is attractive because it is based
only on satellite data and its assumptions are transparent. The predicted VSM contains soil
hydraulic parameters of residual and saturated VSM which are only appropriate for the
limited number of pixels that contain the observed in situ VSM used in the validation. It is
practically not feasible to create a map of VSM from nSSM without residual and saturated
VSM observations at every pixel. Without these observations, spatial variations in residual
and saturated VSM due to soil texture variations will not be captured over a broad study
area. Any subsequent analysis of temporal stability based on the predicted VSM will be
corrupted by introducing noise associated with spatial variations in hydraulic and soil
texture properties over the area.

This study therefore used satellite-based normalized surface soil moisture temporal
stability. It focused on areas of moderately- to poorly-drained soil within a pastoral system
where surface moisture is closely linked to soil drainage and grass productivity [48]. The
deployment of livestock and machinery can be severely compromised in poorly draining
soil (e.g., associated with ~50% of Irish farms) that can be saturated for prolonged periods
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of the year, resulting in economic impacts on production. Forecasts of the most likely areas
with saturated soils within a farm can support management strategies to locate artificial
drainage, reduce the risk of soil compaction from grazing cattle [75] and minimise parasite
infection of cattle [76].

We suggest that the dominant factor leading to the Ŵ patterns (Figure 9) is the near-
surface soil texture, which controls soil hydraulic properties and the spatial distribution
of soil moisture, particularly in wet conditions [77]. Terrain variations, which could drive
sub-surface water flow are minimal, and time-varying net water flux patterns over two
years are both unlikely to influence Ŵ over these km-scale areas. A combination of sea-
sonal changes, weather and time-varying management intervention of grass production is
probably responsible for σ patterns.

The meteorological data (Figure 3) demonstrate that cumulative rainfall is higher in
winter, and evapotranspiration peaks around the end of June in mid-summer and is minimum
around the end of December in mid-winter; the mid-summer peak is inversely correlated
with VSM at depth. Seasonal variation in nSSM probably follows this pattern, especially
as the evapotranspiration is most active in the top few cm. Without claiming that these
are representative of long-term (>10 years) seasonal variations, they are probably the main
causes of seasonal changes in net water flux, illustrated in Figure 7, e.g., by high net water
flux at Rossmore in winter (1 March 2020) and low net water flux in summer (30 June 2018).
The temporal stability maps (Figure 8) are based on 30 and 25 S-2 passes, respectively, over
Rossmore and Stradone. Table S1 shows that there are 19 S-2 passes in the 2 months either
side of mid-winter and 14 S-2 passes in the 2 months either side of mid-summer. This is not
substantial, but it is probable that there are unquantifiable biases in temporal stability statistics
due to the limited period over which the data have been acquired.

More generally, surface moisture TS derived from S-2 optical data has implications
for land use scenarios which require information on local areas that are significantly drier
or wetter than the surroundings. These include indications for the onset of fires, drought,
and flood risks, modelling hydrological processes, managing water resources, agricultural
plant production and productivity, and sustaining ecosystem services [2].

TS analyses at sub-field level have mainly been confined to ground-based tech-
niques [41,78]. Whilst other studies have used satellite radar to estimate soil moisture
TS, mostly at coarser spatial scales [79–82], we have demonstrated that surface moisture
TS derived from S-2 optical data can identify distinct natural areas at 10 m spatial scale.
We note however that its efficacy at broader spatial scales (~500 m) is degraded due to an
increase in vegetation mixtures with different water contents, and the reduction of variance
in the data [83].The complexity of soil moisture TS results in agricultural fields over many
scales and environmental conditions is well-summarised in [41].

The approach in this paper may have implications as global grassland systems are moni-
tored for irrigation design and land use intensity [84,85]. It is relevant for rewetting efforts in
the European Union [86] where member states are committed to restoring 20% of degraded
ecosystems, including grassland and drained peatlands under agricultural use, after centuries
of wetland loss due to artificial drainage [87]. Soil moisture information at ~10 m scale can
also help target the re-wetting of peatlands for carbon sequestration [66,88,89] which require
assessments of soil moisture and drainage status prior to, during and after re-wetting efforts.

5. Conclusions

The paper demonstrated the potential of Sentinel-2 satellite optical data to provide
meaningful retrievals of normalised surface soil moisture at a 10 m resolution in a region
with persistent cloud cover. The study was conducted on moderately to poorly drained
soil within a pastoral system where soil moisture is linked to soil drainage. The data
were analysed using OPTRAM but required a re-assessment of the model to suit the wet
conditions associated with heterogeneous land cover overlying soil with low hydraulic
conductivity. The modification and validation of OPTRAM, and interpretation of the results
are summarised below.
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(1) An exploration of four vegetation indices used in scatter plots of STR-VI identified
EVI as the index which provided upper and lower boundaries (wet and dry edges,
respectively) best suited to estimate normalised surface soil moisture. The wet and
dry edges in the STR-VI space were clearly non-linear and could be characterised, for
example, using a double logistic function.

(2) The introduction of a time lag for the responses of in situ volumetric soil moisture sensors
improved correlations with the normalised soil moisture by a factor of ~2 but only if S-2
data were used at the start of a dry-down period. The time lag was estimated from a
semi-empirical solution to the Richards’ Equation and measurements of residual and
saturated soil moisture from field soil samples. The results are comparable with other
validation studies despite the sparse sensor networks in this study.

(3) Retrievals of OPTRAM normalised surface soil moisture are most suited to temporal
stability analyses, given the absence of regular time series of satellite optical data in
cloudy regions.

(4) An interpretation of the surface soil moisture temporal stability, where local topographic
controls on subsurface-water flow are negligible and the vegetation type is uniform,
suggest that local areas are systematically wetter or dryer than their surroundings. This
is associated with local drainage, hydraulic conductivity and soil texture.

These techniques are useful for any grassland sites in temporal climates and may
be extended to other applications for agricultural and land-use management, including
the identification of areas at risk from extreme natural events (drought, flooding), soil
compaction, parasite infection associated with ruminant grazing, land rewetting for carbon
sequestration and input into crop growth models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16020220/s1.
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