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Abstract: A tropical cyclone (TC) is a type of severe weather system that damages human property.
Understanding TC mechanics is crucial for disaster management. In this study, we propose a
multi-task learning framework named Multi-Task Graph Residual Network (MT-GN) to classify and
estimate the intensity of TCs from FY-4A geostationary meteorological satellite images. And we
construct a new benchmark dataset collected from the FY-4A satellite for both TC classification and
intensity estimation tasks. Four different methodologies to classify TCs and estimate the intensity of
TCs are fairly compared in our dataset. We discover that accurate classification and estimation of TCs,
which are usually achieved separately, requires co-related knowledge from each process. Thus, we
train a convolution feature extractor in a multi-task way. Furthermore, we build a task-dependency
embedding module using a Graph Convolution Network (GCN) that further drives our model to
reach better performance. Finally, to overcome the influence of the unbalanced distribution of TC
category samples, we introduce class-balanced loss to our model. Experimental results on the dataset
show that the classification and estimation performance are improved. With an overall root mean
square error (RMSE) of 9.50 knots and F1-score of 0.64, our MT-GN model achieves satisfactory
performance. The results demonstrate the potential of applying multi-task learning for the study
of TCs.

Keywords: tropical cyclone; multi-spectral imaging; multi-task learning; graph convolution network

1. Introduction

Today, tropical cyclones (TCs) are becoming more and more frequent around the world
due to global warming [1]. With strong winds and rainstorms, TCs have disastrous impacts
on human activity. Due to their complex physical processes, TCs are difficult to predict
efficiently. There are already many studies regarding the axisymmetric structures and
dynamic mechanisms of TCs [2,3]. In recent years, with the help of machine learning and
deep learning, the development of TC study is rapidly increasing, including TC forecasting,
tracking, intensity estimation, classification, and disaster impact forecasting. Today, those
fields are separately investigated, which prevents further use of data analysis tools to
understand TCs. In future research, introducing more prior knowledge and collecting a
large amount of multi-source data can effectively improve the accuracy of TC modeling.

In the field of TC modeling, the research of TC classification starts before TC intensity
estimation. A large amount of TC classification research based on machine learning and
deep learning provide a rich experience for TC intensity prediction. Kar and Banerjee [4]
applied feature extraction techniques on input infrared images to gain simple geometric
properties of the cyclone structure then fed the feature vectors to five machine learning
classifiers, providing results with a classification accuracy of around 86.66%. Kurniawan
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et al. [5] used a Gray-Level Co-Occurrence Matrix (GLCM) algorithm to extract features in
the color space of images and carried out classification with a multi-class Support Vector
Machines (SVM) using a one-against-all (OAA) coding design and a Gaussian kernel. In
comparison, some researchers have recently divided the TC intensity grades into many
categories using Convolution Network Networks (CNNs). Zhang et al. [6] proposed a
tropical cyclone intensity grade classification (TCIC) module that adopts Inception-ResNet-
v2 [7] as the basic network to extract richer features. With an attention mechanism, their
TCIC achieved good accuracy for the classification task.

For TC intensity estimation, the traditional methods require plenty of human inter-
vention and handcrafted feature engineering. The widely used Dvorak [8] and deviation-
angle-variance (DAT) techniques estimate the TC intensity based on knowledge of cyclone
eyes and the structure of TCs. Those traditional techniques require systematic meteo-
rological knowledge and cannot easily adapt to diversified data. In recent years, deep-
learning-based intensity estimation models have been prospering and yielding promising
results [9–11]. DL-based methods can be categorized into three types, as shown in Figure 1:
(1) Classification-and-interpolation: Pradhan et al. [12] first proposed a deep CNN for
categorizing TCs by estimating the wind speed through weighting the average of two
highest categories with respect to their probabilities. Wang et al. [13] further improved
the effect of intensity estimation by using a CNN with better feature extraction perfor-
mance according to the idea proposed by Pradhan. (2) Regression: Recent studies [14–16]
estimate TC intensity as a straightforward regression task and outperform the classification-
and-interpolation method. (3) Multi-tasking: This school of methods usually cascades a
classification model and a regression model. Considering that the intensity range of TCs
is wide and a single regression model is insufficient for all kinds of TCs, Zhang et al. [17]
proposed to use one classification model to divide the input image into three sub-classes
and to then build three similar regression models to predict the max wind speed for each
sub-class. Chen and Yu [18] proposed a practical multi-tasking architecture called Tensor
CNN (TCNN) to perform intensity categorization and wind speed regression successively,
which uses the trained classification model to ensure the afterward regression work’s accu-
racy. Both of the two multi-tasking methods’ idea is fundamentally to employ regression
to estimate TC wind speed after intensity categorization, which does not take the relation
of the TC categories and intensity into consideration naturally. These two methods men-
tioned above [17,18] only used the classification knowledge to restrict the regression model.
Thus, the potential of the multi-task learning way has not been completely exploited yet.
Exploring a new way of multi-task learning to bridge the gap between classification and
intensity estimation is needed.

Furthermore, there are more challenges facing TC modeling. In nature, the numbers
of different types of TCs are seriously unbalanced. The TCs in most of the obtained satellite
images are of medium and low intensity, while there are few high-intensity TCs. And the
intensity range of TCs ranges widely from 30 knots to more than 150 knots. Traditionally,
the remote sensing community treats TC intensity and classification separately and ignores
the correspondence between TC categorization and intensity. And the cascaded way
of multi-task learning only employs the classification model to guide the subsequent
regression models.

Aiming at fully leveraging the advantages of the multi-tasking method, we propose
a parallel way of multi-tasking for TC classification and intensity estimation: Multi-Task
Graph Residual Network (MT-GN). Our proposed model consists of two parts: feature
extraction and task-dependency embedding. Both parts are trained in a parallel multi-
tasking way, which is more reliable because of the method of sharing information between
the two different tasks. Using a two-stage training method, we first train a residual CNN
feature extractor from scratch. Then, after obtaining a fine feature map for the classification
and estimation from this simple CNN structure, we drop the last fully connected layers,
fix the feature extraction part, and only train the task-dependency embedding module.
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Consisting of two GCN layers, our task-dependency embedding module further improves
our precision with a reweighting process.

Figure 1. Diagrams of three deep-learning-based intensity estimation models. The structure of
each deep learning model can be divided into two parts: feature extraction and prediction. All
three methods share similar feature extraction parts, but they differ in their prediction parts and
loss functions.

Further, we compared different feature extractors and input methods for multi-spectral
images. Compared with infrared (IR) and water vapor (WV) images, using high-spectral-
resolution multi-spectral data as input can provide more features and details of TCs. As
high-dimensional data, multi-spectral images (MSIs) can cause the curse of dimensional-
ity [19], and with visible bands (VIS), the MSIs captured during daytime and nighttime
actually have 14 bands and 8 bands, respectively. Thus, studying different input methods
for MSI to the CNN model is necessary. Moreover, using MSI obtained by China’s FY-4A
satellite, we studied the channel-wise heatmap of multi-spectral images,which shines a
light of understanding on the role of different channels of multi-spectral images in the TC
deep learning field.

The main contributions provided in this work are as follows:

1. We propose a parallel multi-tasking framework to classify TCs and estimate TC
intensity simultaneously that has better performance than other methodologies under
the comparison of the same dataset.

2. Improvement of classification and estimation performance is achieved by a task-
dependency embedding model based on a GCN.

3. We improve the ability of the model using the residual modules and class balance loss
to lay a solid foundation for prediction tasks.

4. We constructed a multi-spectral benchmark dataset for tropical cyclone intensity
estimation task using FY-4A multi-spectral data, which facilitates the fair comparison
between different methodologies.

The rest of this article is organized as follows. Section 2 proposes the MT-GN for TC
classification and intensity estimation, in which two modules, a feature extractor module
and a task-dependency embedding module, are explained in full detail. Section 3 presents
the details of our dataset, experiment setting, and results. The detailed analysis and
discussion are listed in Section 4. Finally, Section 5 provides the conclusion.
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2. Materials and Methods
2.1. Overall Framework

We illustrate the proposed parallel multi-task learning architecture MT-GN in Figure 2
as an overview. The input of our model is MSI image data, and the output is the predicted
max wind speed and classification scores corresponding to the input. As shown in Figure 2,
the left side is the CNN-based feature extraction module, and the right side is the GCN-
based multi-task module. The r and C∗ nodes in the GCN module are embedded nodes
corresponding to the GCN matrix, the green r node corresponds to the regression task, and
the yellow C∗ nodes correspond to different categories in the classification task. Variables
ar and a∗c are the adjustment vectors produced by the multi-task module, while pr and p∗c
are the final outputs of the model.

The whole model follows a two-stage training strategy. First, we train the dual tasks of
classification and regression on the CNN part, which includes a feature extraction backbone
and a prediction layer (fully connected later). Then, a GCN-based task-dependency embed-
ding module (TDEM) is introduced into our model. With the feature extraction backbone’s
parameters frozen, the TDEM module takes the extracted feature map as input and learns
the inter-task dependency knowledge to enhance the performance of multi-task prediction.
Finally, in the evaluation stage, the MT-GN model formulates the inter-task dependency
learned by the TDEM part as prior information to re-rank the original dual-task results
predicted by the CNN part. The implementation details of our method are described in
Sections 2.2–2.4.

Figure 2. Overview of the proposed MT-GN framework. Besides the CNN network, which consists
of a feature backbone and an FC layer, we propose a task-dependency embedding module to model
node correlation. The proposed module benefits both the regression and classification tasks via
reweighting the aggregation to refine network prediction results.

2.2. Feature Extraction Module

In order to obtain better features, the depth of the neural network grows fast, which
makes training deep CNNs difficult and lengthy. To overcome this problem, He et al. [20]
introduces a residual module. Referring to it as the VGG19 network, He et al. [20] modifies
the configuration of every layer and adds residual units through a short-circuit mechanism.
An important design principle of ResNet [20] is that when the size of feature maps is
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reduced by half, the number of feature maps is doubled, which maintains the complexity
of the network. To further reduce the number of parameters and matrix multiplications, He
et al. [20] proposed a variant of the residual block that utilizes 1 × 1 convolutions to create
a bottleneck. As shown in Figure 3, the bottleneck is composed of 1 × 1, 3 × 3, and 1 × 1
convolutions. The 1 × 1 convolution layer is used to reduce and restore dimensions. The
3 × 3 layer is used to integrate neighborhood information. With the shortcut connections
in the convolution bottleneck in the CNN, the residual module can be used to reduce the
number of parameters and increase the network depth efficiently.

Imitating the structure of ResNet and the bottleneck, we designed a feature extraction
module as the basis of the network, which is composed of a convolution backbone and a
fully connected prediction layer. After the extraction of CNN feature maps, we apply a
global average pooling (GAP) layer before the fully connected layer [21]. With the GAP, we
do not need to resize the input images to a fixed shape, which is often a required prepro-
cessing cutting step for satellite images. The detailed structure of our feature extraction
module is shown in Table 1.

During the first training stage, the whole feature extraction module along with its FC
prediction layer is trained from scratch without the task-dependency embedding module.
From the perspective of multi-task learning, the training of our feature extraction module is
a hard parameter sharing technique in which the sharing layers are jointly optimized with
multi-task supervisory signals. While in the second training stage, the proposed feature
extraction module is kept fixed to maintain its strong feature extraction capability. With this
multi-task feature extraction module, we can simultaneously tackle the TCs classification
and intensity prediction tasks through a learned shared representation.

Figure 3. Structure diagram of bottleneck.
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Table 1. Detailed configuration of the proposed CNN backbone.

Layer Input Size Output Size Kernel Size

Conv1 14, 224, 224 64, 112, 112 7 × 7, 64, stride 2
MaxPool 64, 112, 112 64, 56, 56 3 × 3, stride 2

BottleNeck1 64, 56, 56 64, 56, 56 (C1 = 64, C2 = 64)@(3 × 3)
BottleNeck2 64, 56, 56 64, 56, 56 (C1 = 64, C2 = 64)@(3 × 3)
BottleNeck3 64, 56, 56 128, 56, 56 (C1 = 64, C2 = 128)@(3 × 3)

DownSample (Conv) 128, 56, 56 128, 28, 28 1 × 1, stride 2
BottleNeck4 128, 28, 28 128, 28, 28 (C1 = 128, C2 = 128)@(3 × 3)
BottleNeck5 128, 28, 28 256, 28, 28 (C1 = 128, C2 = 256)@(3 × 3)

DownSample (Conv) 256, 28, 28 256, 14, 14 1 × 1, stride 2
BottleNeck6 256, 14, 14 256, 14, 14 (C1 = 256, C2 = 256)@(3 × 3)
BottleNeck7 256, 14, 14 512, 14, 14 (C1 = 256, C2 = 512)@(3 × 3)

DownSample (Conv) 512, 14, 14 512, 7, 7 1 × 1, stride 2
BottleNeck8 512, 7, 7 512, 7, 7 (C1 = 512, C2 = 512)@(3 × 3)

GAP 512 × 7 × 7 512 7 × 7, stride 1
FC 512 7 512 × 7

2.3. Task-Dependency Embedding Module

Although trained with two tasks’ labeled data, the CNN’s discriminative capability
is still limited by the inconsistency between the two tasks. To mitigate this effect,
we propose a task-dependency embedding module to adjust the network predictions
through reweighting. The proposed task-dependency embedding module consists of
two graph convolution layers with the ReLU activation function [22], which is trained
with the image feature extraction modules’ parameters fixed. The detailed structure of
the TDEM is demonstrated in Figure 2. With this GCN-based module, we can encode
the graph structure of the feature maps directly and fit the prior relationship between
the two tasks’ predictions.

As a branch of graph neural networks, a GCN performs similar operations as a CNN,
which learns features from neighborhoods [23–26]. The key difference between a GCN
and CNN is that the GCN is more general than the CNN and can handle unordered
non-Euclidean data.

As introduced by [27], to perform semi-supervised classification, the output of a GCN
is the probability of each prediction. Following Kipf and Welling [27], we denote the
symmetric weighted adjacency matrix as A and the parameters of the two GCN layers as
W1 and W2. And Jc(i) represents for classification score adjustment for the i-th category,
and Jr represents the regression adjustment. In our TDEM module, the graph structure
embedded by the GCN formulates the regression adjustment Jr and the classification scores
adjustment Jc(i) as independent nodes, which models the relationship between different
nodes via a relationship matrix Â ∈ RN×N , where N represents the number of output
nodes. Taking both the CNN features X and the adjacency matrix A as inputs, the TDEM
produces the learned relationship matrix Â and adjustment output J∗. The initial input
feature X is the output of the CNN’s GAP layer, while the input feature of the second
GCN layer is the output feature of the first GCN. Through backpropagation, the learned
adjacency matrix Â in a GCN can represent the dependencies of two tasks in the feature
space. The values in the adjacency matrix measure the corresponding correlation between
prediction nodes.

To sum up, the whole process of the TDEM module is as follows: first, obtain the
feature vector X obtained by the GAP layer and calculate the relationship matrix Â of the
graph structure by the adjacency matrix A; then, input them into a two-layer GCN network
to obtain the prediction nodes J. Our forward calculation takes the form:

J = f (X, A) = Softmax
(

Â ReLU
(

ÂXW1
)
W2

)
(1)
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Here, W1 ∈ RC×H is an input-to-hidden weight matrix for a hidden layer with H
feature maps. W2 ∈ RH×S is a hidden-to-output weight matrix. And the relationship
matrix Â is defined as Â = D̃− 1

2 ÃD̃− 1
2 , with Ã = A + IN and D̃ii = ∑j Ãij.

Finally, we apply the output J ∈ RN×N of the TDEM to the original output Forg ∈ RN×1

of the FC layer of the feature extraction module in an element-wise manner as a weighted
adjustment. The reweighting process can be written as follows:

Ff inal = Softmax
(

J ⊙ Forg + Forg
)

(2)

Here, Ff inal denotes the final prediction result of our MT-GN network. In this way, we
integrate the task-dependency prior to the following prediction part of the model.

2.4. Loss Function

Traditionally, classification and regression tasks are tackled in isolation, i.e., a separate
neural network is trained for each task. Unlike the traditional learning way, multiple tasks
are solved jointly in multi-task learning (MTL), and inductive bias is shared between the
tasks [28–31]. MTL can be formulated as a weighted minimization problem as:

min
θsh

θ1,...,θT

T

∑
t=1

ctL̂t
(

θsh, θt
)

(3)

where ct demonstrates the predefined or dynamic weights for the t-th task, and L̂t repre-
sents the empirical loss of the t-th task, which is defined by Equation (4):

L̂t
(

θsh, θt
)
=

1
N ∑

i
L
(

f t
(

xi; θsh, θt
)

, yt
i

)
(4)

In the above equation, N represents the number of sample for the t-th task, f t rep-
resents the network model for the t-th task, θsh represents the model parameters shared
among multiple tasks, θt represents the exclusive model parameter of the t-th task, and yt

i
represents the label for the i-th sample of the t-th task.

For our multi-task learning model, we design a mixed loss function. For the regression
part, we use the mean squared loss. For the classification part, we choose a class-balanced
loss. Because the distribution of TC categories is very uneven, previous studies usually
apply manual oversampling or downsampling to the datasets. However, upsampling
simply expands the dataset by rotation and additional noise in order to replicate small class
samples [6]. The characteristics of the new data are highly similar to the original data, and
there is no essential performance improvement. Downsampling reduces the performance
of the model for major categories. Neither of them introduce the prior knowledge of the
relative quantity of different categories. Therefore, we use the class-balanced loss function
based on the relative number of classes [32]. Finally, we use the weighted sum method to
balance the two sub-parts of the mixed loss function. Our mixed loss function L formula is
as follows:

L = Lreg + λLcls (5)

Here, Lreg and Lcls represent the loss function for regression and classification, re-
spectively, and λ denotes the weight of the classification part. The following equations
formulate the details of the two loss functions:

Lreg =
(

Yreg − F∗
reg

)2
(6)

Lcls(i) = − 1 − β

1 − βni

C

∑
j=1

(
1 − F∗

cls,j

)γ
log

(
F∗

cls,j

)
(7)
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where Y∗ represents the label for regression or classification, F∗ represents the original
output of the CNN part of the final output adjusted by the GCN part, ni represents the
number of samples of category i, C represents the number of categories, and β and γ are
hyperparameters in the loss function.

It is worth noting that the GCN network weights W1 and W2 are trained with the same
loss function and learning rate as the CNN part. Thus, we obtain a simple yet consistent
training scheme for the two parts of the model.

3. Experiment and Results
3.1. Dataset and Evaluation Metrics

In this paper, we constructed a benchmark dataset based on FY-4A image and best-
track data to fairly compare the advantages and disadvantages of different methods. All
models for TC classification and intensity estimation in this study are evaluated on this
benchmark. We publish our benchmark dataset online for the convenience of reproduction
and follow-up research (https://randomless.github.io/FY4A-TC-Benchmark/ (accessed on
11 November 2023)).

3.1.1. FY-4A Satellite Data and TC Data

To build our benchmark dataset, we collected the data of FY-4A and TCs over the
southeast coast of China and the northwest Pacific from 2018 to 2021, which were provided
by the Shanghai Meteorological Bureau, Shanghai, China.

Launched in December 2016, China’s FY-4A meteorological satellite carries an Ad-
vanced Geosynchronous Radiation Imager (AGRI), which can provide high-quality images
of the cyclones over the northwest Pacific Ocean. We construct our dataset with the multi-
spectral images of the FY-4A/AGRI. The central wavelengths and the names of the bands
are displayed in Table 2.

The best-track data of TCs are obtained from the China Meteorological Administra-
tion (CMA) (https://tcdata.typhoon.org.cn/ (accessed on 11 November 2023)). The CMA
TC best-track dataset covers TCs that develop over the northwestern Pacific Ocean. The
basin is to the north of the equator and to the west of 180°E and includes the South China
Sea (SCS). The data contain the central location (latitude/longitude) of TCs as well as the
maximum wind speed (MWS) and typhoon category, which is provided every 3 or 6 h.
Depending on the wind speed, dissipation power index, integrated kinetic energy index,
and storm severity index, TCs are graded into six classes according to the TC intensity
classification standard of the China Tropical Cyclone Classification Standard, GBT 19201-
2006 [33]. The typhoon categories and corresponding wind speed ranges are shown in
Table 3.

Table 2. Instrument specifications for FY-4A/AGRI sensor.

Band Central Wavelength (µm) Band Name

1 0.47 Blue Band
2 0.65 Red Band
3 0.83 Veggie Band
4 1.37 Cirrus Band
5 1.61 Snow/Ice Band
6 2.22 Cloud Particle Size Band
7 3.72 Shortwave Window Band—High
8 3.72 Shortwave Window Band—Low
9 6.25 Upper-Level Tropospheric Water Vapor Band
10 7.1 Lower-Level Water Vapor Band
11 8.5 Cloud-Top Phase Band
12 10.8 Clean IR Longwave Window Band
13 12 Dirty Longwave Window Band
14 13.5 CO2 Longwave Infrared Band

https://randomless.github.io/FY4A-TC-Benchmark/
https://tcdata.typhoon.org.cn/
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Table 3. Classification of cyclone categories and corresponding wind scales.

No. Category Abbreviation Wind Speed (knots) Wind Speed (m/s)

1 Tropical low pressure TLP 20.99–33.24 10.8–17.1
2 Tropical storm TS 33.25–46.64 17.2–24.4
3 Strong tropical storm STS 46.65–61.22 24.5–32.6
4 Typhoon TY 61.23–79.68 32.7–41.4
5 Strong Typhoon ST 79.69–99.12 41.5–50.9
6 Super Typhoon STY ≥99.13 ≥51.0

3.1.2. Benchmark Dataset Construction

The TC image extraction process based on FY-4A data is shown in Figure 4. The
construction steps for the benchmark dataset are as follows:

1. TC Data Matching: Because the time resolution of TC data is inconsistent with that of
FY-4A image data, we match the best-track data with the image data.

2. Image Cropping: As the raw FY-4A image data contain the entire half-disk area, we
need to further crop the image data according to the TC data. The maximum wind
speed, longitude, and latitude data in TC data are linearly interpolated to the same
time resolution as FY-4A image data. Then, based on the longitude and latitude of the
TC center at the corresponding time, we select the surrounding 240 × 240 pixel area as
the TC sample at that time. The values of the TC sample’s classification and intensity
label are assigned based on the interpolated TC data. Thus, a constructed TC sample
includes 240 × 240 image data for 14 channels, maximum wind speed in knots, and
category labels. Examples of the cropped images are shown in Figures 5 and 6.

3. Normalization: In order to accelerate model weight convergence, normalization is
applied to every MSI image. The pixel value in every normalized channel of the
satellite image data ranges from [0,1].

4. Dataset Split: After obtaining the constructed TC samples, we divide all of them into
the training set and test set according to a ratio of 8:2. It is worth noting that the
TC instances of the training set and the test set do not intersect each other after the
division. In addition, using the geometric properties of TCs, we rotated the samples in
the training set by 90° and 180° to expand the training set. The training set is used for
parameter learning and tuning, while the test set is used for performance evaluation.

Finally, a total of 5442 satellite images of TCs are selected to train the proposed model,
and 939 images of TCs were selected to verify the performance of the models. We use knots
as the unit for wind speed to facilitate easier comparison with other research, but we also
provide m/s versions in all of the experimental results tables.

Besides taking all 14 channels of image data as input, we also produce more forms of
input image data for the TC samples. Considering the input bands, Dawood et al. [34] and
Zhang [6] take the IR channel as input; Zhang [17] and Lee [16] take the IR and water vapor
channels as input. Therefore, in order to make an approximate comparison with them, we
further processed the FY-4A multi-channel data. According to the central wavelength of
the band, we select the 12th band as the single-channel input for IR and select the 7th, 9th,
12th, and 13th bands as the four-channel input for IR and WV. In addition, we also perform
dimensionality reduction on 14-channel FY-4A data through principal component analysis
(PCA) to get statistical information from multi-channel images. By setting the principal
component numbers of the PCA to one and four, we obtain the settings of PCA1 and PCA4
for the model’s input. See Section 4.2 for the corresponding comparison experiment.

Additionally, according to the acquisition times of images, we further divide image
data into daytime and nighttime data. The time period of daytime data is from 21:01 of
the previous day to 08:59 of the current day (UTC). The time period of nighttime data is
09:00–21:00 (UTC) of the current day. For daytime data, we can use all of the FY-4A/AGRI
bands (14 bands). As for nighttime data, since the VIS band cannot obtain data at night, the
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nighttime data can be studied by using all bands 1–14 or by using infrared bands 8–14. See
Section 4.2 for a specific comparative study between daytime and nighttime.

Figure 4. Extraction of a TC from FY-4A data utilizing a window of 240 × 240 pixels. The window is
centered around the location of the TC obtained from the best-track data.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 5. Day images of a cyclone sample cropped from the original FY-4 MSIs: (a) 1st, (b) 2nd, (c) 3rd,
(d) 4th, (e) 5th, (f) 6th, (g) 7th, (h) 8th, (i) 9th, (j) 10th, (k) 11th, (l) 12th, (m) 13th, and (n) 14th band.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 6. Night images of a cyclone sample cropped from the original FY-4 MSIs: (a) 1st, (b) 2nd,
(c) 3rd, (d) 4th, (e) 5th, (f) 6th, (g) 7th, (h) 8th, (i) 9th, (j) 10th, (k) 11th, (l) 12th, (m) 13th, and
(n) 14th band.
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3.1.3. Evaluation Metrics

To compare the results of classification and intensity estimation, we evaluate the
models’ performances using various statistical indices. For the classification task, we
employ multiple indices, including Top-2 accuracy, Kappa coefficient (Kappa), precision,
recall, and F1-score. For TC intensity estimation (max wind speed regression), we mainly
use absolute error (MAE), mean-square error (MSE), and root-mean-square error (RMSE)
as evaluation metrics. For a more detailed study on the difference between the best-track
data and the estimated intensity of each category, we also apply bias, overestimation rate,
and underestimation rate as complementary metrics. The computation formula for our
complementary metrics is demonstrated as follows, where Yreg represents the label of the
regression, and Freg represents the output of the model.

Bias =
1
n
∗ ∑

(
Yreg − Freg

)
(8)

Overestimation Rate =
number(Yreg < Freg)

number(Yreg)
∗ 100% (9)

Underestimation Rate =
number(Yreg > Freg)

number(Yreg)
∗ 100% (10)

3.2. Setup

All of the models for comparison were trained from scratch using the PyTorch frame-
work (in Python 3.7) running on a computer with four NVIDIA TITAN Xp (Pascal) GPUs.
All experiments employed the same data preprocessing method, which ensures that the
comparison between models is fair. The batch size for training was 128, the learning rate
was 0.001, and the training procedure ends at the 24th epoch. As for the update scheduler
of the learning rate, cosine annealing is employed in all experiments. We used the Adam
optimizer to optimize the loss function with hyperparameters β1 and β2 set as 0.90 and
0.99, respectively. Furthermore, the best-performing model on the test dataset is evaluated
and saved during the optimization process. For our proposed MT-GN method, a two-stage
training process is implemented according to Algorithm 1.

Algorithm 1 Two-stage training process and inference process of MT-GN.

TRAIN: (Feature Extraction Module)
1: Initialize the parameters θcnn of the CNN part randomly.
2: while θcnn not converged do
3: Compute loss L by Equations (5)–(7) .
4: Update θcnn with loss L by Adam optimizer.
5: end while

TRAIN: (Task-dependency Embedding Module)
6: Initialize the parameters θgcn of the GCN part randomly; freeze θcnn.
7: while θgcn not converged do
8: Compute loss L by Equations (5)–(7) .
9: Update θgcn with loss L by Adam optimizer.

10: end while
PREDICT: (MT-GN Model)
11: Freeze the parameters θgcn.
12: Predict the final output of classification and regression Fcls, Freg by Equation (2).

3.3. Results of Different Models

In order to illustrate the advantages and performance of our proposed parallel multi-
tasking architecture, we design a cascaded multi-tasking model similar to TCICENet, a
direct regression model similar to Deep PHURIE, and a classification-and-interpolation
model similar to Deep CNN. All models use the same feature extractor backbone and neural
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network operators, with only the architecture of the networks being different. We use four
different CNN backbones as feature extractors to compare the classification accuracy and
regression accuracy of these four methods. Among them, the classification results of the
regression method are directly obtained from the predicted wind speed according to the
wind speed range in Table 3. In addition, we also draw the scatter diagrams of wind speed
bias of the four methods and the box diagrams of bias by category of the classification
results of the four methods based on Res-2D-CNN, as shown in Figures 7 and 8, respectively.
In the scatter diagrams, we also draw the fitting line and show the Pearson correlation
coefficient (PCC) and R-squared value (R2) between the predicted wind speed and the
labeled wind speed to intuitively measure the accuracy of wind speed prediction.

The results in Table 4 demonstrate that our proposed method improves both classifica-
tion and regression accuracy and performs favorably against state-of-the-art approaches. In
contrast, two multi-tasking methods can obtain more accurate results than the classification-
and-interpolation method and regression method, no matter what kind of feature extractor
is used.

It can be seen from Figure 7a–d that the values of PCC and R2 of the two multi-
tasking methods are significantly higher those the other two methods. Among them, the
classification-and-interpolation method is the worst, and its R-squared value is only 0.755,
while the parallel method is the best, and its R-squared value is 0.8492. The R-squared
values of the cascaded method and regression method are 0.8408 and 0.8210, respectively.
Intuitively, the scatter points in Figure 7c,d are more concentrated near the fitting curve. This
is mainly because the multi-task learning method introduces more supervisory information
into the whole neural network, while the classification and regression methods only take
one kind of supervisory information into consideration. Compared to the two multi-
task learning methods, the overall performance of our parallel multi-tasking method
is comparable to the performance of the cascaded multi-tasking method with the same
backbone setting. On the whole, the intensity estimation results of the parallel method are
better than those of the cascaded method using different backbones. When Res-2D-CNN
is used, the RMSE of the parallel method is 9.50 knots, which is lower than that of the
cascaded method (9.74 knots).

For the two methods that adopt a single kind of supervision information, the accu-
racy of the regression method is better than that of the classification-and-interpolation
method. The classification-and-interpolation method is the first proposed method of the
four methods. It only considers the direct weighted interpolation of classification scores to
obtain the wind speed, which is simple and rough. It can be seen from Figure 7a that the
scatter points of the classification-and-interpolation method are more discrete, indicating
that the model cannot predict the wind speed close to the true value well. In Figure 8a, the
classification-and-interpolation method has a wider error range for different TC categories,
especially TY, ST, and STY.

In addition, four different convolutional backbones are compared in Table 4. From the
accuracy comparison in the table, it can be seen that the quality of the feature extraction
convolutional backbones adopted by the model significantly affects the final performance
of the model. Taking the parallel multi-tasking method we proposed as an example, the
Top-2 accuracy of Res-2D-CNN is 10.87%, 9.19%, and 4.88% higher than that of 2D-CNN,
3D-CNN, and Res-3D-CNN, respectively, and the MRSE is reduced by 1.81, 1.64, and
0.86 knots, respectively. This shows that for the problem of TC classification and intensity
estimation, developing an effective feature extractor for TC can significantly improve the
accuracy of the model. On the whole, Res-2D-CNN shows the advantage of the residual
structure for improving the feature extraction effect of convolution layers. However, the
performance of the two 3D-CNN-based backbones is worse than that of the two 2D-CNN-
based backbones. This may be because 3D-CNN cannot effectively learn 14-channel MSI
data. In the future, we can consider adding channel attention mechanics to 3D-CNN to
improve the feature extraction performance of the 3D-CNN layers.
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For the inference procedure, our parallel multi-tasking method can output the classifi-
cation results and intensity estimation results only by inference the model once, while the
other three methods need two-step inference. The classification-and-interpolation method
needs to interpolate the classification results to predict the wind speed, the regression
method produces the classification results according to the wind speed range, and the
cascaded multi-tasking method needs to use two CNN networks to predict the classification
and regression results in two steps. And as shown in the above discussion, using the same
backbone network for a fair comparison, our parallel multi-tasking method has similar
accuracy to that of the SOTA cascaded multi-tasking method. In summary, our proposed
parallel multi-tasking method is a promising TC classification and intensity estimation
technique that has great developmental potential.

Table 4. Classification and intensity estimation performance comparison for different backbones
and methodologies.

Backbone Methodologies
Top-2
Accu-

racy (%)
F1-

Score MAE RMSE Bias Overestimation
Rate (%)

Underestimation
Rate (%)

2D-CNN

classification +
interpolation 74.84 0.41 11.62 15.21 −5.74 76.86 23.14

regression 74.32 0.44 9.21 12.21 −1.95 71.51 28.49
cascaded multi-task 78.07 0.54 8.54 11.66 0.67 54.7 45.3

parallel
multi-task (MT-GN) 79.50 0.57 8.47 11.31 1.3 55.91 44.09

Res-2D-CNN

classification +
interpolation 85.51 0.49 10.22 13.36 −5.55 71.54 28.46

regression 86.56 0.52 7.77 10.39 −1.75 62.58 37.42
cascaded multi-task 90.15 0.61 7.19 9.74 0.86 46.06 53.94

parallel
multi-task (MT-GN) 90.37 0.64 7.06 9.50 1.52 46.59 53.41

3D-CNN

classification +
interpolation 75.15 0.43 11.47 14.91 −5.74 79.01 20.99

regression 76.07 0.46 8.97 11.83 −1.93 71.5 28.5
cascaded multi-task 79.16 0.54 8.27 11.34 0.68 53.55 46.45

parallel
multi-task (MT-GN) 81.18 0.58 8.28 11.14 1.36 55.59 44.41

Res-3D-CNN

classification +
interpolation 79.97 0.46 10.81 14.24 −5.65 75.96 24.04

regression 82.23 0.48 8.57 11.19 −1.86 66.88 33.12
cascaded multi-task 85.45 0.57 7.94 10.79 0.76 51.08 48.92

parallel
multi-task (MT-GN) 85.49 0.60 7.66 10.36 1.4 51.85 48.15

(a) (b) (c) (d)

Figure 7. Scatter diagrams of wind speed bias for the four methods: (a) Classification-and-
interpolation. (b) Regression. (c) Cascaded multi-task. (d) Parallel multi-task.
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(a) (b) (c) (d)

Figure 8. Boxplots of bias by category for the four methods: (a) Classification-and-interpolation.
(b) Regression. (c) Cascaded multi-task. (d) Parallel multi-task.

4. Analysis and Discussion
4.1. Other Satellite-Based Methods Comparison

In order to verify the performance of our model, it was compared with the existing TC
classification models and intensity estimation models listed in Tables 5 and 6. Using our
FY-4A benchmark dataset, the performance of intensity estimation between our model and
other models—DAVT, Deep CNN, DeepMicroNet, M16, ETCI, CNN-TC, MLR, TCIENet,
Transfer-VGG19, 3D-CNN, Deep PHURIE, TCICENet, and T-TCNN—was compared. The
performance of classification between our model and other models—k-Nearest Neighbor
(kNN), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and Artificial
Neural Network (ANN)—was compared.

Table 5 shows the comparison of TC classification between our method and several
traditional methods on our benchmark dataset. Top-2 accuracy, precision, recall, F1-score,
and Kappa were utilized to evaluate the performance of the models in Table 5. It can be seen
from the table that the classification accuracy of our GT method is much higher than those
of the traditional methods. Compared with kNN, SVM, MLR, and ANN, our MT-GN yields
decent accuracy for each category. High recall, precision, and F1-score indicate that MT-GN
can identify the intensity categories with fewer missed alarms and fewer false alarms.

Table 6 demonstrates a rough comparison between the RMSEs and MAEs of TC inten-
sity estimation of our proposed MT-GN and other satellite-based works. It can be seen from
Table 6 that all learning-based methods are superior to traditional methods. The traditional
technique DAVT not only needs manual intervention, but the RMSE is only 19.01 knots.
Whilst the feature extractor and input data of the model are different, the final output
of the classification-and-interpolation models is the probability of the category, not the
maximum wind speed. The estimated intensity is subsequently determined as the weighted
average of the several categories that have high probabilities. Although classification-and-
interpolation methods exhibited good performance in TC intensity estimation, compared
with the regression methods, the performance of these models still has a large amount of
room for improvement. The intensity estimation results based on regression methods were
generally better than the results of classification-and-interpolation methods.

Table 5. Comparison of classification performance on 14-channel FY-4A data.

Model Top-2 Accuracy (%) F1-Score Precision (%) Recall (%) Kappa

kNN 66.05 0.42 0.51 0.29 0.25
SVM 68.89 0.39 0.39 0.25 0.21
MLR 81.83 0.46 0.45 0.29 0.25
ANN 81.59 0.44 0.41 0.26 0.22

MT-GN 90.37 0.57 0.64 0.39 0.36
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Strictly speaking, it is not fair to directly compare these learning-based
models [6,12,13,15–18,34–38] due to the use of different datasets. Especially in the T-
TCNN [18] paper, the division of the training set and test set is also different from that
of other papers. Every existing research article has adopted its own independent dataset
that focuses on different bands of different sensors, e.g., infrared [12,13], water vapor [17],
SWIR [16], and microwave data [35]). There is no unified standard dataset to fairly measure
the pros and cons of these models. In addition, these learning-based methods use different
feature extractors (that is, the CNN part), which makes it more difficult to compare among
various studies. In our study, as mentioned in Sections 2 and 3, we used the same CNN
backbone for a fair comparison of methods of different schools on the benchmark dataset
constructed from the MSI satellite images and the subset of MSI bands, which provides
the possibility for further in-depth and effective research on TC classification and intensity
estimation tasks.

Table 6. Comparison of RMSEs and MAEs for TC intensity estimation: our proposed MT-GN vs.
other satellite-based approaches.

Model Methodology Data RMSE (knots) MAE (knots) Reference

DAVT traditional/statistical analysis IR 19.01 16.64 [39]
Deep CNN classification + interpolation IR 12.95 10.12 [12]

DeepMicroNet classification + interpolation MINT 10.60 — [35]
M16 classification + interpolation IR 10.04 — [13]
ETCI classification + interpolation IR 16.34 14.03 [36]

CNN-TC regression IR, PMW 10.38 — [15]
MLR regression IR 16.21 14.88 [37]

TCIENet regression IR, WV 9.98 7.84 [17]
Transfer-VGG19 regression IR 13.23 — [38]

3D-CNN regression SWIR, WV, IR 11.34 8.65 [16]
Deep PHURIE regression IR 10.55 8.37 [34]

TCICENet cascaded multi-task IR 9.59 7.45 [6]
T-TCNN cascaded multi-task MSI 3.75 3.13 [18]

MT-GN parallel multi-task IR 8.96 8.02 This study
MT-GN parallel multi-task IR1, IR2, WV, SWIR 8.63 7.72 This study
MT-GN parallel multi-task PCA1 10.41 8.02 This study
MT-GN parallel multi-task PCA4 9.08 7.50 This study
MT-GN parallel multi-task MSI 9.50 7.06 This study

4.2. Input Comparison

As for the comparison of input bands, we train the MT-GN with seven different
input forms. We select the 12th channel of FY-4A as the single-channel input, named
IR, and the 7th, 9th, 12th, and 13th channels of FY-4A as the four-channel input, named
IR1, IR2, WV, and SWIR. Corresponding to a single channel and four channels, we use
principal component analysis technology to extract two types of principal components
from 14-channel cropped images: one is single-channel PCA1, and the other is four-channel
PCA4. In addition, we divide the original MSI data into daytime and nighttime as input
data according to time; these categories are named Day and Night, respectively. We use the
same parameters and model settings for each input dataset. After the iteration of 24 epochs
for these MT-GN models, the losses reached their minimum, and the accuracies of the
intensity estimation reached their maximum.

The impacts of input form on the performance of the MT-GN are presented in Table 7.
The Top-2 accuracy of IR input is 88.17%, whereas the Top-2 accuracy of IR1, IR2, WV, and
SWIR can reach approximately 89.15%. The accuracy of TC classification and intensity
estimation of PCA4 is higher than that of MSI. However, the accuracy of classification
and intensity estimation is relatively low when the input is PCA1. This demonstrates that
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relatively satisfactory results can still be obtained using only infrared channel data or four
artificially selected channels for TC classification and intensity estimation tasks.

It can also be seen from Table 7 that due to the split training data, the accuracy of Day
and Night is lower than that of MSI as a whole, and the classification accuracy and intensity
estimation accuracy of Day is lower than that of Night. This may be because the Night
input only adopts the input of the infrared part of the last eight channels of FY-4A, which
reduces the impact of noise in the visible bands.

Table 7. Comparison of classification and intensity estimation performance using different inputs.

Input Channel Channel Number Top-2 Accuracy (%) F1-Score MAE RMSE Bias Overestimation Rate (%) Underestimation Rate (%)

IR 1 88.17 0.57 8.02 8.96 2.19 41.69 58.31
IR,WV 4 89.15 0.6 7.72 8.63 1.49 39.47 60.53
PCA1 1 83.36 0.51 8.02 10.41 2.2 41.4 58.6
PCA4 4 89.45 0.53 7.5 9.08 0.7 41.52 58.48
MSI 14 90.37 0.64 7.06 9.5 1.52 46.59 53.41

Day 14 75.08 0.43 10.15 12.51 4.12 31.27 68.73
Night 8 82.96 0.4 8.89 11.24 3.85 37.24 62.76

4.3. Category Comparison

As mentioned above, the TC intensity grade is divided into a total of six categories. In
this section, we focus on the performance of TC classification and intensity estimation for
all six categories individually. The results for these categories are listed in Table 8.

Table 8. Comparison of intensity estimation performance for all TC categories.

Model Category MAE RMSE Bias Overestimation Rate (%) Underestimation Rate (%)

MT-GN

TLP 4.48 6.02 −3.09 73.74 26.26
TS 6.33 7.7 2.51 30.55 69.45

STS 7.21 9.29 7.74 24.77 75.23
TY 6.67 10.08 3.17 44.44 55.56
ST 7.57 11.49 6.46 26.53 73.47

STY 7.97 11.16 7.41 24.56 75.44

Avg 7.06 9.50 1.52 46.59 53.41

For intensity estimation, the mean MAEs of all six categories are below 7.06 knots.
The RMSEs from weak to strong intensity for the six TC categories are 6.02, 7.70, 9.29,
10.08, 11.49, and 11.16 knots, respectively. It can be seen that the results of the model are
satisfactory for all categories. Figure 9 further shows some representative samples and their
corresponding estimated wind speeds in the test set. Upon observing the two TC categories
with relatively low intensities, as depicted in Figure 9a,b, it can be seen that the cloud
cover is generally scattered and occupies a significant portion of the cropped image. In
this case, the overestimation error is relatively larger. When the clouds mainly occupy the
center of the image and there are fewer clouds at the edge of the image, the overestimation
is rather alleviated. For the two medium-intensity TC categories, Figure 9c,d show the
level of axisymmetry of the left TC of Figure 9c is relatively weak, but its overestimation
error is still only 1.55 knots. This demonstrates that the deep CNN network and rotation
enhancement strategy on MSIs can adapt to scenarios characterized by weak axisymmetry.
For the two TC categories, Figure 9e,f, which have higher intensity and have entered the
mature development stage, show that the TC eye structure is very obvious. An exception
is the left TC in Figure 9f: the eye area of this TC is less obvious than those of the other
three TCs in the row. The others have errors around 2 knots, while the error of this TC is
4.00 knots. Hence, during the high-intensity stage of the TC, the presence or absence of
an obvious eye structure can significantly impact the accuracy of the model’s output. The
two pairs of samples in the TS and ST categories listed in Figure 9a,e have large intra-class
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differences. The MT-GN can effectively classify these samples with large shape differences.
While the second sample of TY in Figure 9d has a similar shape to the first sample of ST in
Figure 9e, the difference is only that the sample of ST has cyclone eyes while the sample
of TY does not. It can be seen from the estimated speeds in Figure 9d,e that the model
accurately outputs wind speeds close to the real values for the two samples of TY and ST
despite their similar intuitive visual patterns, such as shapes and angles. Figure 9 also
shows that the MT-GN can estimate the wind speeds of different types of samples with
small margins of error. This indicates that the MT-GN can learn discriminative features
that are essential for classification and regression.

(a) TLP (b) TS

(c) STS (d) TY

(e) ST (f) STY

Figure 9. The 14th band images of six pairs of TC samples. Note the estimated speeds are the result
of our MT-GN.
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4.4. Case Study

We selected TC In-fa in 2021 for a case study. TC In-fa underwent distinct stages,
including a prolonged development phase over the open ocean, a subsequent phase of
decay following its mainland China landfall, and a final dissipation stage over the ocean’s
surface. Therefore, In-fa is very typical and is worth studying for intensity estimation
through different TC development stages. As shown in Figure 10, we use a histogram to
represent the intensity difference between the MT-GN result and CMA best-track data. In
order to not overlap with the polylines, the intensity difference is calculated by subtracting
the predicted intensity from the MT-GN with CMA best-track data. Therefore, the upward
bars represent underestimations, and the downward represent overestimations. In the
figure, the part with the purple background indicates that the TC is over the open ocean,
the red background indicates that the TC is over land, and the red dotted line indicates the
landfall moment.

It can be seen from Figure 10 that in the initial development stage over the open ocean,
there are both overestimation and underestimation. During the period when TC makes
landfall on the coastline, the MT-GN underestimates the intensity, and the error value is
rather large compared to other stages. This may be due to the rapid changes in the TC
during this landfall period, making it difficult for the CNN feature extractor to interpret
the MSI. After landfall, the MT-GN tends to underestimate intensity in the early stage and
overestimate intensity in the later stage on land. In addition, we calculated the RMSE of
TC In-fa over land and ocean, respectively. The RMSE of In-fa over land was 5.97 knots,
and the RMSE over the ocean was 5.82 knots. This slight difference can be attributed to
the influence of the topography of the land, which can affect the maximum sustained
wind speed of the TC, leading to a slightly higher RMSE value compared to that of the
oceanic regions. In the future, the inclusion of additional land surface information holds
the potential to enhance model training.

Figure 10. Case study of TC In-fa, international ID 2106.

4.5. Ablation Study

In order to measure the effectiveness of our improved MT-GN model and obtain its
best accuracy, we performed two ablation studies on the benchmark dataset for MT-GN.

Firstly, as shown in Table 9, we designed an ablation experiment to investigate the
effect of the hyperparameter λ on the loss function of TC intensity classification and TC
intensity estimation. During the reduction of the weight λ, the RMSE of the intensity
estimated by the MT-GN roughly decreases initially and then rises, reaching a minimum
value of 9.50 knots. At the same time, the F1-score of TC classification rises initially and
then decreases. Therefore, a hyperparameter λ = 1.5 was selected for our MT-GN model.

Secondly, we compared the promotion effects of three improvements on the model. As
shown in Table 10, the parallel multi-tasking architecture can achieve a 0.52% improvement
over the regression architecture for Top-2 accuracy and a 0.57 knot improvement for RMSE.
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After adding TDEM and balanced loss, the Top-2 accuracy of our proposed method is
improved by 2.34% and 1.05%, respectively, while the RMSEs also improve. Table 10
demonstrates that the three components of our approach improve the model’s prediction
capability, enable it to predict the category from complex remote sensing images of TCs,
and accurately predict the max wind speed of TCs simultaneously.

Table 9. Results of ablation experiment on loss weight λ.

λ 0.5 0.8 1 1.5 2 2.5 3

Top-2 Accuracy (%) 75.66 73.48 83.70 90.37 87.70 81.12 79.08
RMSE 11.62 11.37 10.14 9.50 10.01 10.24 10.21

Table 10. Results of ablation experiment on methods.

Method Top-2 Accuracy (%) RMSE

Regression 86.56 10.39
Parallel Multi-task 87.08 9.82

Parallel Multi-task + TDEM 89.32 9.57
Parallel Multi-task + TDEM + Balanced Loss 90.37 9.50

4.6. Visualization

We analyze the characteristics of MSI images according to TC intensity and category
using a method called Grad-CAM++ [40], which is one of the visualization means for CNNs.
The heatmap is extracted based on the sum of the activation maps in the last convolutional
layer. In this paper, we resize the heatmap to the size of the raw input data to intuitively
interpret the MSI images. We utilized the 2D-CNN backbone to extract the heatmaps of
each channel of the input to understand and interpret the effect of each band.

Figure 11 depicts the significant regions in each channel for TC Lingling. Most high-
intensity TCs show a clear whirling pattern in the center of the TC; all TC patterns for
different bands in the upper row of Figure 11 look like a spiral pattern. In the lower row of
Figure 11, the red area indicates the most important region that the CNN model focuses
on, which has high values in the heatmap. The shapes of the red regions are like the TC
patterns in the upper row. TC features that are regarded valuable to cyclone intensity
estimation, such as a densely overcast center and a spiral cloud band, can be extracted by
our DL-based models. This implies that our CNN-based model has the ability to objectively
recognize the structure of TCs.

Further, due to the differences in the wavelengths of the bands, different convective
patterns can be deciphered from multiple channels, which identifies the cloud structures of
TCs at different atmospheric heights. As shown in Figure 11, our multi-layered heatmaps
can reasonably represent the vertically coupled TC structure between the lower and upper
levels. In the visible bands (first, second, and third bands), the shape of the vortex in the
original data and the heatmap is very obvious, as the heatmap surrounds the center of the
vortex. In the cirrus band (fourth band), the vortex shape is still obvious. However, the
range of the vortex is reduced, the cloud is sparse, and the range of the heatmap is reduced.
In snow/ice band and the cloud particle size band (fifth and sixth bands, respectively), the
absolute value of the original data decreases, and it is difficult to grasp the shape of the
TC from the CNN’s heatmap. After the seventh band are the infrared bands and the water
vapor bands. It can be seen that compared with the visible band, the shape characteristics
of the vortex in the original data of these bands are less obvious, but the range is expanded,
and the range of the heatmap is also expanded. Through those heatmaps, we proved that
the deep learning approach can be used to interpret the roles of different bands of the MSI
for recognizing TCs.
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Figure 11. Original images and heatmaps of AGRI 14 bands for TC Lingling (STS). From top to
bottom and from left to right, the heatmaps are for the 14 bands respectively.

5. Conclusions

Existing works usually formulate TC classification and intensity estimation as two
separate problems. This separation limits existing methodologies from achieving higher
accuracy. In this study, a new multi-task-learning-based deep learning approach using
remote sensing images is proposed. We collected four years (2018–2021) of TC images
from the China FY-4A geostationary satellite and labeled them with the best-track data
provided by CMA. By analyzing the results of classification and intensity estimation on
our benchmark dataset, some conclusions can be summarized as follows.

1. On the unified benchmark dataset, compared with common TC recognition methods
like classification-and-interpolation and regression, both the cascaded multi-tasking
method and the parallel multi-tasking method show better accuracy when using the
same feature extraction backbone.

2. Our proposed TDEM module can enhance the ability of the CNN model with the
inter-task prior learned in an adjacency matrix, which is generally applicable. With
the TDEM module, the Top-2 accuracy achieved is 90.37%, and the RMSE achieved is
9.50 knots.

3. Applying class-balanced mixed loss can enhance the parallel multi-tasking model
without introducing any additional cost.

4. Comprehensive experiments prove the plausibility of applying the parallel multi-
tasking-based CNN model to TC classification and intensity estimation tasks using
multi-spectral remote sensing images.

Although the MT-GN model has achieved satisfactory accuracy for TC intensity
estimation and classification tasks, there is still other work to improve the accuracy. In the
next step, we will collect larger training datasets and deeply investigate the proper way of
using the 14 bands of FY-4A. In addition, at present, TC recognition is carried out using
separate images. It would be helpful to establish the relationships along a TC time series
using a long short-term memory (LSTM) network.
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