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Abstract: Precision agriculture-based orchard management relies heavily on the accurate delineation
of tree canopies, especially for high-value crops like mangoes. Traditional GIS and remote sensing
methods, such as Object-Based Imagery Analysis (OBIA), often face challenges due to overlapping
canopies, complex tree structures, and varied light conditions. This study aims to enhance the
accuracy of mango orchard mapping by developing a novel deep-learning approach that combines
fine-tuned object detection and segmentation techniques. UAV imagery was collected over a 65-acre
mango orchard in Multan, Pakistan, and processed into an RGB orthomosaic with a 3 cm ground
sampling distance. The You Only Look Once (YOLOvV?) framework was trained on an annotated
dataset to detect individual mango trees. The resultant bounding boxes were used as prompts for
the segment anything model (SAM) for precise delineation of canopy boundaries. Validation against
ground truth data of 175 manually digitized trees showed a strong correlation (R? = 0.97), indicating
high accuracy and minimal bias. The proposed method achieved a mean absolute percentage error
(MAPE) of 4.94% and root mean square error (RMSE) of 80.23 sq ft against manually digitized
tree canopies with an average size of 1290.14 sq ft. The proposed approach effectively addresses
common issues such as inaccurate bounding boxes and over- or under-segmentation of tree canopies.
The enhanced accuracy can substantially assist in various downstream tasks such as tree location
mapping, canopy volume estimation, health monitoring, and crop yield estimation.

Keywords: precision agriculture; mango orchard mapping; canopy segmentation; UAV; object
detection; YOLOV7; segment anything model

1. Introduction

Accurate delineation of individual tree canopies is critical for effective orchard man-
agement of high-value crops such as mangoes. Essential metrics like vegetation indices, tree
crown area, and canopy volume depend on precise canopy measurements [1]. Imprecise
and erroneous measurements can compromise the reliability and effectiveness of agricul-
tural interventions. While field surveys provide the most accurate data, they are resource-
intensive and have limited utility in an automation-driven precision agriculture paradigm.

Alternative strategies based on GIS and remote sensing facilitate end-to-end automa-
tion as well as precision and accuracy [2]. Schemes based on LiDAR data achieve canopy
delineation by detecting tree tops and subsequently delineating individual tree crowns.
However, due to the limited availability and high cost of LiDAR technology, there is an
increased reliance on satellite and UAV imagery [3]. Manual delineation from aerial im-
agery, LIDAR, and stereo images is accurate for small areas but inefficient for large-scale
assessments [4]. Even though LiDAR is a valuable data source for extracting tree crowns, it

Remote Sens. 2024, 16, 3207. https:/ /doi.org/10.3390/1s16173207

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs16173207
https://doi.org/10.3390/rs16173207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0003-9131-8734
https://orcid.org/0000-0002-9516-9153
https://orcid.org/0009-0004-9380-3271
https://orcid.org/0000-0001-5421-7748
https://doi.org/10.3390/rs16173207
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16173207?type=check_update&version=1

Remote Sens. 2024, 16, 3207

2 of 20

constitutes a major expense for UAV platforms. Moreover, the quality of aerial imagery can
be affected by weather and surface conditions.

Edge and region detection approaches enhanced with local maximum filtering and
rule-based thresholding offer another alternative [5]. However, these methods are limited
by variations in illumination and tree crown morphology. Watershed segmentation is
noise-sensitive and may cause over-segmentation in dense forests [6]. Object-Based Image
Analysis (OBIA) groups pixels into meaningful objects but is computationally intensive
and requires manual intervention [4,7]. These techniques often struggle with overlapping
canopies, complex tree structures, and varying light conditions [8].

Machine learning methods have improved segmentation accuracies, and state-of-the-
art convolutional neural networks (CNNs) like YOLO, Mask R-CNN, fully convolutional
networks (FCNs), and transformer-based models have contributed to better canopy seg-
mentation [9-11]. Precise canopy size and structure provide early indications of tree stress,
disease, or pruning effects [12,13]. It also facilitates targeted applications at the tree level,
such as calibrating sprayers to minimize waste [14]. Accurate yield predictions are achieved
by integrating tree crown area with canopy reflectance characteristics [15]. UAV-derived
vegetation indices can predict yield at the individual tree level and accurate canopy de-
lineation minimizes inaccuracies that might creep in due to undesired ground reflectance
outside the canopy area while calculating tree health metrics [16].

Table 1 lists the most significant studies related to mango orchards using a diverse set
of data and technologies. Despite these advances, challenges persist when using a single
technique, especially for large trees like mangoes [17]. These primarily include overlapping
canopies, and over- or under-segmentation [8,15]. The irregular morphology of tree species
like mangoes leads to errors [18]. Therefore, diverse canopy structures and branching
patterns require fully or semi-adaptable algorithms [5,9]. Occlusion also complicates
segmentation, obscuring true crown boundaries and causing underestimations [19,20].
Spectral and textural properties in the background can lead to misclassifications [18].
Three-dimensional reconstruction techniques from UAV imagery in the case of dense
canopies, such as structure-from-motion (SfM) photogrammetry, often struggle to process
digital surface models accurately [3]. High-resolution UAV imagery sometimes results in
undesired pruning, leading to sparse canopy centers [13].

A major challenge, however, is the availability of high-quality, labeled training data
with enough variability, including occlusion, overlaps, and shadows [10,11]. Training these
models requires significant resources, and their black-box nature can hinder refinement
and trust [18,21]. YOLO and transformer-based models like Meta’s SAM offer potential
improvements to these challenges. YOLO performs well in tree detection with speed and
fewer resources [6]. SAM’s zero-shot and one-shot learning capabilities generalize well
across diverse datasets, reducing reliance on extensively annotated datasets [19].

This study introduces a novel sequential approach for accurately delineating mango
tree canopies in high-resolution UAV images. The speed of the YOLOV?7 [22] object detection
framework is combined with the precision of the segment anything model (SAM) [23] to
locate trees and subsequently refine canopy boundaries quickly. Consequently, common
issues such as inaccurate bounding boxes and over-segmentation are effectively addressed.
A two-stage evaluation strategy is adopted to gauge the efficacy of the pipeline. The
object detection stage is evaluated on a validation dataset split after the convergence of
weights at the end of the transfer learning cycle. An optimal checkpoint is then used for
bounding box regression. The final output is subsequently evaluated against a ground
truth dataset comprising 175 mango trees. This comprehensive testing approach ensures
that the proposed hybrid method delivers good precision and accuracy, and is ready to be
integrated into diverse precision agriculture applications.
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Table 1. Significant studies related to mango trees or orchards using diverse data sources and techniques.

Research Topic

Technology

Strengths and Limitations

Acreage estimation of mango
orchards [24]

EO-1 Hyperion hyperspectral data

Focuses on the characteristics of data source; lacks
technical robustness.

Mango yield mapping at
orchard scale [25]

UAV Photogrammetry, OBIA,
Predictive Models

Accurate yield mapping and tree detection; manual tree
crown delineation is time-consuming; variability in
production estimation across cultivars.

Mango orchard age
categorization [26]

Sentinel-2 data, OBIA, NDVI,
ReNDVI, LSWI

Effective age categorization using vegetation indices;
lower accuracy in classifying young orchards.

Tree species classification using
ML [27]

LiDAR, Hyperspectral, Neural
Networks, SVM

High accuracy with combined data; limited
generalizability due to specific LIDAR metrics and data
aggregation.

Orchard discrimination in
Khairpur District, Pakistan [28]

Sentinel-1/2, Spectral Analysis, RF,
SVM, Multi-Temporal Fusion

Discriminates between mango and date palm orchards;
method not generalizable to canopies of other species

Object recognition in ecological
environments [11]

PakSat-1R, NDVI, RetinaNet,
CanopyNet, Multispectral

Accurate canopy detection in occlusion; no canopy
delineation within the bounding box

Individual tree detection and
counting [17]

High-Resolution Imagery, Canopy
Height Model, Deep Learning

High accuracy in urban areas; no canopy delineation

Mapping horticultural tree
structures [29]

ALS, TLS, Leaf Area Density,
Vertical Leaf Area

ALS provided accurate crown structural parameters, but
underperformed in crown volume estimation compared
to TLS.

Height estimation of Mango and
Avocado trees [30]

ALS, TLS, UAV-based RGB,
Multi-spectral

UAV imagery provided height measurements comparable
to TLS but ALS was more effective for large-area coverage.

Potential of WorldView-3
imagery for Mango yield
estimation [15]

WorldView-3, ANN, TCA, NDVI

Outperformed traditional methods for satellite imagery.

2. Methodology and Materials

The stage-wise workflow of the proposed methodology is shown in Figure 1. Modules
for geospatial data collection, canopy detection and segmentation, and operationalization
of downstream target problems are connected through preprocessing middleware.

2.1. Geospatial Module
The process begins with raw data collection using UAV flights, followed by processing

through the software SiFT 1.2. While the software generates a variety of outputs, including
multispectral reflectance mosaics, point clouds, digital surface, and terrain models, the RGB
orthomosaic imagery is specifically utilized in the subsequent processing stage. This choice
is driven by the requirement of the object detection and segmentation models employed,
which necessitate the use of three-channel RGB images for optimal performance.

2.1.1. Site Selection and Initial Setup

Multan is the prime mango-producing district of Pakistan. A 65-acre mango orchard
under the management supervision of Mango Research Institute Multan (MRI), Pakistan
was selected for the study, as shown in Figure 2 (left). The selected mango orchard exempli-
fies typical mango farming practices in the region with mango trees belonging to various
cultivars and age groups. A total of 175 control trees representing the cultivars and age
groups were selected and their positions, height, and canopy area were recorded through
field survey.



Remote Sens. 2024, 16, 3207

4 0f 20

1. GEOSPATIAL RAW DATA COLLECTION
MODUEE UAV Flight SiFT Software
(DJI MAVIC 3M) (Pix4D)
Refiectance Ouptut ‘ Elevation Qutput
Multispectral : ) Digital Surface Digital Terrain
o Reflectance Maps RGB Orthomosaic PointCloud Model Model
|
° PREPROCESSING AND DATA ANNOTATION MIDDLEWARE
2. DEEF LEARNING .
MODULE Dataset P‘repnratmn ‘ Bounding Boxes
CANOPY DETECTICN CANOPY SEGMENTATION
A
o Model Training . Inference Ll Segmentation Model , Mask Generation o
(YOLOVT) (Finetuned YOLOVT) (Pretrained SAM) (SAM Inference)

Ground Truth Validation h

3. OPERATIONAL
MODULE

OPTIMIZATION & GEOREFERENCING

DOWNSTREAM USECASES
(Tree Location, Tree Height, Tree Crown Areas, Tree

° Mask Pruning Georeferencing ||
(Custom Algorithm) (GDAL) Canopy Volume, Health Mapping)

GEOREFERENCED TREE CANOPY POLYGONS FOR

Figure 1. Workflow of the proposed methodology, including geospatial data collection, preprocessing,
and deep learning for canopy detection and segmentation, followed by operational optimization and

georeferencing.
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Geographical location and detailed view of the chosen orchard site near Multan, Pakistan;

Figure 2.
(Left): regional context, with the orchard’s location marked in red boxes, (Right): high-resolution

satellite image of Orchard 1 outlined by a green boundary.
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2.1.2. Equipment and Software

UAV and Realtime Kinematics (RTK) Mobile Station: The DJI Mavic 3M drone with its
integrated advanced imaging and positioning technologies is an affordable platform
for precision agriculture applications. It features a 4/3 CMOS RGB camera with 20 MP
resolution, saving images in JPEG and RAW formats, and a multispectral camera with
a 1/2.8-inch CMOS sensor, 5 MP resolution, capturing images in the Green (560 nm),
Red (650 nm), Red Edge (730 nm), and NIR (860 nm) bands, saved in TIFF format. The
sunlight sensor records solar irradiance for accurate post-processing of images. It is
paired with the DJI D-RTK 2 Mobile Station, which supports all major GNSS systems
and provides real-time differential corrections; the setup achieves 1 cm horizontal and
2 cm vertical positioning accuracy, crucial for precise mapping and data collection
in the agricultural context. The drone uses its own flight planning and execution
application to optimize flight parameters and patterns.

Hardware and Software: Post-flight processing of UAV imagery requires good com-
puter hardware. A system equipped with Intel(R) Core(TM) i9-10900KF CPU @
3.70 GHz with 10 cores and 20 logical processors, 128 GB of RAM, 2 Terabyte Solid
State Drive (SSD), and Nvidia RTX 3090 GPU was used. For processing the imagery,
Pix4D 2.0 software, which utilizes Scale-Invariant Feature Transform (SIFT) algorithms
was employed, ensuring high accuracy in image stitching and analysis. Other software
includes ESRI’'s ArcGIS Pro 3.2, PyTorch 2.0, Torchvision 0.8, OpenCV 4.1.1, SciPy 1.7.0,
and Cuda 11.8 Version 18 library.

2.1.3. Conduct of UAV Flights

A UAV flight over Orchard 1 was undertaken on 19 May 2024 with an altitude of

100m above ground level and an 80% forward and 70% side overlap (Figure 3). For
enhanced positional accuracy, D-RTK 2 Mobile Station was used. The flight control software
automatically computed the rest of the parameters. A total of 407 RGB JPEG images and
1628 multispectral TIFF images were taken. For this study, only RGB images have been
processed into orthomosaic, with a ground sampling distance of 3 cm, and projected in
UTM Zone 42N /WGS84. The resulting elevation products were not used for this study and
only orthomosaic was utilized for canopy detection and segmentation.

Figure 3. (Left): Flight path of DJI Mavic 3M. Every red dot presents where the UAV took an image.
(Right): Perspective view during initial bundle adjustment and point cloud generation in Pix4D 2.0.

Blue dots present the position where the UAV took an image, while green lines indicate the projected

view of each photo on the ground.
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2.1.4. Composite Image Model and Problem Formulation

Imagery bands B: blue, G: green, and R: red combine to generate a true color compos-
ite image. Each resultant pixel (x,y) in the image can be represented as:

I(x,y) = [R(x,¥),G(x,y), B(x,y)]

Given I(x,y) as the working image model, the target problems for the next stage are
defined as:

*  Object Recognition: The objective is to predict a bounding box around each mango
canopy. For each detected canopy, a bounding box BB = (Xmin, Ymin, ¥max, Ymax) 1S t0
be automatically inferred, where (Xmin, Ymin) and (¥max, Ymax) are the coordinates of
the top-left and bottom-right corners of the bounding box, respectively.

*  Segmentation: For a given bounding box BB, the segmentation problem involves
predicting a binary mask S(x,y) such that:

S(x,y) = {

1 if (x,y) is within the mango canopy edge boundary 1)

0 otherwise

2.2. Preprocessing and Data Annotation Middleware
This intermediate stage is crucial for staging the data for the deep-learning pipeline.

2.2.1. Image Annotation

Composite imagery is annotated to create a labeled training dataset for object detection,
as shown in Figure 4. This was performed using the visual geometry group image annotator
(VIA), an open-source tool to define image regions. The annotated chips are then converted
into ground truth files using custom Python scripts to ensure consistency and accuracy.

Figure 4. Composite image annotation aimed to enclose each of the 1871 mango tree canopies in a
bounding box.

Given an image I(, y), the annotation process results in a set of bounding boxes { BB; }
for each mango tree, where each BB; = (X} ;.., ¥t i/ ¥max- Yimax) Fepresents the coordinates

of the top-left and bottom-right corners of the bounding box.
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2.2.2. Label Transformation

Obtained bounding box coordinates need to be properly transformed such that for a
particular bounding box BB;, the conversion is given by:

i i i i
. . X .+ X Yin T Y ; ; ; ;
i i min max Jmin max i i i i
(xcenter/ Yeenterr Wi, hi) - ( 5 ’ > s X¥max ~ *mins Ymax — Ymin (2)

2.2.3. Image Tiling, Dataset Composition, and Merging

The orthomosaic image used in this study was exported to PNG format and divided
into 16 tiles, each with dimensions of 800 x 800 pixels. This tiling was necessary for
two primary reasons: (1) to ensure that each tree had sufficient visual detail for training
the object detection model, and (2) to manage GPU VRAM limitations during processing.
Table 2 provides a summary of how the tiles were allocated between training, validation,
and test splits.

Table 2. Dataset composition for model training, validation, and testing.

Dataset Number of Tiles
Training Split 14
Validation/Test Splits 2
Total Tiles 16

This ensured that 87.5% of individual trees (1637) were included in the training sample
and 12.5% (234) of trees were kept for validation of the output. Detections were performed
on each tile measuring 800 x 800 pixels. YOLOv7 was used to detect individual mango
trees within each tile. The results from all tiles were then appended together to generate a
complete detection map for the full orthomosaic image. However, it is important to note
that for medium- to low-resolution satellite data and/or detecting more than one land use
class, a larger number of images/image tiles will be required to train a Yolo7 variant.

After the detection process, the complete orthomosaic image was segmented using
the segment anything model (SAM). The segmentation process generated masks for all
potential tree canopies within the image.

The segmentation masks were compared against the detection bounding boxes from
YOLOv?7. Masks whose centers did not fall within any detection bounding box were
discarded, ensuring that only relevant tree canopies identified by the object detection model
were retained. This process allowed for the integration of the detection and segmentation
results into a comprehensive mango tree detection map covering the entire orchard.

2.3. Deep Learning Module

This module comprises two sequential stages: (i) canopy detection and (ii) segmenta-
tion. The canopy detection stage involves dataset preparation, followed by a custom object
detection model training and then inference with this fine-tuned model to generate BB;
for individual mango trees. The intermediate model with the best validation scores was
selected as the final model from the training cycle. In the subsequent canopy segmentation
stage, a pre-trained object segmentation model is used for mask generation for each tree

Si(x,y).

2.3.1. Canopy Detection

The canopy detection process involves training a YOLO variant to detect mango
tree canopies from aerial images. Unlike traditional object detection methods that apply
a sliding window or region proposal network to identify objects, YOLO formulates a
single regression problem, directly predicting bounding boxes and class probabilities from
full images in one evaluation. This unified architecture allows YOLO to process images
rapidly, making it highly efficient for real-time applications as well. The model divides



Remote Sens. 2024, 16, 3207

8 of 20

an image into a grid and predicts bounding boxes and probabilities for each grid cell,
leveraging convolutional neural networks (CNNs) to extract spatial features and contextual
information. YOLO'’s capability to balance precision and computational efficiency makes it
an ideal choice for tasks requiring high-speed object detection across various domains.
The variant YOLOvV?, chosen for its balance between speed and accuracy, is uti-
lized in this process. The training process aims to optimize the model by minimizing
the loss function £, which is generally a combination of classification, localization, and
confidence losses:
L=L+Lr+ L3 3)

where £ is the classification loss, £, is the localization loss calculated as the sum of squared
errors between the predicted and ground truth bounding box coordinates, and L3 is the
confidence loss regarding presence of an object within a predicted bounding box.

During training, the model’s parameters are updated using backpropagation and
stochastic gradient descent (SGD). The trained YOLOv7 model predicts a bounding box BB;
for each detected canopy with associated confidence scores. Non-maximum suppression
(NMS) is used to handle redundant boxes and retain the most confident predictions.

2.3.2. Canopy Segmentation

After detecting the bounding boxes, the next step is to generate precise masks for each
mango canopy using the SAM. It is a fairly recent object segmentation framework designed
to provide precise boundary delineation for objects within an image. Rather than extensive
fine-tuning on specific datasets, SAM employs a zero-shot learning approach, enabling it
to generalize well across diverse image domains without additional training. SAM uses a
combination of CNNs and transformer-based architectures to capture detailed contextual
and spatial information. In agricultural monitoring where precise segmentation is critical,
SAM [23] adequately identifies fine-grained edges.

The integration of SAM and YOLO significantly reduces the false positive rate and
provides accurate segmentation boundaries for the mango canopies. The detections from
the YOLOv7 model are used to refine the SAM detections. Any segmentation mask from
SAM that does not have significant overlap with a YOLO detection is discarded. This
process helps reject false positives from background regions and tree shadows, improving
the accuracy of the final results.

For each detected bounding box BB;, a cropped image patch I; is extracted from the
original image I(x,y). This patch I; is then fed into the SAM model to generate a binary
mask S;(x,y), as per (1).

2.3.3. Significance of the Deep Learning Pipeline

The pipeline leverages the strengths of both YOLO and SAM models to achieve high-
precision mango canopy detection and segmentation. YOLO is employed first for its
robust object detection capabilities, generating bounding boxes that accurately identify
mango canopies. Fine-tuned for the specific task, this detection model effectively reduces
background noise and eliminates false positives associated with non-canopy elements such
as shadows and ground structures.

Following the bounding box detection, SAM performs the detailed segmentation of
the mango canopies. SAM’s ability to deliver precise boundary delineation is crucial for
accurate health metric calculations. By focusing on the regions defined by YOLO, SAM
can generate segmentation masks that are not only accurate but also free from extraneous
background elements.

This sequential approach ensures that the initial detection phase effectively isolates
the relevant objects, while the subsequent segmentation phase refines the boundaries with
high precision.
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2.4. Operational Module

This module addresses optimization and georeferencing to facilitate various down-
stream applications critical to precision agriculture. Mask pruning is performed using a
custom algorithm, and georeferencing is accomplished using the GDAL [31] library. The
processed data are then staged for several key tasks, including tree location identification,
canopy area and volume estimation, and health mapping using vegetation indices.

2.4.1. Georeferencing

The pixel values of the segmented canopies are converted into georeferenced polygons
using the GDAL Python library. This conversion allows the integration of canopy data
with geographic information systems (GIS) for spatial analysis. Each pixel’s position in the
image is mapped to real-world coordinates, enabling precise location-based assessments of
tree canopies across the orchard.

2.4.2. Canopy Area Estimation

The area of each tree canopy is defined as a sum of pixel areas within each georefer-
enced polygon. If each pixel represents a known ground area (e.g., Apixel in square meters),
the canopy area (Acanopy) can be estimated as:

n
Acanopy = Z Apixel,- 4)
i=1

where 7 is the number of pixels within the canopy boundary.

2.4.3. Canopy Volume Estimation

Canopy volume is estimated by integrating the height of the canopy across its area.
Given the digital surface model (DSM), the volume (Veanopy) can be estimated as

n
Vcanopy = Z Apixel,- X hpixel,- ®)
i=1

where hipie1. is the height of the canopy at pixel i, derived from the DSM.

2.4.4. Health Mapping Using Vegetation Indices

Health mapping is modeled using two separate vegetation indices: the normalized
difference vegetation index (NDVI) and the normalized difference red edge (NDRE) index.
The NDVI is computed as:

NIR —R
NIR + R

where NIR is the near-infrared band and R is the red band of the imagery.

NDVlI is a good indicator of the general vigor of vegetation, with values getting lower
as the vegetation is exposed to stress or disease. However, in later growth stages, NDVI
may become less sensitive.

The NDRE is another important index, particularly useful for assessing crop health,
especially in later growth stages where NDVI may become less sensitive. In such cases, we
can resort to a measure of nutrient deficiency, for which NDRE is a good choice; it may be
calculated as

NDVI = (6)

NIR — RE
NDRE = NIR + RE @

where RE represents the red edge band of the imagery which is sensitive to changes in
chlorophyll content.
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2.4.5. Accuracy Assessment

The accuracy of the segmentation results is validated against ground truth data. This
involves comparing the detected canopy polygons with manually delineated ground truth
polygons. The assessment is quantified using metrics such as Intersection over Union (IoU),
precision, recall, and F1-score. GIS tools are employed to plot and visualize both the detection
and segmentation results, providing a clear overview of the method’s performance.

2.5. Evaluation Metrics

Several evaluation metrics were used to assess the performance of the proposed
scheme and quantify the accuracy and robustness as well as the reliability of detection
and segmentation.

2.5.1. Precision, Recall, and F1 Score

Precision is defined as the ratio of correctly identified tree canopies to the total number
of claimed detection outcomes.
True Positives

Precision = — 8
True Positives + False Positives ®)

Recall is the ratio of correctly identified tree canopies to the total number of actual positives.
This is a realistic measure of the model’s ability to correctly identify all relevant instances.

Recall — True Positives ©)
- True Positives + False Negatives

Being the harmonic mean of Precision and Recall, the F1 score provides a single
trade-off metric, especially in the case of a problem like canopy detection, where the class
distribution is imbalanced.

Precision x Recall

F1 =2 1
Score % Precision + Recall (10)

2.5.2. Mean Average Precision (mAP)

To evaluate the object detection precision, two variants of mAP are used. mAP5
considers detections with IoU thresholds of 0.5, which effectively means a 50% overlap be-
tween predicted and ground truth bounding boxes. Another variant, mAP 5.0.95, averages
the mAP over IoU thresholds, ranging from 0.5 to 0.95 in steps of 0.05. This is to provide a
more comprehensive evaluation of model performance across varying levels of overlap.

2.5.3. Root Mean Square Error (RMSE)
The standard deviation of the prediction errors is computed as

RMSE = % Y (9 —vi)? (11)

where 7;, y;, and n are the predicted value, actual value, and total number of observations,
respectively.

2.5.4. Bland—-Altman Analysis

It is necessary to quantify the agreement between the results of the proposed scheme
and the manual detections on the ground. The Bland—Altman analysis utilized the bias and
the Limits of Agreement (LoA). For our study, the standard definition of LoA is defined
as the mean difference £ 1.96 times the standard deviation of the differences. This is a
reasonable range within which most differences between the methods are expected to lie.
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2.5.5. Mean Absolute Percentage Error (MAPE)

The average absolute percentage difference between the predicted and actual values is

given as:

1 n
MAPE = - )

ni3

Yi— Ui

x 100% (12)

Yi

where y;, 7;, and n represent the manual measurement, the automated measurement, and
the total number of observations, respectively.

By employing these metrics, the performance of the deep learning pipeline is compre-
hensively evaluated, ensuring that the model not only performs well on average but also
maintains consistency and reliability across different scenarios.

3. Results and Discussion
3.1. Stage 1: Canopy Detection and Localization
3.1.1. Training the Object Detection Model

The YOLOv7 model [22] employed for tree canopy detection was trained using a metic-
ulously chosen set of hyperparameters to optimize performance. Table 3 lists the essential
hyperparameters utilized in the training regimen. Extensive experimentation and domain-
specific considerations guided the selection of these hyperparameters. This approach
ensured robust and efficient training of the YOLOv7 model for tree canopy detection. GPU
acceleration was employed and the model underwent training for 1000 epochs, utilizing a
batch size of 2 and an image resolution of 800 x 800 pixels. The learning rate, momentum,
and weight decay were systematically adjusted to optimize the model’s convergence and
generalization performance.

Table 3. Essential hyperparameters for YOLOv7 model training.

Hyperparameter Value
Initial Learning Rate (/+0) 0.01
Final Learning Rate (Irf) 0.1
Momentum (momentum) 0.937
Weight Decay (weight_decay) 0.0005
Warmup Epochs (warmupe_pochs) 3.0
Warmup Momentum (warmup_momentun) 0.8
Warmup Bias Learning Rate (warmup_bias_Ir) 0.1
Batch Size (batch_size) 2
Image Size (img_size) [800, 800]
Number of Epochs (epochs) 1000
Device (device) 0
CPU Cores (workers) 8

3.1.2. Performance Evaluation of Canopy Detection Model

The training cycle of the YOLO model reveals several key insights (Figure 5). The
consistent decrease in both training loss (from 0.12 to around 0.04) and validation loss
(from 0.12 to approximately 0.08) over the epochs indicates that the model is effectively
learning and optimizing its parameters. The precision, recall, and F1 score trends initially
exhibit variability but stabilize around 0.8, 0.75, and 0.77, respectively, after 400 epochs.
This stabilization reflects the model’s improved accuracy and completeness in detecting
mango tree canopies, indicating a balanced trade-off between precision and recall, which is
essential for accurate canopy localization.

The mAP; 5 and mAPy 5.9 95 metrics demonstrate significant improvement in detection
performance across varying IoU thresholds. The mAP 5 metric rises sharply to about 0.8,
indicating that the model can accurately detect mango canopies with at least 50% overlap.
The mAP(5.095 metric, which stabilizes around 0.35, shows the model’s performance
across stricter overlap criteria, highlighting its robustness and reliability. Finally, the
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accuracy trend, calculated as the average of precision and recall, increases from 0.1 to 0.8,
demonstrating a substantial improvement and stabilization in the model’s localization
capabilities over the training period.
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Figure 5. Overview of the YOLOvV7 model training process for mango tree canopy detection. (a) Train-
ing and validation loss trends, showing the convergence and generalization capabilities, (b) precision,
recall, and F1 score trends over the training cycle to reflect, (c) Mean Average Precision (mAP) at IoU
thresholds of 0.5 and 0.5:0.95, indicating the model’s detection performance across varying overlap
levels, and (d) accuracy trend, calculated as the average of precision and recall, demonstrating the
overall performance improvement of the model during training.

3.1.3. Triadic Checkpoint Selection Criteria for Deep Learning Pipeline

Since the final segmentation of canopies and consequently the application endpoint
is highly dependent on the initial canopy detection state, it is not straightforward to use
the final trained model. To address this problem, triadic criteria { were set for the model
checkpoint finalization, i.e., a balance between overfitting minimization, the precision of
bounding box regression, and robustness. Lowest validation loss ({1), highest mAP 5 ({2),
and highest mAP5.095 ({3) were used as parameters to represent these three criteria,
respectively.

Table 4 lists the evaluation of model checkpoints based on each criterion. The check-
point with min(g;) = 0.07571 was observed at epoch 905, with {, = 0.8235 and {3 = 0.3524.
This checkpoint indicates excellent model performance in terms of minimizing overfitting
and maintaining good generalization.

Table 4. Triadic checkpoint selection criteria based on validation loss ({1), mAPy5 ((2), and
mAP( 5095 ({3)-

Criterion Epoch 1 0> (3

min({7) 905 0.07571 0.8235 0.3524
max({p) 859 0.07631 0.8388 0.3504
max({3) 649 0.07920 0.8176 0.3618

For the max({>) = 0.8388, the best checkpoint was at epoch 859. Hence, this variant
was most accurate in detecting mango canopies with at least 50% overlap, and despite
a slightly higher validation loss compared to the lowest validation loss checkpoint, this
epoch achieved the highest precision in canopy detection.
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The checkpoint with max({3) = 0.3618 was found at epoch 649. This checkpoint
reflects the model’s robust performance across a range of IoU thresholds, indicating its
versatility and reliability in varying detection scenarios.

The final choice depends on the specific requirements of the downstream use case. If
minimizing error and overfitting is the priority, the checkpoint at epoch 905 is ideal. How-
ever, if achieving the highest detection accuracy is more critical, the checkpoint at epoch 859
would be preferable. For agriculture applications requiring balanced performance across
different overlap criteria, the checkpoint at epoch 649 is the best choice.

For this study, the checkpoint at epoch 905 was used for further experiments at the
canopy segmentation stage.

3.2. Stage 2: Canopy Segmentation

The segment anything model (SAM) adequately handles multi-modal input, including
images with bounding boxes or key point data. In this stage, the output of the canopy
detection process from YOLO is utilized as a multi-modal prompt for SAM, allowing for
detailed and precise segmentation.

To optimize performance, the large version of the visual transformer within SAM was
selected. This choice was informed by preliminary evaluations which indicated that the
base model, while less computationally demanding, did not provide the requisite accuracy
for our specific application. The detailed hyperparameters used for SAM inference are
enumerated in Table 5.

Table 5. Parameter settings for the SAM model for inferring canopy segmentation masks from
bounding box prompts.

Parameter Value
points_per_side 32
points_per_batch 64
pred_iou_thresh 0.88
stability_score_thresh 0.95
stability_score_offset 1
box_nms_thresh 0.7
crop_n_layers 0
crop_nms_thresh 0.7
crop_overlap_ratio 512 / 1500
crop_n_points_downscale_factor 1

These hyperparameters are pivotal for refining the canopy segmentation performance.
The points_per_side parameter determines the number of points sampled along each
side of the bounding box. This significantly influences the resolution of the canopy
boundaries, enabling precise tracing of tree edges. The parameter points_per_batch
sets the number of points processed in each batch, ensuring that the model handles large-
scale canopy bounding boxes effectively. The pred_iou_thresh parameter specifies the
IoU threshold, ensuring high precision in generating segmentation masks by accurately
distinguishing tree canopies from the background. The stability_score_thresh and
stability_score_offset parameters are crucial for segmentation mask sensitivity fine-
tuning. The box_nms_thresh controls the non-maximum suppression threshold for bound-
ing boxes, eliminating redundant detections and retaining the most accurate canopy bound-
aries. Parameters such as crop_n_layers, crop_nms_thresh, and crop_overlap_ratio
allow effective capturing of multiple scales and overlapping regions to handle ecological
occlusion. Lastly, the crop_n_points_downscale_factor reduces the number of points
within each crop, managing computational complexity while maintaining segmentation
accuracy.

SAM enhances the delineation of enclosed regions within the provided bounding
boxes, transforming them into precise segmentation masks that meticulously trace the
edges of each mango tree canopy (Figure 6). This refinement significantly improves the
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differentiation of individual canopies, facilitating the analysis of specific tree canopy char-
acteristics such as shape, size, or area.

Figure 6. Segmentation output of SAM; each segmented tree is shown with a different-colored
segmentation mask.

3.3. Validation Over Field Survey Dataset
3.3.1. Ground Truth Dataset

To validate the effectiveness of the hybrid approach, the segmented canopies were
compared against ground truth data collected from field surveys. A study was conducted
on 175 mango trees in another mango orchard, whose canopies were manually digitized
(Figure 7) from orthomosaic images using ArcGIS Pro 3.2, and their areas Apanyal Were
calculated in square feet. The corresponding composite imagery of the orchard section was
fed to the proposed deep learning pipeline. Apanya1 Was then compared to the output of
the pipeline, i.e., automatically delineated canopy areas Aauto.

Figure 7. Green areas are manually digitized canopies and red dots are the center points of the canopy
mass; a patch is zoomed in on to show how the manually traced edges are validated against the
output of pre-trained SAM.
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3.3.2. Performance Validation

Figure 8 shows the validation results of the proposed deep learning pipeline against
the ground truth dataset using four different metrics.
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Figure 8. A comprehensive validation of tree canopy detection and segmentation results using
the proposed automated pipeline. (a) Regression Analysis: Scatter plot depicting the relationship
between manually digitized canopy areas (Apanual) and automatically delineated canopy areas
(Aauto)- (b) Bland Altman Plot: Scatter plot showing the mean of A 3,ua1 and Aauto on the x-axis and
the difference (Amnanual — Aauto) on the y-axis. (c) Histogram of Differences: Histogram illustrating
the distribution of differences between A a1 and Aauto. (d) Error Distribution (Box Plot): Box plot
summarizing the errors between A nua1 and Aauto-

The regression analysis demonstrates a strong linear correlation between manually
digitized (Amanual) and automatically delineated canopy areas (Aauto). The best-fit line,
with an RZ = 0.97, indicates that 97% of the variance in the automated measurements can
be explained by the manual measurements with minimal deviation. The RMSE of 80.23 sq ft
against the average canopy size of 1290.14 sq ft computed over the complete ground truth
dataset suggests decent efficacy of the proposed scheme.

For Bland—-Altman analysis, the mean difference is 5.42 sq ft, suggesting an insignificant
systematic bias in the automated measurements. The limits of agreement (LoA), calculated
as the mean difference +1.96 times the standard deviation, provide a range of £155.23 sq ft,
within which most differences between the manual and automated measurements lie. The
majority of data points fall within these limits, confirming consistent agreement across the
range of measurements. However, there are a few outliers that indicate discrepancies for
certain tree canopies, which warrant further investigation.

The histogram of differences confirms that most differences cluster around zero,
reinforcing the minimal bias observed earlier. Errors are normally distributed, as desirable
in validating the reliability of the pipeline. However, the tails of the distribution indicate
some instances of larger discrepancies, which might be due to variations in tree shapes or
shadows affecting the automated detection.

The median difference of errors is close to zero, and the interquartile range is 53.00 sq ft,
indicating that the majority of errors are small. The presence of a few outliers again suggests
occasional significant discrepancies. These outliers could be due to specific characteristics
of certain tree canopies, such as overlapping branches or irregular shapes that challenge
the automated segmentation process.

Lastly, the mean absolute percentage error (MAPE) was computed using (11) to
provide unified metrics for assessment such as y; = Apanuali and J; = Aauto, and
i=0,1,---,174 denote the tree canopies in the ground truth dataset. The MAPE of 4.8%
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demonstrates that the automated method achieves a high level of accuracy, closely align-
ing with the manually measured canopy areas. However, a relatively high RMSE of
80.23 square feet also points to significant variability in the errors. Overall, both results in
tandem suggest that while the automated segmentation method performs well on average,
it does exhibit some anomalous measurement errors, indicating that further refinement is
necessary according to the dictates of the target application.

3.3.3. Potential Limitations of the Pipeline

While the results are promising, there are some potential limitations. The presence
of outliers suggests that the automated pipeline occasionally struggles with certain tree
canopies. This might be due to specific challenges like overlapping branches or non-
standard shapes. Moreover, while the dataset of 175 trees provides a reasonable sample,
further validation with a larger and more diverse dataset would certainly strengthen the
reliability of the results. Lastly, variations in lighting, shadowing, and image resolution
could affect the accuracy of the automated measurements. This necessitates the introduction
of a novel and robust preprocessing sub-module to mitigate these effects.

3.4. Potential Applications of the Proposed Framework

To illustrate the broader potential of the proposed scheme, Figure 9 presents the target
applications of tree height mapping and canopy volume estimation using DSM based on
photogrammetric 3D point cloud. Tree canopies are color-coded according to height in
Figure 9a. The gradient shifts from green to red as the height increases. Figure 9b shows
the canopy height in meters, whereas the highest points are marked in Figure 9c. This
shows the potential for a precise understanding of the canopy structures. Lastly, Figure 9d
gives an estimate of the canopy volume using a DSM. The red indicates lower volume and
increases towards green. Such volumetric analysis can aid in assessing biomass, which can
subsequently correlate with yield estimation.

Color Upper value Label

< 5767542 2885-5.768
B < 8651312 5769 -8.651
< 11535083 865211535

. < 14418854 11.536 - 14.419

(b)

Figure 9. Cont.
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Figure 9. Canopy height and volume derived from DSM based on photogrammetric 3D point cloud
and accurate canopy delineation through the proposed framework. (a) Height of canopies (green to
red). (b) Height of canopy (in meters). (c) The highest point of the canopy. (d) Canopy volume using
DSM (red to green).

Figure 10a shows how the NDVI can be used for the health of mango trees. The brown
canopy gradient indicates weaker trees, while the green canopy gradient suggests stronger
and healthier trees. This gives ample opportunities for monitoring the overall health of the
orchard. The NDRE provides further insights regarding health in Figure 10b.

(b)

Figure 10. Mango tree health estimation based on vegetation indices derived from multispectral UAV
imagery and accurate canopy delineation through the proposed framework. (a) Mean NDVI (brown
to green). (b) Mean NDRE (brown to green).
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Results indicate that by having accurate delineation of mango tree canopies, the
negative impact of surrounding vegetation is mitigated. Thus, the calculation of vegetation
indices based on these canopies is not skewed, and more accurate vegetation indices like
NDVI and NDRE can be calculated, yielding better indicators of tree health. Hence, better
discrimination between the target trees and non-target vegetation is more beneficial for
precision agriculture-based orchard management interventions.

These results indicate ways in which the proposed framework can be extended for
various diverse applications. Structural and health-related attributes of mango trees can be
combined into a holistic analysis for tree-level proactive precision agriculture interventions,
even for large orchards, thereby improving yield and economic benefits.

4. Conclusions and Future Directions

An automated deep learning scheme for the detection and delineation of mango
tree canopies was proposed. The method is tested against a ground truth dataset and
closely replicates the manual measurements within acceptable error bounds. The study
demonstrates the potential for large-scale zonal analysis. The robustness of the frame-
work is due to the integration of YOLOv7 and SAM with good accuracy and consistency.
Details of the chosen hyperparameters are given for reproducing the results in different
environmental settings.

Several future directions can be pursued for further refinement. The preprocessing
stage may include considerations for lighting conditions, shadows, and image resolution.
This could improve segmentation accuracy in varied field conditions. Diversity and size
of the dataset can also be increased to include tree canopy variability. This will add more
generalizability to the results and ensure that the models perform well across different
species and conditions. Outlier analysis and fine-tuning of the model parameters can also
be a promising undertaking. The effects of overlapping branches and irregular canopy
shapes might be mitigated with error minimization.

Additional preprocessing steps can be introduced to enhance the model’s ability
to negotiate background noise. Future work may also explore enhancement of speed
and accuracy, and benchmarking the pipeline against other state-of-the-art methods for
a particular set of downstream tasks. Multi-temporal multi-spectral imagery can also be
integrated into the proposed framework for tree growth, health, and yield estimation.
The scheme can also evolve into a valuable web-based tool for large-scale ecological and
agricultural applications.
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