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Abstract: Transformers have shown remarkable success in modeling sequential data and capturing
intricate patterns over long distances. Their self-attention mechanism allows for efficient parallel pro-
cessing and scalability, making them well-suited for the high-dimensional data in hyperspectral and
LiDAR imagery. However, further research is needed on how to more deeply integrate the features
of two modalities in attention mechanisms. In this paper, we propose a novel Multi-Feature Cross
Attention-Induced Transformer Network (MCAITN) designed to enhance the classification accuracy
of hyperspectral and LiDAR data. The MCAITN integrates the strengths of both data modalities by
leveraging a cross-attention mechanism that effectively captures the complementary information
between hyperspectral and LiDAR features. By utilizing a transformer-based architecture, the net-
work is capable of learning complex spatial-spectral relationships and long-range dependencies. The
cross-attention module facilitates the fusion of multi-source data, improving the network’s ability to
discriminate between different land cover types. Extensive experiments conducted on benchmark
datasets demonstrate that the MCAITN outperforms state-of-the-art methods in terms of classification
accuracy and robustness.
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1. Introduction

Hyperspectral image classification (HSIC) [1] is of great significance in the field of
remote sensing, and it is widely used in agriculture [2—4], environmental monitoring [5,6],
urban planning [7-9], military reconnaissance [10,11], and other fields. HSI can provide
detailed spectral features by capturing spectral information in multiple continuous bands,
helping distinguish different types of ground objects [12]. However, due to the high dimen-
sionality and complexity of hyperspectral data, classification solely relying on HSI faces
challenges such as data redundancy and noise interference [13,14]. For this reason, joint
classification, combined with LiDAR data, has become an effective solution. LiDAR data
provides high-resolution spatial and structural information, which makes up for the lack
of spatial resolution of HSI and complements the spectral information of hyperspectral
data. The combination of the two types of data can significantly improve classification
performance [15]. By jointly utilizing the three-dimensional spatial information of LIDAR
and the spectral information of HSI, we can more accurately identify and classify ground
objects and reduce confusion. The fusion of hyperspectral and LiDAR data can provide
rich information in multiple dimensions, making the classification results more compre-
hensive and reliable. Therefore, it is very necessary to combine HSI and LiDAR data for
joint classification.
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In the past five years, HSIC methods have made significant progress [16], mainly
reflected in the widespread application of deep learning technology and the development
of multi-source data fusion methods [17]. Recently, Yang et al. proposed an HSIC method
based on a multi-level feature fusion network of interactive transformer and convolutional
neural networks (CNNs) [18]. In addition, Yang et al. also proposed a method based on
deformable dilated convolution pyramid feature extraction [19]. Cao et al. investigated
the use of convolutional neural networks (CNNs) combined with active learning for clas-
sifying HSI [20]. Xue et al. explored a self-calibrating convolution [21] for collaborative
classification of hyperspectral and LiDAR data. From the perspective of development his-
tory, HSIC methods have experienced a transformation from traditional machine learning
methods to deep neural network methods. Early HSIC methods mainly relied on machine
learning algorithms such as SVM [22-24] and random forest (RF) [25-27]. These methods
improved the accuracy of classification to a certain extent. However, with the increase in
data volume and computing power, deep learning methods [28-30] have gradually become
the mainstream of HSIC. Deep learning models such as CNN, RNN, and GAN [31] have
greatly improved the performance of HSIC by automatically extracting multi-level feature
representations. Although deep learning methods have made significant progress, there
are still some problems, such as dependence on large amounts of annotated data, a high
computational cost, and insufficient generalizability to different data sets. To overcome
these limitations, combining multi-source data (such as LiDAR data) for classification
becomes an effective solution.

Deep learning has demonstrated remarkable capabilities in extracting features from
raw data and adjusting parameters, particularly through its multi-layered network structure
that can automatically capture complex feature representations from data [32-34]. Common
deep learning structures include RNN [35], LSTM [36], CNN [37], etc. Among these, CNNs
have particularly strong feature extraction capabilities and can automatically learn deep
semantic features from images [38,39]. Some approaches based on CNN depth features
have emerged. For instance, Li et al. [40] proposed a spatial-spectral saliency reinforcement
network (Sal2RN) to enhance joint classification performance. Despite these advancements,
the mainstream methods still face challenges due to the very different dimensions and
feature distribution of HSI and LiDAR data [41,42]. To address this, Gao et al. [43]
proposed an adaptive, multiscale spatial-spectral enhancement network (AMSSE-Net) that
includes an adaptive feature-fusion module. In addition to CNNs, other advanced network
structures have been used for joint HSI and LiDAR data classification to improve accuracy,
such as autoencoders (SAEs) [44], GCNs [45], GANs [46], etc. While these classical deep
learning methods can effectively extract local features from images, they are not as effective
in dealing with global relationships, and they lack a consideration of location information.
To address this, the transformer network has been applied to joint classification [47].

In learning overall sequence features, transformers [48-51] rely on their global model-
ing capability, self-attention mechanism, adaptability to different-length sequences, and
multitasking ability. They are widely used in the field of hyperspectral LiDAR classi-
fication; combining HSI and LiDAR for land-cover classification at the same time can
establish long-term dependencies and help make full use of spectral information and
global features. Through multiple-branch networks, and combining self- and cross-guided
attention mechanisms, effective fusion and classification of hyperspectral and LiDAR
data are achieved. Ni et al. [52] proposed a model called the Multiscale Head Selection
Transformer. Through a multiscale head selection mechanism, the transformer network
selects and integrates hyperspectral and LiDAR features at various scales. This mechanism
allows MHST to capture features at different scales, enhancing classification accuracy and
robustness. Yang et al. [53] proposed a LiDAR-guided cross-attention fusion method. This
approach uses LiDAR data to guide band selection in HSI and employs a cross-attention
mechanism to fuse LiDAR and hyperspectral data, thereby enhancing classification per-
formance. Roy et al. [54] proposed a Cross-HL Attention Transformer model, extending
the self-attention mechanism by cross-attending to hyperspectral and LiDAR data. This
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approach facilitates the effective fusion and feature extraction from multiple data sources.
The transformer network enables end-to-end classification processing, yielding superior
classification results. The implementation of cross-attention demonstrates the capability to
integrate information from diverse data sources in hyperspectral and LiDAR classification,
thereby enhancing the performance and accuracy of classification models. By employ-
ing multi-feature fusion, the multidimensional features of land cover are captured more
comprehensively, improving the classifier’s ability to recognize complex scenes, and thus
achieving more precise hyperspectral and LiDAR data classification.

In a word, the contributions of the proposed MCAITN method can be summarized
into the following threefold list:

(1) The proposed method introduces a novel architecture that leverages the strengths of
transformer networks to enhance classification accuracy in HSI and LiDAR data fusion. The
MCAITN effectively captures the complementary information between the two modalities,
leading to improved feature representation and classification performance.

(2) The MCAITN incorporates a cross-attention module that selectively focuses on
the most relevant features from each modality. This targeted attention mechanism enables
the network to emphasize informative features from both HSI and LiDAR data, enhancing
its ability to discriminate between different land-cover types and improving the overall
classification accuracy.

(8) Comprehensive experiments on benchmark datasets reveal that MCAITN exceeds
current SOTA methods in classification accuracy, resilience to noise and data variability,
and computational efficiency.

2. Materials and Methods
The MCAITN architecture is illustrated in Figure 1. Initially, PCA was applied to

reduce the dimensionality of the original HSI data. Then, LiDAR data and the reduced
dimensionality HSI data were segmented into small three-dimensional blocks as the input
of the shallow CNN feature-extraction module. Next, the extracted joint spectral-spatial
features were input into the HSI and LiDAR branches for processing so as to preserve
the local context and crucial information. Finally, they were input into the cross-feature
enhanced-attention transformer encoder for comprehensive feature cross-learning, the
classification tags were extracted for final classification, and the number of encoders was N.
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Figure 1. Overall architecture of MCAITN.
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2.1. HSI and LiDAR-Data Preprocessing

Assume a hyperspectral data cube and LiDAR data, denoted as X € RWxHxC,
Y € RW*H respectively, where X and Y are the original inputs to the whole classification
framework, W and H correspond to the width and height of the HSI, and C represents the
number of bands.

Typically, HSI is rich in spectral bands, which contain very valuable information but
also introduce a lot of redundancy. To reduce the calculation complexity, PCA is used to
reduce the dimension of HSI data. The label of each pixel in X is denoted as a one-shot
vector, Z € R>*1XB wwhere B denotes the number of land cover analogs. Then, PCA is
performed along the spectral dimension on the HSI data X. After the dimensionality
reduction is performed, the spatial resolution of X remains unchanged, but the number
of spectral bands is reduced from C to ¢, ie, X,, € RW>Hx¢ In other words, PCA
eliminates the redundant spectral information in HSI and retains the spatial information
without degradation.

Then, we divided X, , into small, overlapping three-dimensional adjacent patches.
Each patch was denoted as X, € R"*"*¢, where m x m represents the spatial size of
the patch, and ¢ represents the number of spectral bands. The label for each patch was
derived from the ground-truth label of the central pixel within that patch. For all adjacent
patches, we took the patch Xgat «, With the central pixel position (i, j) as an example; its
spatial coverage ranged from i — (m — 1) /2 to i(m — 1) /2 in width and from j — (m —1)/2
to j+ (m —1)/2 in height. It contained all spectra within this spatial range. It should
be emphasized that, when generating patches for edge pixels, one side of these pixels is
smaller than (m — 1)/2) due to the asymmetric overlay dimensions; therefore, a padding
operation is required. The remaining patches were divided into training and test sets
according to the proportion.

And for LiDAR image Y, a similar operation was performed. It was segmented into
small overlapping patches. We denoted each small patch as Y, , € R"*", where n X n
denotes the size of the patch.

2.2. Shallow CNN Feature-Extraction Module

In recent years, CNNs have become extensively utilized in HSIC, primarily due to
their remarkable proficiency in extracting local features, setting them apart as a dominant
approach in the field. In MCAITN, we use a shallow CNN feature-extraction module to
effectively extract the spectral and spatial information of HSI. For LiDAR data, we use
a two-dimensional convolution block to extract its features. The shallow CNN feature
extraction module mainly consists of a 3D convolution block and a 2D convolution block.
Such a structure helps effectively integrate spectral and spatial information in the early
stage of feature extraction.

First, we introduce a 3D convolution-based block to process the input 3D neighbor-
hood patch. The convolution block consists of a 3D convolution layer with a kernel size of
8@3 x 3 x 3 and a nonlinear activation layer. The stride and padding are 1 and 0, respec-
tively. Specifically, the 3D convolution layer performs convolution operations along the
spectral and spatial dimensions to generate a 3D feature map containing spectral-spatial
features. The calculation process of the 3D convolution block is as follows:

F3d = qD(Xpatch@wCid + de) (1)

where F3; represents the three-dimensional feature map, and ws; and b3, represent the
weight and bias parameters, respectively. @ is the three-dimensional convolution operator,
and @ is the activation function.

Then, the obtained feature map is flattened along the spectral dimension and used as
the input of the 2D convolution block. Similarly, the 2D convolution is composed of a 2D
convolution block with a kernel size of 64@3 x 3 x 3 and a subsequent nonlinear activation
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layer. The 2D convolution block performs convolution along the spatial dimension to
extract more discriminative spatial information. The calculation process is as follows.

Fog = ®(f(F3q) © waq + bag) 2)

where F,; represents the 2D feature map, f denotes the flattening operation, and w,; and
b,z denote the weight and bias parameters, respectively. © is the 2D convolution operator,
and @ is the activation function.

For LiDAR data, since they are two-dimensional, we use the two-dimensional convo-
lution block in the shallow CNN feature-extraction module to extract their spatial features.
The calculation process is as follows:

Yoq = @ (Ypacen © wog + bag) @3)

Finally, we flatten the 2D feature map of F,; and Y;; along the spatial dimension and
then output the features Fyy and Fy. Through this step, we achieve the exploration of spatial
and spectral information in the data at a relatively low computational cost.

2.3. HSI Semantic Tokenizer and LiDAR Gaussian-Weighted Feature Tokenizer

As shown in Figure 1, for HSI, we use position embedding to sign the position
information of each semantic token for the feature F2d extracted via the shallow CNN
feature-extraction module. Each token is represented by [Fg1, Fio, - - ., Fw ). These tokens
are connected together with a learnable classification token, TSIS, for classification tasks.
The position information, PEy,s, encoding is then attached to the token representation. The
resulting semantic tag embedding sequence is as follows:

Ty = [T§", Finn, Fro, -+ Friw) + PEpos 4)

For LiDAR data, we apply semantic labels to the LIDAR data to enable the representa-
tion and processing of advanced semantic ideas at the level of LIDAR features. The flattened
feature map of the input is defined as F;, € R"**?, where nn is the size, and z is the number
of channels. The feature token is defined as T € R%¥*#, where w denotes the number of
tokens. For the feature mapping of F;, T}, can be obtained from the following formula:

T; = softmax(F,W,)T F; o)
~—_— ————

A

where W, represents the weight matrix initialized with Gaussian distribution, and F; W, rep-
resents performing 1 x 1 dot product to map Fy to a group. At this juncture, the size of the
semantic group is denoted as A. Following this, A undergoes specialization, and so f tmax(.)
is employed to emphasize the relatively crucial semantic components. Subsequently, it is
combined with Fy to yield the semantic sequence Ty = [Fr1, Fro, - -+, Fro]-

Finally, we input the obtained Ty and T} into the CFETE module to learn the relation-
ship between high-level semantic features.

2.4. Cross-Feature Enhanced-Attention Transformer Encoder

As shown in Figure 1, CFETE is mainly composed of a cross-feature enhanced attention
(CFEA) block and a simple, fully connected feed-forward network (FFN).

The original MHSA mechanism aims to establish global, long-range dependencies
between input feature sequences. Now, in order to provide MHSA with more valuable
context information, we extend the traditional MHSA mechanism to CFEA and take HSI
and LiDAR semantic-feature sequences as the input of CFEA, which can be expressed
as follows:

Tin = [T, Tt] (6)
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In the CFEA module, firstly, the two feature sequences are linearly transformed to
obtain five different matrices: query Qp € Rmxd, key Ky € R™ *d the value Vy € R"™*4 of
HSI, and K;, € R"™4, V; € R"™ 4 of the LIDAR. The linear transformation process is defined
as follows:

Qu =TyWy

Ky = Ty Wy

Vg = TgWy @)
Kp = T Wk

VL =TLW,y

where m and n are the number of HSI feature vectors Ty and LiDAR feature vectors Ty,
respectively, and d represents their dimensions. W;, W,, and W are learnable weight
matrices. Then, Q, K, and V are divided into h parts along the d dimension, expressed

as follows:
Qn = [QH1,Qm2, - - -, Qi
Ky = [Ky1, Ko, -+« Kpp)
V, = [V, Voo,V ] ®)
K = [Kr1, K2, ..., Ky
VL = Vi1, Via, ..., Vi

where h represents the number of the attention heads, Qpi € RM*(d/h) Ky e Rm*(d/h),
Vyi € Rmx(@d/h) K, i e R/ and Vi € R"™ @/ Next, we use K, and V to expand
Ky and Vy; the process is as follows:

Kl/ = COHCQt(KHi, KLZ')Vi/ = COi’lCﬂf(VHl‘, VLi) (9)

Since K}, and V], represent the projection matrix of LIDAR data, they preserve local
context and salient spatial feature representation. We utilize the extended K and V matrices
and integrate them into the self-attention mechanism. This allows the model to consider
not only the spatial-spectral characteristics of HSI but also the feature representation of
LiDAR data during the self-attention operation, thereby incorporating a broader range
of contextual information. This helps provide a more comprehensive set of information,
allowing the model to better understand the relationships and dependencies between
different parts of the input sequence. Furthermore, employing a multi-head mechanism
allows the model to process different subspaces of information concurrently. The extended
parts of K and V of each head provide additional information, enhance the cross-fusion
between different data source information, and improve the model’s generalization ability
and prediction performance with location data.

Following this, the attention scores between each Q and K in each attention head are
calculated, and then these scores are converted into attention weights using the so ftmax
function. Finally, these weights are multiplied by V. The calculation process for each head
is as follows:

. / / Qi K;T /
H; = Attention(Q;, K}, V') = Softmax 1% (10)
Vd
The final output of CFEA is constructed by concatenating the attention results from all
attention heads and further projecting them. We represent it as follows:

CFEA(T;,) = Concat(Hy, Hy, ..., Hy)W, (11)

Among them, W, is the parameter matrix.

Then, the output of CFEA is used as the input of FEN. The feed-forward layer consists
of two FC layers with a Gaussian error linear unit (GELU) inserted in between. It is
defined as follows:

FFN(X) = FC(GELU(FCy(X))) (12)
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In summary, the entire calculation process of CFETE can be summarized as follows:

z; = CFEA(LN(z)) + 2

! ! ! (13)
where LN is the layer norm, which alleviates the gradient-vanishing and -exploding
problems, thereby speeding up the training process. z; represents the input of the [th layer
of CFETE.

2.5. Classification Head

To achieve the final classification, we use a multi-layer perceptron (MLP) head. Typi-
cally, an MLP consists of multiple FC layers, and the MLP head refers to its last layer. In
this paper, the MLP head consists of layer norms and FC layers. The classification tokens
are extracted from the output of MATE and used as the input for the MLP head; the output
dimension of the MLP head is equal to the total number of classes predicted in the end.
The unit with the highest value in this output corresponds to the predicted label for that
pixel. Algorithm 1 outlines the entire execution process of the method.

Algorithm 1 MCAITN network.

Require:
HSI data X € RW*H*C LiDAR data Y € R"*H; PCA bands number ¢; patch size S;
train rate a%.
Ensure:
Predicted labels of the test set.
1: Obtain the HSI after PCA transformation, denoted as Xc,.
2: Obtain patches from Xj, and Y, respectively, and divide the patches into the train set
and test set.
3: Set batch size bs = 32; learning rate [r = 5e — 4; epochs ¢ = 100.
4: fori =1toedodo
5. Perform Conv3D and Conv2D on the HSI patch to obtain spatial spectral features F34
and F,y; perform Conv2D on the LiDAR patch to obtain spatial feature Yy,.
6:  Flatten the 2D feature map to obtain F; and Fp.
Use Gaussian-Weighted Feature Tokenizer to generate feature sequence Tj, for Fj.
Obtain Ty by adding position information and an additional classification token
to FH-
9:  Input features Ty and T} into CFETE for feature learning.
10: forj=1toLdodo
11: Perform CFEA operation according to Equation (11).
12: Perform FFN operation according to Equation (13).
13:  end for
14:  Input the first classification token T9,, into the MLP head to obtain the category label.
15: end for
16: Use the trained model to predict the test set.

3. Experiments

To validate the proposed method’s effectiveness, we conducted experiments on three
classic hyperspectral and LiDAR joint classification datasets and compared them with
current mainstream methods. In the experiments, three classification metrics, overall
accuracy (OA), average accuracy (AA), and the kappa coefficient, were used to quanti-
tatively assess the experimental performance.

3.1. Dataset Description
3.1.1. MUUFL

The MUUFL was obtained using a reflective optical system-imaging spectrometer sensor,
capturing the area around the Gulf Park University of Southern Mississippi campus. The
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spatial dimensions of both the HSI and LiDAR data are 325 x 220 pixels, with 325 representing
the height and 220 the width. After noisy bands were filtered out, the HSI data were reduced to
64 spectral bands. This dataset categorizes the land into 11 different classes. Figure 2 displays
the specific situation of the dataset.

(c)
. Trees . Mostly Grass . Mixed Ground Surface . Dirt and Sand
. Road D Water 4‘ Buildings Shadow D Buildings

D Sidewalk D Yellow Curb i Cloth Panels

Figure 2. MUUFL. (a) Pseudo-color image of HSI. (b) Gra-image of the LiDAR-based DSM.
(c¢) Ground-truth map.

3.1.2. Trento

The Trento dataset features HSI and LiDAR data collected from across a rural area
south of Trento, Italy. The dataset boasts a spatial resolution of 1 m and dimensions of
600 x 166 pixels. It includes 63 spectral bands in the HSI data, with wavelengths ranging
from 0.42 to 0.99 pum. There are six distinct land-cover classes within this dataset. Figure 3
shows the specific situation of the dataset.

. Apples Trees D Buildings . Ground
l: Woods Vineyard . Roads

Figure 3. Trento. (a) Pseudo-color image of HSI. (b) Gray image of the LiDAR-based DSM.
(c) Ground-truth map.

3.1.3. Augsburg

The Augsburg dataset includes HSI data and LiDAR-based DSM data collected from
across the city of Augsburg, Germany. The dataset’s spatial dimensions are 332 x 485 pixels,
representing height and width. The HSI data comprise 180 spectral bands, with wave-
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lengths ranging from 0.4 to 2.5 um. This dataset encompasses seven land-cover classes.
Figure 4 presents the specific situation of the dataset.

(b)
. Residential Area D Industrial Area D Low Plants
l:‘ Allotment D Commercial Area . Water

. Forest

Figure 4. Augsburg. (a) Pseudo-color image of HSI. (b) Gray image of the LiDAR-based DSM.
(c) Ground-truth map.

The datasets are available at (accessed on 1 January 2024): https://github.com/
AnkurDeria/MFT. The names of land categories, along with the numbers of training
and testing samples used in the experiments for the three datasets mentioned above, are
presented in Table 1.

Table 1. Training and test samples in the MUUFL, Augsburg, and Trento datasets.

MUUFL Augsburg Trento

No-. Class Training. Test. Class Training.  Test. Class Training.  Test.
C01 Trees 150 23,096 Forest 675 12,832  Apple Trees 129 3905
C02 Mostly Grass 150 4120 Residential Area 1516 28,813 Buildings 125 2778
C03 Mixed Ground Surface 150 6732 Industrial Area 192 3659 Ground 105 374
C04 Dirt and Sand 150 1676 Low Plants 1342 25,515 Woods 154 8969
C05 Road 150 6537 Allotment 28 547 Vineyard 184 10,317
C06 Water 150 316 Commercial Area 82 1563 Roads 122 3052
C07  Buildings Shadow 150 2083 Water 76 1454

C08 Buildings 150 6090

C09 Sidewalk 150 1235

C10 Yellow Curb 150 33

Cl11 Cloth Panels 150 119

- Total 1650 52,037 Total 3911 74,383 Total 819 29,395

3.2. Experimental Setup
3.2.1. Evaluation Indicators

We selected four widely used evaluation metrics to quantitatively assess the classifi-
cation performance of all methods: single-class accuracy, overall accuracy (OA), average
accuracy (AA), and the kappa coefficient (x). Higher values for each metric signify better
classification performance.

3.2.2. Configurations

To ensure a fair comparison of the classification performance of the models, both
the proposed method and the comparison methods were implemented using the PyTorch
framework. All training and testing experiments were conducted on Intel Xeon Silver 4210
and an NVIDIA GeForce RTX 2080Ti GPU. Additionally, the parameters for the comparison
methods were maintained as per their original settings to achieve optimal performance. For
our method, network parameters were updated using the Adam optimizer, with a batch
size of 32 and training epochs set to 100.
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3.3. Classification Results and Analysis

In this subsection, we will quantitatively and qualitatively analyze the comparison re-
sults between the proposed MCAITN method and the current mainstream methods. These
methods include SVM [22], S2FL [55], EndNet [44], MDL [56], LSAF [57], CCRNet [58],
CoupledCNN [59], and HCT [12].

3.3.1. Quantitative Results and Analysis

Tables 2—4 present the quantitative results for the three classic datasets Trento, MUUFL,
and Augsburg, along with the standard deviations for each metric. From Table 2, it is evident
that traditional machine learning methods, such as SVM, have a lower joint classification
accuracy, achieving only an OA value of 72.23. In contrast, neural network methods perform
relatively better, with methods like CCRNet, CoupleCNN, and HCT having OA values
mostly above 83% and AA values around 90%. MCAITN demonstrates significant improve-
ments over competing methods across all evaluation metrics (OA, AA, and Kappa), reaching
an OA of 90.43%, an AA of 91.94%, and a Kappa of 0.8745. Additionally, the table shows
that the standard deviations for the OA, AA, and Kappa values of our method are relatively
low, indicating that the proposed method consistently produces stable classification results
across ten random experiments.

Table 2. Performance of various classifiers with the MUUFL dataset (best results are in boldface).

No. SVM [22] S2FL [55] EndNet [44] MDL [56] LSAF[57]  CCRNet[58] CoupledCNN [59] HCT [12] MCAITN
1 7481+ 01.79  81.02400.74 842140096  89.42+03.88 8870 +00.99 84.81 + 01.91 89.16 + 01.85 9112+ 0143  91.75 + 01.57
2 7294+ 0191 769940236 832840209 7457+13.12 8529 +0248 85.81 + 01.57 86.96 + 00.94 85.47 £ 0235  86.62 + 03.42
3 57.59 £ 02.06  66.16 + 01.51 71.85 + 02.07 77.96 + 04.67 7897 £02.26  66.15 £ 03.63 81.60 + 02.32 81.53 £ 04.88  82.21 £ 03.20
4 6339+ 0134 8256+ 0298 87.65+0149  90.83+09.13  97.16 £ 01.41 9439 + 02.98 94.36 + 02.97 96.07 + 00.44  96.92 + 00.89
5 79.06 £ 00.93 8446+ 0122 8896+01.86 7593+ 0439  87.72+01.28 8577 + 02.63 89.66 -+ 02.69 87.57 + 0496  89.26 + 01.97
6 92.51 + 01.31 9449 + 00.62  94.38 £ 01.53 99.79 + 00.18 100 £ 00.00 99.03 + 00.64 98.92 + 00.64 99.45 + 00.69  99.50 £ 00.48
7 8245+ 01.03 84194 01.23 887040152  90.01 £07.08 9446 +01.40 88.54 + 01.82 91.84 + 01.65 9423+ 0042  93.64 + 01.78
8 66.16 +01.50  79.49 £01.72  80.56 + 02.05 96.32 + 02.05 95.59 +00.35  94.48 + 00.72 96.71 £ 01.29 95.15+02.92  96.84 + 00.84
9 79.48 £01.73 7155+ 0278 753940302 70.234+11.80 7714+ 0278 6545+ 02.27 72.71 + 02.56 7838 £ 0155  80.53 + 02.33
10 8293+ 0349 9233+ 03.89 973140248 8485+ 08.02 9394+0525 87.72 + 03.08 94.32 + 02.85 9545+ 02.62  95.67 + 04.58
11 75.09 + 0246  85.82+£0253  98.18 4+ 01.18 100.00 £ 00.00  99.72 +£ 0048  97.95 4+ 01.81 98.47 + 00.59 99.02 + 01.06  98.44 £+ 01.32
OA (%) 7223 +01.37 7831+00.18 8292+ 00.64 85.58 + 00.45 88.18 + 0043  83.12 £ 01.01 88.73 + 00.39 88.93 £00.97  90.43 + 00.67
AA (%) 75.13 +01.53 81.73 £01.85 86.41 4+ 00.87 86.36 + 01.23 90.79 + 00.50  86.37 £ 00.99 90.43 + 01.34 91.22 + 01.57  91.94 £ 00.52
x % 100 65.41 +01.42 7247 £0033  77.82 +01.04 81.17 £ 00.37 84.60 +00.52  78.25 + 01.17 85.16 + 01.03 85.29 +00.85  87.45 + 00.83
Table 3. Performance of various classifiers with the Augsburg dataset (best results are in boldface).
No. SVM [22] S2FL [55] EndNet [44] MDL [56] LSAF [57] CCRNet [58] CoupledCNN [59] HCT [12] MCAITN
1 95.78 £ 0039 9718 £ 00.15 9249 +00.49 9556 + 03.04  99.15+ 0021  96.44 + 00.97 97.47 4 00.97 98.98 +00.17  98.97 + 00.27
2 89.41 40127 7229+ 0126 88.61 40053 93.82+03.88 9853 +00.05 96.69 + 00.76 97.71 + 00.65 98.69 4+ 00.26  98.82 + 00.29
3 0647 +01.35 32254 03.09 41.38+03.13 79.42+07.18 89.22+03.02 82.76 + 03.83 84.71 + 03.57 88.33 £ 0420  88.92 + 03.16
4 67.32 +01.39 8745+£01.04 94254+0053 99.74 £00.06 99.22 4+ 00.31 98.02 + 00.41 97.56 £ 00.53 98.94 £ 00.29  99.07 £ 00.25
5 06.86 +01.82  40.34 £0519 31.75+£03.13 56.26 +13.26  87.08 = 05.64  41.69 + 06.06 69.43 + 03.05 80.04 +08.55  86.66 + 08.75
6 10.90 £ 01.87  39.97 +02.81 2832+ 0421 573442199 5436+0516 33.38 + 05.05 72.84 + 02.36 70.38 £ 02.06  74.89 + 03.78
7 5327 +£01.85 70.35+01.29 50.65+0207 4758 +12.57 70.02+ 0264 59.39 + 06.24 61.98 + 02.58 72.81 £ 0462  72.91 + 03.00
OA (%) 760140083 7877+00.37 8677 0056 9350+ 01.46 96.85+ 0023  94.35 + 00.74 95.59 + 00.75 97.08 40021  97.34 + 00.15
AA (%) 47.15+00.78 62.83+01.06 61.06+00.95 75.68 + 00.51 85.37 £ 01.33  72.63 £ 02.80 83.1 + 01.90 86.88 + 01.07  88.61 + 01.14
x x 100 64.82 + 01.09 70.87 £+ 00.71 80.73 £ 00.58  90.63 £02.08 95.48 £00.33  93.09 + 00.61 93.92 + 00.79 95.82 £00.29  96.18 £ 00.21

From the quantitative results of Tables 3 and 4, conclusions similar to those in Table 2 can
be drawn; that is, the MCAITN method proposed in this paper achieved the best quantitative
indicators in terms of OA, AA, and kappa. The joint-classification methods related to
deep learning are significantly better than traditional classification methods such as SVM
classifiers, mainly due to the powerful nonlinear feature-extraction capabilities of neural
networks. Although the MCAITN method improved on various classification indicators over
the second-best method, HCT, in the Augsburg and Trento databases, the OA only increased
by 0.26% and 0.11%, the AA increased by 1.73% and 0.21%, and the kappa increased by 0.36
and 0.17. It can be seen that the improvement in the MCAITN method was the least for the
Trento dataset. The main reason for this may be that the features in the MUUFL are mainly
intertwined buildings and vegetation, and the elevation information in the LiDAR data has
a better positive effect on the classification results; meanwhile for the Augsburg dataset,
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there is mainly vegetation, and the auxiliary classification ability of elevation information
is limited. In the Trento dataset, there are also fields, houses, roads, and trees, but they are
more scattered, and better results can be obtained simply through hyperspectral information.

Table 4. Performance of various classifiers with the Trento dataset (best results are in boldface).

No. SVM [22] S2FL [55] EndNet [44] MDL [56] LSAF [57] CCRNet [58] CoupledCNN [59] HCT [12] MCAITN

1 80.05 £01.08  80.35+00.71  87.52400.62  98.06 £01.39  99.66 +00.09  99.13 & 00.91 99.32 £ 00.21 99.59 £00.17  99.41 £ 00.44
2 77.03+£03.13 803240123 8743 £00.82 99.37+:00.74 98.85+£00.79  96.74 £01.41 97.87 £ 00.29 98.49 £01.15  99.32 £ 00.32
3 85.64 £02.57 9047 +£00.71 9822+ 01.04 99.07£00.27 97.86+00.92 9417 £ 02.11 98.39 £ 00.31 100.00 4 00.00  100.00 £ 00.00
4 9248 +£01.23  93.14 £00.31  98.37 +00.32  100.00 & 00.00  100.00 £ 00.00 ~ 99.97 £ 00.04 100.00 + 00.00 100.00 4= 00.00  100.00 = 00.00
5 8243 +£01.01 8214 +£00.39  93.66 +00.36  99.98 £00.03  99.87 £ 00.19  99.95 £ 00.05 100.00 £ 00.00 99.98 £ 00.02  100.00 % 00.00
6 8221 £01.39  80.78 0122  86.68 £ 01.65 96.16 £02.14  98.31+00.60  96.46 & 01.49 97.96 £ 00.89 97.96 £01.01  98.56 £ 01.01

OA (%) 8443 +£0051 8514+0048 93.01+0031 9927 +£00.19 99.31+£00.19  98.68 & 00.63 99.04 £ 00.33 99.59 £00.09  99.70 +£ 00.09

AA (%) 8331+£01.72 8453+0031 91.984+00.80 9878 +£00.30  99.09 + 00.08  97.74 + 00.81 98.92 £ 00.25 99.34 £00.15  99.55 £ 00.14

x x 100  79.45400.68  80.25+£00.65 90.55+00.29  99.02+00.26  99.23 £00.13  98.19 & 00.57 98.97 £ 00.26 99.44 £00.12  99.61 £ 00.12

3.3.2. Visual Evaluation and Analysis

To further assess the performance of the proposed MCAITN method and the other
methods, a qualitative visual analysis was conducted using representative samples from the
MUUFL, Augsburg, and Trento databases; the results are illustrated in Figures 5-7.

B % o N

Figure 5. Classification maps of the MUUFL dataset: (a) ground truth, (b) SVM, (c) S2FL, (d) EndNet,
(e) MDL, (f) LSAF, (g) CCRNet, (h) CoupledCNN, (i) HCT, and (j) MCAITN.

Figure 6. Classification maps of the Augsburg dataset: (a) ground truth, (b) SVM, (c) S2FL, (d) EndNet,
(e) MDL, (f) LSAEF, (g) CCRNet, (h) CoupledCNN, (i) HCT, and (j) MCAITN.
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Figure 7. Classification maps of the Trento dataset: (a) ground truth, (b) SVM, (c) S2FL, (d) EndNet,
(e) MDL, (f) LSAE, (g) CCRNet, (h) CoupledCNN, (i) HCT, and (j) MCAITN.

The visual results indicate that the MCAITN method is capable of producing more
accurate and detailed classifications compared to the other methods. In the MUUFL dataset,
for instance, the MCAITN method was able to distinctly classify various land cover types
such as grassland, forests, and buildings. The other methods often struggled to differentiate
between these classes, resulting in more overlapping classifications.

With the Augsburg dataset, the MCAITN method accurately captured the roads,
buildings, and vegetation, especially in terms of edge delineation. The other methods either
produced less clear classifications or misclassified some of the areas.

With the Trento dataset, which is characterized by high complexity and varying
texture information, the MCAITN method once again demonstrated its robustness by
identifying different land cover types more accurately than the other methods. The
complex nature of the dataset posed a challenge for some of the methods, leading to
confusion in classifications.

In summary, both the quantitative and qualitative analyses indicate that the MCAITN
method provides better results compared to the current mainstream methods for HSI and
LiDAR data classification tasks.

4. Discussion
4.1. Parameter Analysis

HSIs have a very high number of spectral dimensions, and directly processing these high-
dimensional data significantly increases computational complexity. Moreover, adjacent bands
often exhibit high correlation, leading to a large amount of redundant information, which ad-
versely affects classification performance. Therefore, we considered a set of candidate values
{10, 20, 30, and 40} for the retained spectral dimensions and fixed other hyperparameters to
explore their impact on classification performance. As shown in Figure 8, with an increase
in spectral dimensions, the classification performance of all three datasets initially rose and
then stabilized. Considering both classification performance and computational complexity,
we set the spectral dimension to 30.

= Kappa

g

2
2
e

Accuracy (%)
Accuracy (%)

0A 0A
82 AA 81 AA 98.5
= Kappa = Kappa
79 7% 98
10 20 30 40 10 20 30 40 10 20 30 40
Retained Spectral Dimensions Retained Spectral Dimensions Retained Spectral Dimensions

(a) (b) (c)

Figure 8. The impact of retained spectral dimensions on OA, AA, and the kappa coefficient.
(a) MUUEFL. (b) Augsburg. (c) Trento.
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On one hand, directly processing the entire hyperspectral and LiDAR images consumes
significant computational resources and memory. By dividing the images into smaller
patches, we can reduce the amount of data processed at each step, thereby improving
computational efficiency. On the other hand, HSI and LiDAR images have different spectral
and spatial resolutions, so the patch size for these images can also impact classification
performance. We fixed other hyperparameters and considered a set of candidate patch sizes
{5,7,9, 11, and 13} for both types of image inputs. As shown in Figure 9, with the increase in
the HSI patch size, the classification performance for all three datasets initially improved and

then stabilized. Considering both computational complexity and classification performance,
we set the HSI patch size to 11.
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Figure 9. The impact of the HSI patch size on OA, AA, and the kappa coefficient. (a) MUUFL.
(b) Augsburg. (c) Trento.

As illustrated in Figure 10, it is evident that the MUUFL, Augsburg, and Trento

databases achieved the best classification performance with a LiDAR patch size of 5, 13,
and 7, respectively.
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Figure 10. The impact of the LiDAR patch size on OA, AA, and the kappa coefficient. (a) MUUFL.
(b) Augsburg. (c) Trento.

HSIs are typically high-dimensional and sparse data, and an appropriate learning rate
helps the model find stable feature representations in such data, enhancing classification
performance. Moreover, a suitable learning rate balances the convergence speed and sta-
bility, enabling the model to reach the optimal solution in a shorter time. We kept other
hyperparameters unchanged and considered a set of candidate learning rates {le-5, 5e-5,
le-4, 5e-4, and 1le-3}. As shown in Figure 11, with an increasing learning rate, the AA for
the MUUFL database gradually increased, while OA and kappa first increased and then
decreased, achieving the best performance at 1e-4. For the Augsburg and Trento databases,
the best classification performance was achieved at 5e-4 and 1e-4, respectively.
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Figure 11. The impact of the learning rate on OA, AA, and the kappa coefficient. (a) MUUFL.
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4.2. Ablation Study

To validate the effectiveness of each component in our proposed network on classifica-
tion performance, we conducted ablation experiments on the MUUFL database involving
four components: Conv3D, Conv2D, LiDAR-branch, and CFEA-TE. The results are listed
in Table 5.

Table 5. Evaluating model components: ablation analysis with the MUUFL database (the best results
are in boldface).

Component Indicators
Cases
Conv3D Conv2D Lidar-Branch  CFEA-TE OA (%) AA (%) x X 100
1 V4 - V4 4 87.57 88.14 83.75
2 - Vv V4 v 86.89 87.78 82.93
3 - - 4 TE 55.61 50.44 43.16
4 vV v - TE 88.69 90.63 85.19
5 v v v v 90.43 91.94 87.45

In Case 1 and Case 2, we removed the 2D convolution block and the 3D convolution
block, respectively. The results showed a decrease in the model’s classification performance
in both scenarios. However, the OA, AA, and kappa in Case 1 were slightly higher than
those in Case 2, suggesting that the 3D convolution block, which performs joint convolution
in both spatial and spectral dimensions, is more effective at feature extraction compared
to the 2D convolution block, which only performs spatial convolution. In Case 3 and
Case 4, we performed classification experiments using only the LiDAR branch and the HSI
branch, respectively, with the encoder utilizing a conventional transformer encoder. The
results show a significant decrease in performance when only LiDAR data were used for
classification, while using only HSI data yielded better classification performance. This
suggests that the information contained in the LiDAR data is considerably less than that
in the HSI data, and solely using LiDAR data is insufficient for classification. Finally,
Case 5 represents our complete proposed classification model. Compared to Case 3 and
Case 4, it achieves the best classification performance, demonstrating that our cross-feature
enhanced-attention transformer encoder effectively integrates LIDAR and HSI data for joint
classification. In summary, each component of the proposed MCAITN network positively
contributes to the final classification performance.

5. Conclusions

This paper has introduced a novel, multi-feature, cross-attention transformer classifi-
cation network named MCAITN for the joint classification of HSI and LiDAR data. The
innovation of this method lies in its effective coupling of hyperspectral features with LIDAR
data features through the Q, K, and V vectors in the cross-attention mechanism. It further
integrates the two discriminative features iteratively, adaptively adjusting their respective
advantageous features to enhance classification accuracy. The experimental results show
that, compared to mainstream joint classification methods for hyperspectral and LiDAR
data, the MCAITN method can better fuse the features of the two modalities, achieving an
average classification accuracy improvement of about 1% at a 3% sampling rate. Another
advantage of this type of method is that its architecture can easily be generalized to feature
extraction for the fusion of more modalities.

In the future, directions for improvement include altering the way Q, K, and V con-
nections are established between the two types of data markings (currently concatenation)
to enable a more effective fusion of the features from the two modalities, thus further
enhancing accuracy. Additionally, designing a more lightweight network architecture is
also a direction for research.
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Abbreviations

MCAITN Multi-feature, cross-attention-induced transformer network
CNNs Convolutional neural networks

SVN Support vector machine

RF Random forest

RNNs Recurrent neural networks

GANs generative adversarial networks

LSTM Long short-term memory

HSI Hyperspectral image

HSIC Hyperspectral image classification

IP-CNN Interleaving perception convolutional neural network
Sal2RN Saliency reinforcement network

DSHFNet Dynamic-scale hierarchical fusion network
AMSSE-Net  Adaptive multiscale spatial-spectral enhancement network
CMSE Cross-modal semantic enhancement

SAEs Autoencoders

GCNs Graph convolutional networks

CFEA Cross-feature enhanced attention

FFN Feed-forward network

MLP Multi-layer perceptron

FC Fully connected
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