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Abstract: Current cities are not concrete jungles and deserts with sparse vegetation. Urban green
space (UGS) appears widely in human activity areas and plays an important role in improving
the human living environment and accumulates carbon storage. However, given the scattered
distribution of UGS, studies on both the refined spatial estimation of carbon storage and appropriate
mapping scale are still lacking. Taking the downtown area of Kaifeng, China, as the study area,
this study verified the i-Tree Eco model on the basis of a field survey and accurately estimated the
spatial carbon storage of UGS by combining it with remote sensing data, and finally, we obtained the
minimum spatial mapping scale of UGS carbon storage by scaling. The results showed that (1) the
total area of UGS in study area was 26.41 km2, of which the proportion of total area of residential
area and park green spaces was about 50%. The area of UGS per capita in the study area is 40.49 m2.
(2) Within the 123 survey samples, the proportion of communities with tree–shrub–herbs structure
was the highest, 51.22%. The average carbon density was 5.89 kg m−2, among which the park,
protective and square green spaces had the highest carbon density in all land use types. (3) The total
carbon storage of UGS in the study area was 114,389.17 t, and the carbon storage of UGS per capita
was 175.39 kg. Furthermore, the scaling analysis showed that 0.25 km spatial resolution was the
minimum spatial scale for UGS carbon storage mapping. This study improves our understanding
of urban carbon storage, highlights the role and potential of UGS in carbon neutrality, and clarifies
the importance of estimating urban carbon storage at appropriate scales. This study is also of great
significance for rationally understanding the terrestrial carbon cycle in urban areas and improving
regional climate simulations.

Keywords: urban green space; green space classification; carbon storage; spatial mapping scale;
i-Tree model

1. Introduction

Urban green space (UGS) is an important part of urban ecosystems and has become an
important content for building a better urban living environment worldwide [1,2]. An UGS
is public open space that serves the public, and many UGSs have developed into ecological
systems for connecting entire cities, which is also an important factor to be considered
during urban planning [3]. Refined study of UGS carbon storage is of great significance for
correctly understanding the regulatory effects of human gathering cities on the regional
climate [4]. Although many studies estimate UGS carbon storage from vegetation typology
and using remote sensing, there is still a lack of relevant research on UGS carbon storage
accounting at appropriate spatial mapping scales [5].

The study on accounting carbon storage of UGSs has been paid more and more
attention [6,7]. Some studies have evaluated the above-ground carbon storage of UGS
in Leipzig, Europe, and pointed out that urbanization had an important impact on the
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UGS carbon storage [8]. The application of remote sensing data also provides strong
support for the estimation of large-scale UGS carbon storage. The correlation between
UGS carbon storage and the remote sensing vegetation index has been confirmed, and
regression models have been established to account for the UGS carbon storage [9,10].
In terms of model simulations, the U.S. Forest Service developed the i-Tree model and
City-green model for studying the carbon sequestration benefits of urban vegetation, which
have been globally used [11–14]. The i-Tree model requires many sample surveys and a
large workload [15,16]. The City-green model uses stormwater runoff, carbon sequestration
and air pollution removal potential as the ecological parameters, but it ignores tree species
composition, which has a certain impact on the result accuracy [17,18]. In fact, different
carbon storage estimation methods have their own advantages and disadvantages (Table 1).
Therefore, when various methods are used, the localization of model and scale issue of
regional expansion application deserve special attention.

Refined estimation of the UGS carbon storage in specific cities is necessary, since field
survey data may have greater impacts on the accuracy of carbon storage than models. At
the same time, the appropriate spatial scale must be considered in the process of urban
carbon storage spatial mapping. The UGS carbon density is affected by green space spatial
layout, urban development intensity, green space community structure and other factors,
and all of these result in differences in the UGS carbon density among different cities [19,20].
Additionally, due to factors such as the construction policies and human disturbances, UGS
in different regions has great differences in spatial morphology and species composition.
All these factors increase the difficulty of studying UGS carbon storage [21]. Therefore,
the combination of field survey and remote sensing methods is particularly important.
Studies on urban vegetation carbon storage have been reported with the field survey data
and remote sensing images in several cities like Shenyang, China and Seattle, US [22,23].
These results highlight the importance of urban vegetation carbon storage for reducing the
local atmospheric CO2 concentration and mitigating climate change pressures. Overall,
limited by factors such as the wide distribution range and spatial heterogeneity of UGS,
field survey data are indispensable for accurately estimating the UGS carbon storage, and
combining remote sensing can effectively expand the study scale [24]. When combining
field survey data with remote sensing images for studying, an important issue arises,
namely, the appropriate scale of spatial mapping for UGS carbon storage [25]. However,
there is currently a lack of exploration on the appropriate scale of UGS carbon storage, and
the appropriate mapping scale will directly restrict the accuracy of the UGS carbon storage
estimation [5,26,27]. Therefore, an appropriate or minimum scale is particularly important
for the spatial estimation and mapping of urban carbon storage.

Table 1. Methods for urban carbon storage estimation.

Methods Theories Required Data Advantage Disadvantage Reference

Biomass allometric
equation

According to the biomass of different
diameter at breast height (DBH) of
tree species, allometric growth of

biomass was established through the
relationship between the measured

data and DBH and tree height.

DBH, tree height,
biomass allometric

equation
parameters of

corresponding tree
species.

High precision in
small scale studies.

The acquisition of
parameters is time-

and
labor-consuming,

so it is not suitable
for large-scale

studies.

[28]

Biomass expansion
factor

The measured DBH and height of the
trees in the plot were used to obtain

the individual tree volume, and then,
the plant biomass was calculated

using the trunk volume density and
biomass expansion factor.

Tree species,
number, volume of
tree species, wood

density and
biomass expansion

factor.

Suitable for
estimating the carbon
storage in large areas

of forest.

The parameters are
complicated,

difficult to obtain
and low precision

in small scale.

[25]
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Table 1. Cont.

Methods Theories Required Data Advantage Disadvantage Reference

Photosynthetic rate

According to the carbon sequestration
rate of leaf area of different vegetation,

the leaf area of vegetation was
measured, so as to estimate the carbon

storage of green space.

Leaf area index, net
carbon

sequestration rate
per unit leaf area,
photosynthetic

time of different
plants.

High precision in
small scale studies.

It is difficult to
obtain the

parameters and is
not suitable for

large-scale
research.

[29]

Carbon density
The organic carbon storage of UGS is

estimated by using carbon density
and area of green space.

Average carbon
density of UGS,

area of UGS.

Suitable for the
national scale and
built environment,

fast and easy to
operate.

The accuracy of the
data has great

influence on the
results and cannot

reflect the
difference of green
space properties.

[30]

Greenhouse gas
inventory

According to the accumulation of
vegetation canopy area and carbon

storage per unit area, the total carbon
storage of green space was calculated.

Vegetation canopy
area, carbon

storage per unit
area of

vegetation/green
space.

Suitable for rapid
measurement of
carbon storage.

It is difficult to
obtain urban

measurement data.
[31]

City-Green model

Based on Geographic Information
System (GIS) and remote sensing
technology, the ecological benefit
evaluation model of green space
based on ArcGIS platform was

developed.

Tree leaf density,
tree height growth
rate, DBH growth
rate, crown shape,

leaf shedding,
height of the

largest tree, etc.

Suitable for
large-scale green

space carbon storage
research.

Most of the model
parameters come
from the United
States, and the

applicability of the
parameters in other

cities needs to be
verified.

[32]

i-Tree model

The annual benefit structure, function
and value of trees were quantified
according to the inventory data of

UGS.

Field data, local
hourly air pollution
and meteorological

data.

Higher precision on a
small scale in urban

area.

Applicability in
other cities has yet

to be verified.
[33]

Pathfinder system

A carbon calculation system for urban
landscapes based on landscape

materials, carbon sink pathways and
carbon cost parameters.

Type and quantity
of landscape

materials, carbon
sink of vegetation,

carbon cost.

Simple operation.

It is difficult to
determine

parameters and
obtain data.

[34]

Remote sensing
inversion

A variety of vegetation indices were
selected to obtain the optimal

relationship between different land
cover types and construct the

integrated model.

Biomass obtained
from remote

sensing image and
sample inventory.

Suitable for the
carbon storage
estimation in

large-scale UGS.

The spatial
resolution of

remote sensing
images is required
to be higher in the

urban area.

[35]

i-Tree model is powerful and more targeted, which can accurately calculate various
ecosystem service benefits generated by urban green space and has been widely used and
highly recognized by the academic community in Europe and America [33]. In this study,
the downtown area of Kaifeng is taken as the study area. On the basis of the field survey,
localization and verification of the i-Tree model, we precisely estimate the UGS carbon
storage by combining remote sensing data. The appropriate scale for spatial mapping of
UGS carbon storage was analyzed too.

2. Materials and Methods
2.1. Study Area

As a city in central China, it is representative in the construction of ecological landscape.
We chose Kaifeng, Henan Province, China, which is close to us, as the study area. Kaifeng
is located at 34◦11′45′′~35◦01′20′′N, 113◦52′15′′~115◦15′42′′E, with a total area of 6239 km2.
The terrain shows a general trend of slight inclination from northwest to southeast, with an
altitude of 69~78 m. Due to the influence of monsoons, it shows typical climate character-
istics of a warm temperate continental monsoon, with four distinct seasons. The average
annual temperature is 14.52 ◦C and the average precipitation is 627.5 mm. This study



Remote Sens. 2024, 16, 217 4 of 16

area is located in the downtown area of Kaifeng (34◦45′N~34◦50′N, 114◦13′E~114◦23′E),
with a total area of 101.24 km2 (Figure 1). Based on the global 1 km spatial distribution of
population data provided by WorldPop, we obtained the total population of the study area
as about 652,200 [36].
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2.2. Data
2.2.1. High-Resolution RGB Satellite Image

Google Earth (https://earth.google.com/web/, accessed on 11 April 2023) is a virtual
globe software developed by Google. Users can browse high-resolution RGB satellite
images around the world for free through the client, and the resolution can reach less than
0.5 m. In this study, RGB sub-meter images were collected on Google Earth for spatial
information extraction and type division of UGS.

2.2.2. Sentinel-2A/B Image

The multispectral remote sensing images were selected from Sentinel-2A/B with 10 m
spatial resolution published by the European Space Agency (https://scihub.copernicus.eu,
accessed on 11 April 2023) in 2022 [37]. Sentinel-2A/B images have 13 bands, which can
support the calculation of three vegetation indices (Normalized Vegetation Index, NDVI;
Ratio Vegetation Index, RVI; Difference Vegetation Index, DVI) and provide important data
support for the next study.

2.3. Methods
2.3.1. Extraction and Classification of Urban Land Type

Firstly, we used high-resolution RGB images from Google Earth to visually interpret
and extract UGS in the downtown area of Kaifeng. The high-precision spatial data of
UGS can provide support for the accurate measurement of UGS carbon storage. Sub-
meter satellite images can also reduce the estimation error caused by the loss of small
green space patches as much as possible. Secondly, the neighborhood blocks within the
downtown area of Kaifeng were divided. Then, combined with map and field survey data
for attribute classification, we finally obtained the land use data and detailed UGS type
data by integrating land use types and UGS spatially (Figures S2 and S3).

https://earth.google.com/web/
https://scihub.copernicus.eu
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2.3.2. UGS Sample Survey

In this study, 123 survey samples were selected according to the land use type and
vegetation cover of the green space observed by high-resolution remote sensing images
from Google Earth (Figure 1). We randomly investigated the trees and shrubs. The main
way to obtain vegetation attributes is by manually measuring and recording the growth
parameters of vegetation in detail. These survey samples were set to 10 m × 10 m. For
green space of a sample with a length and width of less than 10 m, the entire plot was
selected. Random trees and shrubs were selected in each sample to record the plant
growth parameters, including the species, DBH, crown width, height, crown missing, and
dieback rate of trees, the species, branch diameter, crown width, height, and other attributes
of shrubs.

2.3.3. Calculation of UGS Carbon Storage

In urban green space, lawns contribute little to total carbon storage [38], and most of
the carbon absorbed by lawns will be released back into the atmosphere due to regular
mowing or winter wilting too [20]. Therefore, this study only considers trees and shrubs in
UGS. The calculation formula for total carbon storage is as follows:

S = Sa + Ss (1)

where S is the total green space carbon storage (kg), Sa is the tree carbon storage (kg), and
Ss is the shrub carbon storage (kg).

(i) Tree carbon storage

Sa = ∑n
i=1

[
αδi

(
mai + mgi

)]
(2)

where α is the carbon content of biomass, using a value of 0.5 [39]; δi is the biomass
correction coefficient of the i-th tree, which is assigned according to the health status of
the plant, and its value is derived from the health assignment matrix of tree (Table S1); ma
is the above-ground biomass (kg), which is obtained according to the mixed allometric
model constructed in Table A1; mg is the under-ground biomass (kg), which is obtained by
mg = maβ; and β is the root-shoot ratio, which is 0.26 [40].

(ii) Shrub carbon storage

Ss = ∑m
k=1(1.249αPk Ak) (3)

where Pk is the shrub cover of the k-th sample measured (%); Ak is the area of the k-th
sample (m2).

2.3.4. i-Tree Eco Model

The i-Tree model has become a classic software to quantify urban forest structure and
ecological functions (www.itreetools.org, accessed on 2 March 2023). The i-Tree model
has many modules, and this study utilized the i-Tree Eco (Urban Forest Effects Model,
UFORE) to calculate carbon storage of UGS. UFORE is designed to use field data and local
hourly meteorological, as well as air pollution, data to give a detailed characterization of
ecological services, including carbon sink and storage of UGS [41]. The UFORE model has
been widely used in case studies across the world [42,43]. This study used pre-stratified
random sample plots for UFORE to assess the carbon storage of UGS in Kaifeng downtown.
Local hourly meteorological data and pollution data have been uploaded to the i-Tree team
and passed by the review. The verification results of UFORE in this study also showed that
it can support our study (Figure S1).

www.itreetools.org
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2.3.5. Vegetation Index and Remote Sensing Mapping of Carbon Storage

The sample survey data provided the input data of the i-Tree Eco model. Further,
remote sensing mapping was carried out through the vegetation index to estimate the
overall carbon storage of the study area. In this study, we selected three common vegetation
indices on the basis of Sentinel-2A/B images and combined them with the calculation
results of i-Tree Eco to construct a regression model of UGS carbon storage. The vegetation
index and calculation formula are shown in Table 2.

Table 2. Vegetation index and its formula.

Vegetation Index Formula

NDVI NDVI = NIR − R
NIR + R

RVI RVI = NIR
R

DVI DVI = NIR − R
Note: NIR represents the near-infrared band and R represents the visible red band.

The spatial estimation of UGS carbon storage was established by a regression model
fitted between vegetation index and sample survey data. The three vegetation indices were
used, respectively, and the regression model with the best fitted line was selected. At the
same time, in order to test the accuracy of the estimation model, the 123 sample survey data
were divided into two parts, namely, 100 sample data were used to establish the regression
model, and the remaining 23 sample data were used as the test data set to evaluate the
model accuracy. Furthermore, in order to obtain the minimum resolution of remote sensing
data that can be used in the estimation of urban carbon storage in large regions, i.e., the
minimum spatial scale, six different grid scales were set up to explore the scale effect on
accuracy of UGS carbon storage estimation.

3. Results
3.1. Spatial Distribution of UGS

According to the land use type and the spatial locations of green spaces, 17 types
of UGS were classified (Figure 2 and Figure S4). In order to facilitate the analysis, these
17 UGS types were summarized into park green space, protective green space, square
green space, and attached green space. The attached green space includes residential area
green space, commercial/financial green space, educational/scientific green space, road
green space, industrial green space, administrative office green space, and other green
spaces, which included eight categories too. The basic pattern of the park green space
presented a dual-center distribution of east and west parts in space. Protective green
space mostly distributed on the edge of the city, which was relatively concentrated in the
northwest and southwest. Square green space was less distributed in the study area. As an
important UGS type, attached green space was widely distributed in urban areas. Among
them, residential green space was widely distributed in all orientations of the city, and
the distribution of commercial/financial green space was highly fragmented. Most of the
educational/scientific green space was distributed in the north and northwest of the study
area. Road green space was distributed near to the roads. Industrial green space was
concentrated in the southwest and southeast of the city. Administrative office green space
only had a small, concentrated distribution in the central area, and other green space was
mainly distributed more in the west of the city.

The total area of UGS in the study area was 26.41 km2, and the proportion of various
types of green space has a large difference (Table 3). The total area of residential green space
was 7.29 km2, accounting for 27.4% of the entire study area. Followed by the park green
space, the area was 5.87 km2, accounting for 22.23%. The area of protective green space was
3.05 km2, accounting for more than 10%. The other types of green space accounted for less
than 10% of the entire study area, and the area order from large to small was other green
space > industrial green space > educational/scientific green space > road green space
> commercial/financial green space > administrative office green space > square green
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space. The overall greening rate of the study area was 26.09%. Park green space, protective
green space, and square green space had the highest greening rate, which was 75.84%,
51.09%, and 41.38%, respectively. Among the attached green spaces, the greening rates of
educational/scientific green space and administrative office green space were 28.67% and
27.07%, respectively, and they were both higher than the average greening rate of the study
area. The total area of green space per capita in the study area is 40.49 m2, of which the
per capita residential area green space is the largest, reaching 11.18 m2, and the per capita
Square green space is the smallest, at less than 1 m2.

Table 3. Land use type and area of UGS.

Land Use Type Area of Green
Space (km2)

Area
(km2)

Greening
Rate (%)

Per Capita Green
Space (m2)

Park green space (G1) 5.87 7.74 75.84% 9.00
Protective green space (G2) 3.05 5.97 51.09% 4.68

Square green space (G3) 0.12 0.29 41.38% 0.18

Attached green
space (XG)

Educational/scientific green space (A3) 2.15 7.50 28.67% 3.30
Administrative office green space (A1) 0.36 1.33 27.07% 0.55

Industrial green space(M) 2.26 8.92 25.34% 3.47
Residential area green space (R) 7.29 35.08 20.78% 11.18

Other green space (O) 2.56 13.15 19.47% 3.93
Road green space (S) 1.46 9.20 15.87% 2.24

Commercial/financial green space (B) 1.29 8.41 15.34% 1.98
Water (L) — 3.64 — —

Total 26.41 101.24 26.09% 40.49

Note: The UGS area per capita is calculated by areas of various-type and total green spaces/total
population, respectively.

3.2. Carbon Storage of UGS in Sample

The composition of UGS produced various community structure modes with the
combination of trees, shrubs, and herbs, which reflect the complexity of UGS. In this
study, the community structure of UGS was divided into five modes: tree–shrub–herbs,
tree–shrubs, tree–herbs, shrub–herbs, and tree community structures. Among them, the
tree–shrub–herbs mode accounted for the highest proportion in all samples, reaching
51.22%. The shrub-herbs mode accounted for the smallest proportion in all samples, only
0.81% (Figure 3a). The results of the sample survey also showed that the vegetation
allocation of UGS in the study area was more dominated by trees. Almost all UGS had
trees, while shrubs were relatively small, and individual lawns with a certain scale were
even harder to find. The average carbon density in the sample was 5.89 kg m−2. Among
them, the average carbon density of trees in various types of UGS was between 3.96 and
7.41 kg m−2, and the carbon density of shrubs was between 0.02 and 0.1 kg m−2. There
were differences in the carbon density of various green space types, among which park
green space, protective green space, and square green space, as the main bodies of urban
carbon storage, had the highest carbon density among all UGS types. The average carbon
density of the trees showed the order characteristics of attached green space < square green
space < protective green space < park green space, while the highest carbon density
distribution of shrubs was in square green space (Figure 3b).
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3.3. Estimation and Mapping of UGS Carbon Storage
3.3.1. Estimation of UGS Carbon Storage

By analyzing the statistical relationship between different vegetation indices and
above-ground carbon storage in 100 samples and considering the correlation and fitting ef-
fect of the model, the regression model with the best fitting equation was finally chosen (see
Table A2 for details). A cubic curve model (Y = −126.827 + 2468.4NDVI − 6555.944NDVI2

+ 6945.717NDVI3) had the highest decision coefficient (R2 = 0.827). We thus used the cubic
curve model to estimate UGS carbon storage in the study area. Then, the remaining 23 sam-
ple data were used to estimate the model accuracy. The results showed that the regression
model had high accuracy and confidence (Table S2).

Combined with the spatial distribution of UGS, the spatial distribution map of UGS
carbon storage in the study area was obtained (Figure 4). The total carbon storage was
114,389.17 t, and the per capita carbon storage was 175.39 kg. The average carbon density
was 4.33 kg m−2. The types of UGS with carbon storage accounting for more than 10% were
park green space, residential green space, protective green space, and the other green spaces
(G1, G2, R, O), accounting for 73.37% of the total carbon storage. Among them, the park
green space carbon storage was the highest, reaching 30,312.44 t, accounting for 26.50% of
the total carbon storage. This was followed by residential green space and protective green
space, reaching 21,400.82 t and 19,939.40 t, accounting for 18.71% and 17.40%, respectively.
The other green spaces carbon storage was 12,299.48 t, accounting for 10.75%. Among the
remaining UGS types, the carbon storage proportions of only two green space types were
more than 5%, namely, educational/scientific green space and industrial green space, that
were 9.06% and 9.09%, respectively (Figure 5, Table S3).

There were large differences in the average carbon storage and carbon density among
various UGS types. Green space carbon storage fluctuated greatly, ranging from 0.34 t to
4017.67 t (Tables S3 and S4). The carbon density of protective green space was the highest
among various UGS, which was 6.52 kg m−2, followed by square green space and park
green space, which were 5.70 kg m−2 and 5.16 kg m−2, respectively. The reasons causing
the large differences may be that cities tend to design green spaces with a large area during
the initial planning and building period, and some small green spaces will be built in
the later stages of urban development as a supplement to urban greening. Furthermore,
different greening management measures and maintenance standards will also cause the
differences in carbon storage.
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3.3.2. Appropriate Spatial Mapping Scale Analysis

The appropriate spatial mapping scale is particularly important for large-scale or
regional assessment of urban carbon storage. In this study, six different grid scales were set
up to explore the scale impact on urban carbon storage estimation accuracy. The results
showed that the standard deviation of carbon storage decreased along with the decrease in
the grid scale, indicating that the scale is an important factor in estimating urban carbon
storage (Table 4). When the spatial resolution was less than 1 km, the minimum value
of grid carbon storage is 0 t, showing that the urban carbon storage can be effectively
distinguished in space only when the spatial resolution is less than 1 km. That is, a 1 km or
more scale actually cannot be used for mapping of urban carbon storage, as it will overlook
a large number of scattered UGS. In terms of the average value and standard deviation of
urban carbon storage, the average value and standard deviation of urban carbon storage
had an inflection point at the 0.25 km scale, and the average value and standard deviation
increased exponentially after exceeding the inflection point of 0.25 km. Therefore, taking
into account the data source, data operation amount and cartographic accuracy, the spatial
resolution of 0.25 km is the minimum scale requirement for spatial mapping of urban carbon
storage (Figure 6). To a certain extent, the above analysis also indicates the importance of
high-precision mapping data to estimate the urban carbon storage.
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Table 4. Statistic values of urban carbon storage at different scales.

Scales n Minimum (t) Maximum (t) Average (t)

0.1 km × 0.1 km 10,685 0 126.39 10.71
0.25 km × 0.25 km 1735 0 482.07 65.93

0.5 km × 0.5 km 469 0 1529.64 243.91
1 km × 1 km 135 2.54 2371.07 847.34
2 km × 2 km 40 10.69 7011.80 2859.80
4 km × 4 km 13 30.68 22,966.20 8799.35
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4. Discussion

The UGS carbon storage shows that cities are far from just cement, and the construction
of eco-cities has made urban areas play an important role in carbon sequestration [44]. In
Henan Province, where Kaifeng is located, the average green space carbon density of the
downtown area of Kaifeng is similar to that of 4.43 kg m−2 in Luohe [45] and lower than
that of 5.48 kg m−2 in Zhengzhou [46]. Additionally, trees are the major contributor to
the carbon pool of UGS, and the conclusion of this study is consistent with others [47].
Nowak et al. [48] conducted a field survey on the carbon storage of green spaces in 28 cities
in the United States, showing that the carbon storage density of UGS trees could reach
7.69 kg m−2, and the total carbon storage reached 600 million tons. Using high-resolution
remote sensing data, Pasher et al. [49] conducted a study on the carbon sequestration
benefits of UGS in Canadian cities, and the results also showed that the carbon storage of
urban trees in Canada reached 34 million tons. Our previous study also showed that the
carbon sequestration within 79.3% of the global urban areas increased year to year [50]. All
of the above studies showed that urban carbon storage contributes to important impacts on
the regional ecology and climate. Therefore, the ecological and climatic effects of urban
vegetation should not be ignored or considered negligible in the carbon cycle [51], because
urban vegetation not only directly affects regional ecology and climate by biogeophysical
mechanisms but also indirectly affects the regional environment by carbon sequestration of
biogeochemical cycle [44,52].

In this study, we carried out the parameter localization of the i-Tree model and verified
the results, so as to carry out the corresponding simulation and analysis. Nevertheless, the
development of the i-Tree model is based on the climatic conditions and economic level of
local cities in the United States, and some tree species in Kaifeng may not be included in
the model database. So, in the selection of tree species, we try to maintain the consistency
between the tree species types in the study area and the model itself, but it is bound to
reduce the reliability of the analysis conclusions. At the same time, the i-Tree model requires
a series of assumptions to estimate urban green space carbon storage, such as unmeasured
root–shoot ratios, non-city-specific growth rates and adjustments for tree conditions, light
and land use, as well as decomposition rates [53]. These limitations may result in a high or
low estimation. Different models may cause some differences in simulation results, but it
does not affect the main focus of this study—the scale effect.

In this study, we used three vegetation indices of NDVI, RVI and DVI to fit the
11 formulas. The results showed that all of the fitting formulas passed the significance test,
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while the formula with the highest fit included only one vegetation index, NDVI. This is
mainly due to the high correlation of the three vegetation indices. The maximum NDVI data
of NASA GIMMS is even just a function of RVI [54]. Therefore, the fitting formula composed
of three highly correlated vegetation index variables also has high collinearity. Collinearity,
on the other hand, can lead to distorted or less stable model estimates. Although this
study uses the formula of the maximum fitting coefficient to maintain accuracy as much as
possible, it still cannot solve the problem of reduced estimation accuracy or stability caused
by collinearity. Therefore, when completing the scale expansion study, the problems of
specific study areas still need to be analyzed in detail.

Nevertheless, it is still difficult for current studies to break through multiple cities.
Exploring the suitable or minimum spatial mapping scale of urban carbon storage is a
prerequisite for both accurate urban carbon storage estimation and scale extension of study
area, as well as urban and regional climate effect simulation. Although remote sensing
has been introduced in many studies, the issue of mapping scale is still limited by the
spatial resolution of the multi-source and raw remote sensing data, resulting in the lack of
analyzing the suitable mapping scale [26]. The high-resolution remote sensing image can
directly obtain high precision for urban carbon storage, but the data resource will directly
affect the study scale and computational efficiency [55,56]. The scale of 0.25 km obtained in
this study is an unexpected result, which can be used as a reference value for urban carbon
storage mapping and regional climate modeling.

It is of great significance to study the influencing factors of UGS carbon storage
for urban low-carbon development [44]. From the perspective of urban management,
appropriately increasing the planting density of trees and incorporating more suitable trees
into urban areas can effectively increase the carbon sequestration of UGS [57]. Previous
studies have shown that the vegetation structure composition has a greater impact on the
carbon sequestration capacity of UGS and also confirmed that the impacts of the increase
in green space carbon sequestration capacity is greater than the increase in green space
area [58–60]. Therefore, further studies should combine the principles of ecology and
the landscape index of UGS, to analyze the impacts of the tree–shrub–herbs composite
structure or even the three-dimensional greening on the UGS carbon storage, so as to
provide corresponding suggestions for enabling UGS to exert greater urban ecosystem
service functions [61,62].

5. Conclusions

In view of the lack of refined carbon storage estimation and appropriate spatial
mapping scale of UGS, this study used field survey data and high-resolution remote
sensing images and combined them with the i-Tree Eco model to classify the types of UGS
in the downtown area of Kaifeng. A cubic curve regression model was constructed for
estimating spatial urban carbon storage, and the minimum scale for spatial mapping of
urban carbon storage was obtained too. The results showed that the total area of UGS in
the study area was 26.41 km2, and the total urban carbon storage was 114,389.17 t. The
per capita green space area and per capita carbon storage were 40.49 m2 and 175.39 kg,
respectively. The average carbon density of protective green space, square green space,
and park green space ranked in the top three among all UGS types, with 6.52 kg m−2,
5.70 kg m−2 and 5.16 kg m−2, respectively. The urban carbon storage had obvious scale
dependence, and the spatial carbon storage showed different characteristics at different
scales. The minimum spatial resolution requirement for urban carbon storage mapping
was 0.25 km or less.

Our study results confirm that the urban area is not a concrete jungle anymore but has
considerable carbon storage, which makes up for the shortcomings of the current research
system on urban carbon storage issues to a certain extent. This study not only provides a
strong reference for assessing urban carbon storage and modifying regional climate models,
but it also has important guiding significance for the formulation of urban low-carbon
development strategies and the spatial optimization of UGS.
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Appendix A

Table A1. Biomass allometric equation of various tree species. The top 10 tree species with total
carbon storage were selected.

Tree Species Allometric Equation Sources

Koelreuteria
paniculata Bt = 0.10994D2.48438 [63]

Cinnamomum
camphora Bt = 0.10378D2.53500 [63]

Populus tomentosa Bt = 0.0262D2.9404 [64]

Salix babylonica
BB = 0.0326

(
D2H

)0.8472

BL = 0.0250
(

D2H
)1.1778 [65]

Platanus acerifolia lg(Bt) = −1.161443 + 0.913291 × lg
(

D2H
)

[66]
Ailanthus altissima Bt = 0.8760 + 0.0124

(
D2H

)
[67]

Eucommia ulmoides ln(Bt) = 0.8007 × ln
(

D2H
)
− 0.8114 [68]

Ligustrum lucidum Bt = 0.13999D2.34273 [69]
Fraxinus chinensis Bt = 2.1893 + 0.032949

(
D2

1.3H
)

[70]
Platycladus

orientalis
BB = 0.1642D1.8804

BL = 0.3222D1.4818 [71]

Table A2. Regression models and statistic parameters.

Regression Model Equation R2 Adjusted
R2 F Sig·

Multiple linear regression Y = −180.012 + 352.596X1 +103.614X2 +0.43X3 0.816 0.810 142.008 0.00
Stepwise linear regression Y = −177.333 + 481.497X1 +105.631X2 0.815 0.811 213.895 0.00

Linear regression Y = −616.771 + 2137.063X1 0.686 0.682 213.695 0.00
Quadric model Y = 431.466 − 2268.733X1 +4038.485X1

2 0.811 0.808 208.744 0.00

https://www.mdpi.com/article/10.3390/rs16020217/s1
https://www.mdpi.com/article/10.3390/rs16020217/s1
https://earth.google.com/web/
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://hub.worldpop.org/geodata/summary?id=24777
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Table A2. Cont.

Regression Model Equation R2 Adjusted
R2 F Sig·

Cubic curve model Y = −126.827 + 2468.4X1−6555.944X1
2 +6945.717X1

3 0.827 0.822 153.169 0.00
Composite model Y = 48.184 × 50.910X1 0.820 0.819 447.787 0.00

S model Y = e7.024−0.356/X1 0.436 0.431 75.856 0.00
Power model Y = 1321.642 × X1

1.600 0.706 0.703 235.803 0.00
Growth model Y = e3.875+3.930X1 0.820 0.819 447.787 0.00

Exponential model Y = 48.184e3.930X1 0.820 0.819 447.787 0.00
Logistic model Y = 1/

(
0 + 0.021 × 0.0196X1

)
0.820 0.819 447.787 0.00

Note: X1 is NDVI; X2 is RVI; X3 is DVI.
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