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Abstract: Landsat data correction using the Land Surface Reflectance Code (LaSRC) has been pro-
posed as the basis for the atmospheric correction of smallsats. While atmospheric correction can
enhance smallsat data, the Landsat/LaSRC pathway delays output and may constrain accuracy and
utility. The alternative, the Closed-form Method for Atmospheric Correction (CMAC), developed for
smallsat application, provides surface reflectance derived solely from scene statistics. In a prior paper,
CMAC closely agreed with LaSRC software for correction of the four VNIR bands of Landsat-8/9 im-
ages for conditions of low to moderate atmospheric effect over quasi-invariant warehouse-industrial
targets. Those results were accepted as surrogate surface reflectance to support analysis of CMAC
and LaSRC reliability for surface reflectance retrieval in two contrasting environments: shortgrass
prairie and barren desert. Reliability was defined and tested through a null hypothesis: the same
top-of-atmosphere reflectance under the same atmospheric condition will provide the same estimate
of surface reflectance. Evaluated against the prior surrogate surface reflectance, the results found
decreasing error with increasing wavelength for both methods. From 58 comparisons across the four
bands, the LaSRC average absolute error ranged from 0.59% (NIR) to 50.30% (blue). CMAC provided
reliable results: error was well constrained from 0.01% (NIR) to 0.98% (blue).
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1. Introduction

Through smallsats, electro-optical Earth observation (EO) is rapidly expanding, en-
abled by advances in electronics, imaging sensors, data transmission, and the minia-
turization of components. The resulting smallsat constellations provide rapid repeat
imagery that is needed to better understand and manage the unprecedented planetary-
scale threats from climate change. Perhaps the greatest challenge for all EO data appli-
cations is that the data are obtained through the atmosphere, which variably corrupts
the data. The solution is to correct the data to surface reflectance, a process that seeks to
remove the atmospheric effect entirely, resulting in clear images and restored digital signals.
However, atmospheric correction is problematic for the many hundreds of EO smallsats
without onboard equipment to calibrate sensor output, permitting direct conversion to
surface reflectance.

A proposed pathway for smallsat surface reflectance correction applies the Land
Surface Reflectance Code (LaSRC) and cross calibration to the data of two research grade
satellite platforms, Landsat-8/9 and Sentinel-2 A/B [1,2], atmospherically corrected by
LaSRC. Such cross-calibration can introduce uncertainty due to mismatched overpass
timing and spectral responses between sensor platforms. LaSRC currently requires ancillary
data to assess the degree of atmospheric effect on the day of the smallsat’s image acquisition,
both for calibration and application. This potentially adds another layer of uncertainty in
operational surface reflectance retrieval due to any temporally mismatched image collection
for the ancillary data. Ancillary data also delay image processing and output and may have

Remote Sens. 2024, 16, 2216. https://doi.org/10.3390/rs16122216 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16122216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9228-3885
https://doi.org/10.3390/rs16122216
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16122216?type=check_update&version=1


Remote Sens. 2024, 16, 2216 2 of 23

coarser granularity that reduces spatial sensitivity. CMAC was formulated to avoid these
sources of uncertainty.

The Closed-form Method for Atmospheric Correction (CMAC) was developed to
deliver surface reflectance with no delay upon image download. Its development was
prompted by a seminal observation of atmospherically driven reflectance changes. The
novel CMAC pathway was tested against Sen2Cor for Sentinel-2 correction [1] and LaSRC
for Landsat-8/9 correction [2]. Corrected Landsat data by LaSRC, L2A, are available only
through Earth Explorer and represent the general current state of the art in surface re-
flectance retrieval. CMAC proved accurate and precise for higher levels of atmospheric
effect, estimated from each image’s spectral data alone. This paper investigates an addi-
tional inquiry into CMAC application: whether the reliability of surface reflectance output
from one area of interest (AOI) applies to all other environments, especially those with very
different spectral characteristics. As a yardstick for this comparison, CMAC reliability is
compared to the state-of-the-art LaSRC correction for the four visible and near infrared
bands (VNIR) of Landsat-8/9.

The paucity of surface reflectance data is a challenge for evaluating atmospheric correc-
tion. A few such datasets exist, but virtually never in time and space to support sustained,
focused testing to compare methods, thus necessitating a workaround for investigating the
reliability of atmospheric corrections. The workaround for this investigation relies upon a
truism relative to atmospheric correction: correction accuracy is greatest for scenes taken
through a relatively “clean” atmosphere. This is partially because clean images require
much less adjustment to achieve surface reflectance but also because the engineering toler-
ances to accurately retrieve surface reflectance become tighter and the solution accuracy is
more critical as atmospheric effects increase. In a prior investigation [2], CMAC and LaSRC
closely agreed on images acquired under relatively clean atmospheric conditions. These
data were accepted as surrogate surface reflectance to provide a reference to construct
the datasets to support this analysis. These surrogate surface reflectance estimates were
consulted to find TOAR reflectance values present in both data sets that could be used to
test the null hypothesis described below.

This paper (1) investigates the reliability of CMAC to provide surface reflectance
output for environments widely different from where CMAC was developed and calibrated,
and (2) evaluates the functionality of CMAC in relationship to the widely accepted state
of the art, LaSRC. A null hypothesis was formulated to express atmospheric correction
reliability: Equivalent top-of-atmosphere reflectance from images of different environments collected
under the same level of atmospheric effect, when atmospherically corrected, will yield equivalent
surface reflectance (i.e., no difference). This hypothesis can be stated more simply as “the same
input affected by the same conditions will yield the same output”.

A point of continual reference in past papers that we use again here is the appli-
cation of image appearance that includes clarity and color balance of atmospherically
corrected images [1,2]. Though a subjective interpretation, images that appear clear are
logically closer to surface reflectance than those containing visible haze. Figure 1 is an
example of an extremely hazy image portrayed as top-of-atmosphere reflectance (TOAR)
and CMAC- and LaSRC-corrected views and illustrates the importance of scene appearance
for judging atmospheric correction. While the lack of surface reflectance groundtruth in
the appropriate time and at an appropriate scale can be problematic for cross-checking the
accuracy of retrieved surface reflectance, image appearance is useful as a qualitative guide
for correction accuracy.

CMAC represents several innovations. These include the use of scene statistics, alone,
for retrieval of surface reflectance rather than dependence upon ancillary data from another
satellite. Scene statistics provide assessment of the atmospheric effect as a lump sum in
the form of a grayscale map, with brightness conveying a greater degree of correction.
The resulting surface reflectance retrieval accounts for scatter and absorption using a
conceptual model that inverts and adjusts the empirical line method [3]. Another innovation
is the representation of the atmospherically induced deviation of TOAR from surface
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reflectance in Cartesian space as a line. The slope and offset of the line are applied as the
two parameters that reverse TOAR to deliver surface reflectance differentially for each
pixel across the image.
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Figure 1. The quality of atmospheric correction can be judged by image clarity and color balance.
Landsat-8 image of Kelowna, British Columbia, 8 August 2021, portrayed in true color: (a) uncorrected
TOAR, (b) CMAC corrected, and (c) LaSRC corrected.

This paper does not specifically address solar angle or pointing direction, which
inevitably lead to adjustment of the signal correction: these use cases await further in-
vestigation. However, given that the atmospheric effect is evaluated as a lump-sum “see
it—correct it” approach, such effects may be partially controlled without additional consid-
eration. Solar angle and path length through variable levels of atmospheric aerosol affect
target irradiance, and this correction is planned to be approached through future empirical
measurements.

2. Materials and Methods

CMAC is a recently developed method intended for atmospheric correction of smallsat
images. Sentinel-2 data were used as the research and development testbed for CMAC.
The process flow applies image reflectance in two steps that map and then reverse the
atmospheric effect spatially.

The first step estimates the atmospheric effect based on the remarkably stable blue
band reflectance properties of vegetation. Using a reference crop, alfalfa, and image
extraction and sampling, the top-of-atmosphere reflectance (TOAR) was modeled based on
the sampled VNIR spectral band responses. In application, the model is applied through
grid sampling of VNIR spectral bands that predict the TOAR blue band response. Because
the atmospheric model works with scene statistics, it supports surface retrieval in near
real time without other inputs. When displayed as an image, the output of this initial step
produces a grayscale whose brightness is applied to adjust the degree of correction.

In a second step, the CMAC processing reverses the atmospheric effect using a concep-
tual model that captures our observation of reflectance behavior under increasing aerosol
loading: TOAR reflectance for dark targets increases due to backscatter and for bright
targets decreases due to attenuation. This response is a bandwise linear continuum from
dark to bright reflectance encoding the deviation from surface reflectance as a line for all
pixels under a set atmospheric condition. The slopes and offsets of linear response are
calibrated for each band of a satellite that then enables efficient reversal of the atmospheric
effect to deliver the original surface reflectance. These steps and how they were developed
are described in Appendix A, and the interested reader can also consult previous journal
papers [1,2] for additional information.
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This investigation applies an earlier comparison of CMAC to LaSRC (version LPGS_15.5.0)
for 31 relatively clear Landsat-8 and -9 images of five AOIs of warehouse/industrial districts
in Southern California (SoCal) known to have consistent surface reflectance [2]. In that anal-
ysis, the average cumulative distribution functions (CDFs) for these two disparate methods
agreed to such a close extent that they plotted virtually atop one another (Figure 2). Those
paired datasets are employed here as surrogate estimates of surface reflectance. As can be
followed through an annotated spreadsheet in Appendix B, averaging and interpolating
the values for CDF extractions from the 31-image cohort were used to construct datasets for
CMAC and LaSRC comparison. This pairing found the same atmospheric conditions and
the same TOAR input from completely different environments than SoCal, where these
methods were in close agreement. The high dark-to-bright dynamic range of reflectance in
the SoCal dataset is an important distinction, because the AOIs selected for comparison of
method reliability have extremely low dark-to-bright dynamic spectral range.
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Figure 2. Bandwise reflectance CDFs for the four VNIR bands averaged for all 31 images of Landsat-8
and -9 of TOAR, CMAC, and LaSRC treatments extracted from AOIs in two Southern California
municipalities. The resulting curves show nearly complete agreement between CMAC and LaSRC.
High dynamic spectral range, dark to bright, for each band is demonstrated by the wide range of
extracted reflectance values.

Landsat-8 and -9 data were not considered separately given the close agreement of
these paired satellites [4]. LaSRC applies a radiative transfer (RadTran)-based workflow
that is documented in readily attainable remote sensing literature that readers are urged
to consult [5,6]. RadTran calculations account for the various reflectance, absorbance,
transmittance, etc., components to estimate the amount of light and radiance measured by
the sensor.

Two locations were selected for analysis of method reliability, both with extremely
low dark-to-bright dynamic spectral range, very different from other areas where CMAC
has been calibrated or applied. No specific selection criteria were considered for these
two locations other than their low dark-to-bright spectral diversity being notably difficult
for RadTran-based atmospheric correction. The first AOI investigated was located just
west of Lake Newell, Alberta, Canada, and was chosen to represent shortgrass prairie, a
vegetation cover occupying a band of semiarid climate that runs north to south for over
2000 km across the United States and Canada. After appreciating the results from Lake
Newell, a second site adjacent to the El Pinacate volcanic uplands in Sonora, Mexico, was
chosen for confirmation. El Pinacate represents a profound desert of exposed sand, with
sparse, widespread shrubby trees constituting less than three percent cover within the AOI
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investigated; such profound deserts are found in significant proportions of South America,
Asia, Africa, and Australia. Shapefiles were mapped to enclose homogeneous cover for
both AOIs (Figure 3). A regional view from the 4 July 2022 Landsat-8 El Pinacate region in
Appendix C provides a wider view of the TOAR, CMAC-corrected, and LaSRC-corrected
examples and further context for atmospheric correction over deserts with low dynamic
spectral reflectance, contrasting with adjacent areas surrounding the Gulf of California
shore exhibiting high dynamic spectral reflectance.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

widespread shrubby trees constituting less than three percent cover within the AOI inves-
tigated; such profound deserts are found in significant proportions of South America, 
Asia, Africa, and Australia. Shapefiles were mapped to enclose homogeneous cover for 
both AOIs (Figure 3). A regional view from the 4 July 2022 Landsat-8 El Pinacate region 
in Appendix C provides a wider view of the TOAR, CMAC-corrected, and LaSRC-cor-
rected examples and further context for atmospheric correction over deserts with low dy-
namic spectral reflectance, contrasting with adjacent areas surrounding the Gulf of Cali-
fornia shore exhibiting high dynamic spectral reflectance. 

 
Figure 3. AOIs of Lake Newell (L8, 5 August 2023; top) and El Pinacate (L8, 4 July 2022; bottom) 
shown for three treatments: (a) TOAR; (b) CMAC; and (c) LaSRC. The area inside the Lake Newell 
AOI is 27.46 km2 and 12.62 km2 for the El Pinacate AOI. 

Three Landsat-8 and -9 images were selected for each AOI from the Landsat archives 
and downloaded as both uncorrected and LaSRC-corrected (by version LPGS_15.5.0) im-
ages from Earth Explorer (Table 1). These six images were corrected by CMAC v1.1L and 
calibrated for Landsat-8/9 application; the same processing was also applied in the previ-
ous CMAC-to-LaSRC comparison [2]. The dataset to test the null hypothesis was con-
structed through back comparison to the SoCal datasets from AOIs with quasi-invariant 
reflectance, where CMAC and LaSRC showed close agreement. Any of the five SoCal AOIs 
would work for this application, because the 31 images were affected by a relatively mod-
erate atmospheric effect, and because these two disparate methods resulted in virtually 
the same corrected data distributions per AOI. Two were selected, Fontana and Rochester, 
whose reflectance distributions are shown in Figure 2. Since the true surface reflectance is 
unknown, and there were slight differences between CMAC and LaSRC in the SoCal re-
sults, this analysis regarded the SoCal surface reflectance estimates as most appropriate 
for application as the atmospheric correction method: CMAC for CMAC and LaSRC for 
LaSRC. This ensured that the choice of datasets did not bias the results. For these compar-
isons, Atm-I was applied to measure the atmospheric effect rather than the aerosol optical 
thickness ancillary data applied in LaSRC from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) [7]; however, the LaSRC datasets downloaded from Earth 

Figure 3. AOIs of Lake Newell (L8, 5 August 2023; top) and El Pinacate (L8, 4 July 2022; bottom)
shown for three treatments: (a) TOAR; (b) CMAC; and (c) LaSRC. The area inside the Lake Newell
AOI is 27.46 km2 and 12.62 km2 for the El Pinacate AOI.

Three Landsat-8 and -9 images were selected for each AOI from the Landsat archives
and downloaded as both uncorrected and LaSRC-corrected (by version LPGS_15.5.0) im-
ages from Earth Explorer (Table 1). These six images were corrected by CMAC v1.1L
and calibrated for Landsat-8/9 application; the same processing was also applied in the
previous CMAC-to-LaSRC comparison [2]. The dataset to test the null hypothesis was
constructed through back comparison to the SoCal datasets from AOIs with quasi-invariant
reflectance, where CMAC and LaSRC showed close agreement. Any of the five SoCal
AOIs would work for this application, because the 31 images were affected by a relatively
moderate atmospheric effect, and because these two disparate methods resulted in virtually
the same corrected data distributions per AOI. Two were selected, Fontana and Rochester,
whose reflectance distributions are shown in Figure 2. Since the true surface reflectance
is unknown, and there were slight differences between CMAC and LaSRC in the SoCal
results, this analysis regarded the SoCal surface reflectance estimates as most appropriate
for application as the atmospheric correction method: CMAC for CMAC and LaSRC for
LaSRC. This ensured that the choice of datasets did not bias the results. For these com-
parisons, Atm-I was applied to measure the atmospheric effect rather than the aerosol
optical thickness ancillary data applied in LaSRC from the Moderate Resolution Imaging
Spectroradiometer (MODIS) [7]; however, the LaSRC datasets downloaded from Earth
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Explorer were generated with the workflow that applies MODIS AOT for assessment of
atmospheric effect [5,6].

Table 1. Data for the six Landsat-8 and -9 images that were selected for this analysis.

AOI Path/Row Landsat Image Date Median Atm-I Matched With Match Atm-I Avg

Lk Newell

040/025 L9 7-29-2023 924 Fontana 924

040/026 L8 8-06-2023 1044 Fontana 1044

040/027 L9 8-14-2023 920 Rochester 920

El Pinacate

038/038 L8 6-02-2022 965 Fontana 965

038/039 L8 7-04-2022 965 Fontana 965

038/040 L9 8-29-2022 983 Fontana 983

Pixel values for the blue, green, red, and NIR bands were extracted from within the
AOI polygons shown in Figure 3 and exported to spreadsheets for analysis. Reflectance
distributions from each image for three treatments (i.e., TOAR and corrected CMAC and
LaSRC) were extracted and represented as CDFs in 21 percentiles from 1% to 3% and in
5-percentile steps between 5% and 95%. Data for the Rochester AOI were matched with the
8-14-2023 Lake Newell image to check for bias from selection of the SoCal AOI; none was
found in comparison to data for the Fontana AOI, which was matched with the other five
images (Table 1).

Construction of the dataset for testing the null hypothesis began by finding the Atm-I
of multiple images of the SoCal datasets whose averages equaled the median Atm-I’s
from the images selected for Lake Newell and El Pinacate. The individual values of the
21 percentile steps for the distributions are arrayed in columns in the spreadsheets, one
column per image, ranked by increasing Atm-I. This format facilitated averaging image
values to support the comparisons by pairing the experimental image TOAR, CMAC, and
LaSRC values with the corresponding averaged values for the SoCal images.

Appendix B provides portions of the combined 29 July 2023 Lake Newell and Fontana
datasets that were reformatted and annotated to support explanation of the workflow to
identify values for the three defining properties of the null hypothesis: (1) Atm-I conditions
in the SoCal dataset were selected whose averages equaled the experimental datasets,
thereby achieving the same atmospheric conditions; (2) interpolation to identify the exact
TOAR and its percentile position in each of the six experimental images to match the
SoCal TOAR input for atmospheric correction; and (3) identifying the corresponding atmo-
spherically corrected output values from the SoCal dataset for testing the null hypothesis.
Interrelating the TOAR data and the surface reflectance calculated from this data was ac-
complished within each dataset using their percentile positions. The 7-29-2023 Lake Newell
spreadsheet contained in the Supplementary Materials can be compared to Appendix C to
assist in following the calculation workflow.

The error for the atmospherically corrected data was estimated by treating the Fontana-
and Rochester-corrected surface reflectance estimates as the standard to assess CMAC and
LaSRC error: % error = 100 × (value − standard)/standard. This comparison was judged
to be valid because the atmospheric correction results for the spectrally diverse SoCal AOIs
were accepted as surrogate surface reflectance. The “value” in this formula represents the
Lake Newell and El Pinacate surface reflectance estimates.

This statistical distribution-based workflow was repeated for all four bands for each
Lake Newell and El Pinacate image. In this manner, a series of common TOAR values, and
the CMAC and LaSRC surface reflectances estimated from them, were interpolated from
these two datasets.
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3. Results

Spreadsheets, software, image lists CDFs for the four bands of the three treatments
of the three images per AOI afford a comprehensive look at the responses per correction
method (Figure 4). The TOAR CDFs for Lake Newell illustrate diverse reflectance due
to the vegetated shortgrass prairie in comparison to El Pinacate, where the reflectance
remained consistent for the ground surface virtually devoid of perennial vegetation.
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Figure 4. Extracted reflectance by treatment, with dot, dash, and solid patterns that identify each
image evaluated by the two methods. Other than TOAR for Lake Newell, the bands in the graphs
stack from left to right according to increasing wavelength: blue, green, red and NIR. Both AOIs have
very low spectral dynamic range compared to Figure 2 and plot here as almost vertical lines.

The extremely low variability of the El Pinacate distributions in Figure 4 illustrates
several trends. The CMAC-corrected bands have greater spacing and are positioned left of
LaSRC. All three treatments portray red reflectance distributions as having less coherence.

The Lake Newell CMAC distributions are tighter than LaSRC. The unexpected discrep-
ancy for NIR observed in the Lake Newell data was due to rain prior to the 14 August 2023
image, which was investigated and confirmed as described in Appendix E. Lake Newell
LaSRC CDFs for the highest atmospheric effect 6 August 2023, 1044 (versus 920s for the
other two dates) are displaced rightward. This discrepancy is an indication that the increase
of Atm-I from 920s to 1044 resulted in under-correction by LaSRC; an interpretation based
on the fact that atmospheric correction reduces the brightening effect of backscatter by
moving the CDFs to the left. Hence under-correction results in the 6 August 2023 image
being displaced rightward in relation to the corrected images from 29 July 2023 and 14
August 2023. The CMAC corrections of the visible bands were unaffected by Atm-I and
maintain consistency and close agreement, as would be expected for the reflectance of
midsummer shortgrass prairie when vegetation growth is essentially static.

Figure 5 presents the bandwise Lake Newell CDFs plotted with the surface reflectance
points reconstructed from the SoCal AOIs identified through the workflow described earlier.
For all bands, the reconstructed SoCal surface reflectance points of CMAC lie on the CDFs
for Lake Newell. Many of the LaSRC points reconstructed in the same workflow, also lie
on or close to the Lake Newell CDFs, partially corroborating that CMAC provides accurate
surface reflectance estimates, though disagreeing with the LaSRC CDFs. Thus, for the
Lake Newell comparisons, the null hypothesis that CMAC provides output equivalent to
the surface reflectance surrogate dataset of SoCal is accepted. Judged by the data plots in
Figure 5, any error between the SoCal and the Lake Newell datasets was slight.
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In contrast to CMAC results, the points displayed for LaSRC reconstructed from the
SoCal dataset TOAR values disagree with the Lake Newell reflectance distributions in all
twelve graphic comparisons in Figure 5. The Lake Newell analysis was performed first.
The analysis for the El Pinacate AOI was initiated to verify the same relationships for a
different environment, one of profound aridity and almost no vegetation cover.

The El Pinacate data plotted in Figure 6 confirmed the results from the CMAC visible
band in Figure 5 calculated from the shared SoCal TOAR reflectance values. The Fontana
CMAC surface reflectance estimates lie close to the CMAC El Pinacate surface reflectance
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distributions for blue, green, and red. The SoCal LaSRC points plotted closer to the CMAC
distribution than to the LaSRC El Pinacate distributions. Figure 6 LaSRC NIR points plot
differently than for Lake Newell (Figure 5), instead essentially lying on the reflectance
distribution for El Pinacate TOAR, indicating that virtually no correction for NIR occurred.
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The error for surface reflectance estimation by CMAC and LaSRC was calculated by
treating the surrogate SoCal reflectance values as true surface reflectance, presented in
Tables 2 and 3. For CMAC, the Lake Newell and El Pinacate surface reflectance estimates
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agree well with the SoCal surrogate true surface reflectance; CMAC error was low and
almost evenly distributed between positive and negative values, and hence unbiased.
CMAC results were comparable between the Lake Newell and El Pinacate datasets. The
average absolute value of CMAC surface reflectance error did not exceed 1% for the blue
band, which experienced the greatest error. The average absolute value of LaSRC error for
the Lake Newell shortgrass prairie was severe, around 50% for the blue band. The error for
LaSRC was lower for El Pinacate but still an order of magnitude greater than CMAC. The
error for both CMAC and LaSRC decreased with increasing wavelength.

Table 2. Error calculated for surface reflectance estimation of three images of El Pinacate calculated
from the average of absolute values. Each cell is the error in surface reflectance output from a TOAR
input. This comparison included 21 individual comparisons across the four bands for each method.

El Pinacate
CMAC Average LaSRC Average

6-02-22 7-04-22 8-29-22 Abs. Value 6-02-22 7-04-22 8-29-22 Abs. Value

Blue 1.3% 1.0% 1.0% 14.0% 13.9% 12.4%
−0.6% −0.9% −0.9% 0.98% 12.3% 12.2% 12.1% 13.23%

−0.4% 0.4% −0.3% 1.3% 1.5% 2.5%
Green −0.3% −0.3% −1.0% 0.30% 1.3% 1.1% 3.3% 1.21%

0.1% 0.1% 1.0% 0.5% 0.3% 2.4%

Red −0.3% 0.3% −0.8% 0.80% −2.1% −2.2% −2.5% 1.86%

NIR −0.5% 0.1% 0.6% 0.40% −1.0% −0.1% −0.6% 0.59%

Table 3. Error calculated for surface reflectance estimates for each band of three Lake Newell images.
Overall averages were calculated from absolute values. Each cell is the error in surface reflectance
output from a TOAR input. This comparison included 37 individual comparisons across the four
bands for each method.

Lake
Newell

CMAC Average LaSRC Average
7-29-23 8-06-23 8-14-23 Abs. Value 7-29-23 8-06-23 8-14-23 Abs. Value

0.19% −0.51% 1.10% 58.8% 62.3% 59.7%
Blue −1.29% −0.68% 0.21% 0.61% 40.11% 48.73% 46.82% 50.30%

−0.32% − − 35.63% − −
−0.32% 0.26% 1.32% 26.91% 12.57% 18.67%

Green −0.20% −0.10% −0.01% 0.37% 20.36% 11.95% 16.19% 17.14%
− − 0.37% − − 13.30%

−0.06% 0.31% 0.71% 10.83% 12.70% 11.35%
Red 0.00% 0.33% 0.07% 0.22% 8.50% 10.35% 9.54% 9.96%

−0.07% −0.20% 0.22% 8.36% 8.86% 9.19%

−0.10% 0.19% −0.04% 3.10% 3.10% 3.14%
0.01% −0.01% −0.02% 3.09% 2.58% 3.11%

NIR −0.03% 0.00% −0.03% 0.09% 2.74% 2.31% 2.92% 2.58%
−0.02% −0.37% 0.02% 2.68% 1.78% 2.68%
−0.54% 0.00% 2.84% 2.58%

Sufficient data are presented in the Supplementary Materials to allow the interested
reader to reconstruct and verify the workflow and the results. These include averages,
interpolations, error calculations and spreadsheets. Values derived through this analysis are
summarized in tables within Appendix D. Spreadsheets and shapefiles of the Fontana and
Rochester AOIs are provided along with spreadsheets and shapefiles for the Lake Newell
and El Pinacate AOIs. Cloud-based image browsing, selection, and CMAC correction and
download of Landsat-8/9 and Sentinel-2 VNIR bands can be accessed through a link in
Supplementary Materials.
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4. Discussion

The CMAC surface reflectance estimates for Lake Newell and El Pinacate were within
99% agreement with the CMAC SoCal surrogate surface reflectance estimates in all 58
TOAR-based comparisons across the four VNIR bands (agreement was calculated as 100%
minus the % error). The strong agreement for CMAC results between datasets from widely
diverse environments validates the accuracy and reliability of CMAC processing and of its
constituent assessment of atmospheric effect and the conceptual model-derived workflow
that reverses it. Further corroborating CMAC accuracy is the observation that the LaSRC
surface reflectance in Figures 5 and 6 for Lake Newell and El Pinacate lie closer to the
CMAC distributions than to the LaSRC distributions, in many cases plotting atop the
CMAC SoCal points.

The CMAC data demonstrate accuracy independent of the dynamic spectral range
(highest minus lowest reflectance values): the SoCal AOIs had extremely wide ranges of
values (Figure 2), while the spectral ranges for Lake Newell and El Pinacate were extremely
narrow (Figure 4). For the clear to moderately hazy conditions examined here, the null
hypothesis is accepted: CMAC analyses produced the same surface reflectance estimates
from the same TOAR input under the same atmospheric conditions despite differences in
the two terrestrial environments examined.

The LaSRC analysis demonstrated surface reflectance estimates with average agree-
ment as low as 50%; hence, the null hypothesis is rejected—LaSRC was not reliable for
estimation of surface reflectance across the two environments. This discrepancy may be
related to the low dynamic spectral range of the Lake Newell and El Pinacate locations;
however, this issue is more complicated because the same bandwise dynamic spectral
ranges were comparable between these two experimental AOIs, but the degree of error for
Lake Newell was about four times that of the El Pinacate error.

Atmospheric correction of satellite imagery by LaSRC, widely viewed as the state of
the art in radiative transfer application for EO imagery, is proposed as the basis for smallsat
atmospheric correction through a cross-calibration process with harmonized data from
Landsat-8/9 and Sentinel-2 [8,9]. However, reliance upon LaSRC for smallsat applications
can be expected to incorporate the same problems that reduce LaSRC accuracy. These
problems include the loss of accuracy at higher levels of Atm-I that was found for LaSRC
under conditions of increasing haze from wildfire [2], and from these results, the lack of
reliable accuracy, hypothetically related to low-spectral-diversity environments.

CMAC is a unique pathway for atmospheric correction, and its testing here and in the
previous two journal papers shows that its performance is more accurate over a wider range
of atmospheric effects than Sen2Cor and LaSRC. Rather than delaying surface reflectance
output while waiting for ancillary data, CMAC can process images immediately upon
download from the satellite, because the only input for surface reflectance correction is
from the image itself. Due to its robust and simple mathematical structure, CMAC can
readily be calibrated for Smallsat application for any VNIR band combination due to its
robust mathematical structure. CMAC will be adapted to correct data from hyperspectral
sensors in a next-generation program that will include improving the accuracy of the Atm-I
model, reliable overwater correction, and development/application of a calibration target
and the technology to apply it under automation.

The greatest source of uncertainty in the CMAC workflow is the measure of atmo-
spheric effect, Atm-I. While Atm-I can be shown to be far more sensitive than the ancillary
data currently in use by LaSRC from MODIS [2], it was generated by a static assumption of
reflectance of a reference crop rather than actual reflectance measurements. The key to this
upgrade is extensive groundtruth. Likewise, extensive groundtruth will also permit spec-
tral modeling to isolate and remove the specular reflectance component of water surfaces
that could yield accurate water-leaving reflectance. Though CMAC generally performs
well over water, the overarching effect of image geometry has not yet been characterized.

Calibration is the key for application of surface reflectance retrieval. This step is
presently performed vicariously, requiring the use of master images of Sentinel-2 compared
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to proxy images from smallsats. Even though these steps are automated, this program is in-
efficient because it requires visual assessment steps to ensure accuracy. Vicarious calibration
can be replaced by a workflow that employs a well-engineered, constructed, managed, and
monitored calibration target. Such a target is expected to yield greater precision, accuracy,
and automation for CMAC calibration. The benefit of periodic automated calibration is
that it allows detection and compensation of episodic in-orbit radiation-related sensor
degradation [10].

5. Conclusions

This investigation confirms that CMAC provides reliable surface reflectance retrieval
for all environments. When judged by the appearance of many varied images, CMAC
accurately corrected all terrestrial environments, including deserts, arctic and alpine tundra,
tropical and temperate forests, savannahs, grasslands, and farmland on six continents.
CMAC also produced excellent results over the ocean, as can be seen in Appendix B
Smallsats can be calibrated readily for direct application of CMAC without incorporating
the additional uncertainty of ancillary data.

6. Patents

Currently, one CMAC patent is granted. Two additional patent applications are
pending before the US Patent Trade Office, with one of these filed internationally through
the Patent Cooperation Treaty (International Search Report—language approved as filed).

Supplementary Materials: The following supporting information can be downloaded from https://
www.mdpi.com/article/10.3390/rs16122216/s1: “Live” Excel workbooks for the Fontana, Rochester,
El Pinacate, and Lake Newell locations; collations for bandwise CDFs for the two experimental loca-
tions; and the shapefiles of the four locations to facilitate data extraction. Sentinel-2 and Landsat-8/9
images can be browsed, selected, and corrected by the user at https://strato.advancedremotesensing.
com/app (accessed on 21 April 2024).
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Appendix A. Brief Description of CMAC Workflow

Appendix A.1. Atmospheric Effect Mapped as a Grayscale

The first CMAC step employs the spatially discrete spectral band statistics from the
scene as input to a model that assesses the atmospheric effect in images. The Atm-I model
was developed using dense dark vegetation (DDV) measured by field spectrometry to

https://www.mdpi.com/article/10.3390/rs16122216/s1
https://www.mdpi.com/article/10.3390/rs16122216/s1
https://strato.advancedremotesensing.com/app
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establish a standard value for a ubiquitous index crop. This crop was identified and
sampled under a wide range of atmospheric and surface cover conditions that resulted
in a robust scene-based statistical model [1]. Application of the Atm-I model generates a
grayscale map that expresses the degree of effect across the image as a numerical scalar for
the correction needed to return each pixel’s TOAR to its original surface reflectance.

Appendix A.2. Reversing the Mapped Atmospheric Effect to Deliver Surface Reflectance

The second CMAC step reverses the atmospheric effect based on a conceptual model
derived from an observed phenomenon that initially prompted CMAC development. For a
hazy and clear pair of TOAR images over an AOI whose surface reflectance has remained
relatively consistent, the CDFs will vary systematically, as shown in Figure A1. Imposition
of increasing aerosol causes the distributions to rotate counterclockwise, and for decreasing
aerosol, clockwise. This observation prompted development of a conceptual model as the
basis for reversal of the atmospheric effect. To facilitate referencing this phenomenon, it
was dubbed the “pinwheel effect”. This conceptualization was valuable only as a first step
in formulating the CMAC approach for atmospheric correction.
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Figure A1. CDFs of two Sentinel-2 spectral bands extracted from an AOI with consistent surface
reflectance across both image snapshots. Arrows show the direction of CDF rotation from increasing
haze. This effect occurs in all VNIR bands.

In the pinwheel effect, increasing dark reflectance in response to increasing haze is due
to aerosol backscatter of light. The decrease of bright reflectance is due to attenuation from
absorption and diffuse shading by aerosol particles. When viewed as CDFs, changing levels
of haze cause the distribution to rotate around an axis point where scatter and attenuation
balance and the value remains unchanged. Subsequent observation indicated that this
axis point migrates rightward with increasing Atm-I, hypothetically due to forward scatter
as a property of the target’s brightness. Target brightness influences the magnitude of
the reflected energy and its interaction with atmospheric aerosol. In the context of EO,
this forward scatter is the illumination of aerosol from below that increases in proportion
to ground target brightness. Forward scatter is still somewhat hypothetical and is the
subject of ongoing focus; however, it may hold the key to detecting and reversing the effect
of specular reflectance over water. The Atm-I model is sensitive to forward scatter and
performs well to remove specular reflectance from water (Appendix).

The application of data distributions was a key factor for the development of CMAC,
since atmospheric correction seeks to return the range of TOAR pixel values to surface
reflectance. CDFs are a robust means to approach the atmospheric correction problem,
since individual pixel values could be correct in a distribution that is incorrect, but not
vice versa. Additionally, the ranked position of any value within reflectance distributions
remains the same through various treatments; hence, mathematically translated values can
be identified afterward by their percentile position in the distribution. This feature enabled



Remote Sens. 2024, 16, 2216 14 of 23

finding equivalent properties for intercomparison of experimental data extracted from very
different environments to test the null hypothesis.

The observed reflectance behavior of Figure A1 was expressed as a graphic model by
inversion and adjustment of the well-known empirical line method [3]. The resulting linear
model in Figure A2 has precedence in a 40-year-old paper by two prominent researchers
(Figure A3).
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atmospheric effect. The dashed line represents all pixels, dark to bright, under one atmospheric effect
for a single spectral band.
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Figure A3. Figure 2, copied from Fraser and Kaufman, 1985 [11]. The solid lines represent common
atmospheric aerosols and are equivalent to the dashed line in Figure 4. Dashed lines represent highly
absorptive carbon particles to illustrate the importance of aerosol absorption upon reflectance.

The conceptual model of Figure 4 was translated into the CMAC equation that reverses
atmospheric effect for each pixel of an image (Equation (A1)). The pinwheel effect of Atm-I
in Figure 2 is represented by the upward/downward blue arrows in Figure 4, which results
in linear deviation of surface reflectance due to the atmospheric effect. Slope and offset
uniquely define any TOAR deviation line and are the parameters applied in Equation (A1)
to reverse the atmospheric effect to retrieve surface reflectance. Slope and offset responses
are unique for each sensor band and are determined through calibration. Presently, calibra-
tion is accomplished through image-to-image methods using a Sentinel-2 CMAC master
calibration that was generated from several years of painstaking effort. Image-to-image
calibration will eventually be replaced with a well-engineered and managed calibration
target, providing increased accuracy and precision so that data from one to several sensor
overpasses can be applied in an automated process. Automated recalibration will guard
against episodic radiation-induced sensor changes, well known to occur in orbit [12].

SR = (TOAR − b)/(m + 1) (A1)

where m is slope and b is the offset of the TOAR deviation line.
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Appendix B. Annotated Spreadsheet Explaining Dataset Construction
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tration. Tables of the five images are from the Fontana AOI, whose TOAR values corre-
spond with the TOAR column for the Lake Newell AOI (shaded). Portions of the distribu-
tion are enclosed in boxes defining where the average TOAR of Fontana was found by 
interpolation of the Lake Newell distributions. The process began at A with the selection 
of five sequential images of Fontana, whose median Atm-I values were averaged and 
found to equal the median Atm-I of the Lake Newell AOI. The interpolations of the data 
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which are downloadable from the Supplementary Materials. 

Figure A4. This annotated sample spreadsheet shows the calculation workflow for comparison of
extracted L8 blue band data. Note that the TOAR, CMAC, and LaSRC tables are stacked vertically in
the original spreadsheet but are rearranged here for ease of illustration. Tables of the five images are
from the Fontana AOI, whose TOAR values correspond with the TOAR column for the Lake Newell
AOI (shaded). Portions of the distribution are enclosed in boxes defining where the average TOAR of
Fontana was found by interpolation of the Lake Newell distributions. The process began at A with
the selection of five sequential images of Fontana, whose median Atm-I values were averaged and
found to equal the median Atm-I of the Lake Newell AOI. The interpolations of the data in the shaded
column boxes were performed graphically in the original spreadsheets, which are downloadable
from the Supplementary Materials.
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Appendix C. El Pinacate Region Data Processed by CMAC and LaSRC for Visual
Comparison: The 4 July 2022 Landsat-8 Image Displayed in TOAR, Atm-I, and CMAC
and LaSRC-Corrected Views
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Figure A5. TOAR View of the El Pinacate region. The moderate level of haze obscures ground fea-
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Figure A5. TOAR View of the El Pinacate region. The moderate level of haze obscures ground
features over the desert. Light-colored features of the ocean result from a mix of entrained sediments
in the water column and (hypothetically) from specular reflectance of the sky, This was influenced by
wind, in evidence as streaks from the northwest. The AOI outline from which data were extracted is
shown in red.
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Figure A6. Atm-I grayscale view of the El Pinacate region. This atmospheric model output was ap-
plied to scale the degree of correction removing the atmospheric effect in the 4 July 2022 image: the 
brighter the response, the greater the correction. Of note is the brightness of the grayscale over the 
Sea of Corez, hypothetically induced by specular reflectance. Atm-I is a statistical representation of 
the atmospheric effect and, as such, has lower resolution than the original image; hence, the faint 
streaks from wind effects visible in the TOAR view are smeared in this view. 

Figure A6. Atm-I grayscale view of the El Pinacate region. This atmospheric model output was
applied to scale the degree of correction removing the atmospheric effect in the 4 July 2022 image: the
brighter the response, the greater the correction. Of note is the brightness of the grayscale over the
Sea of Corez, hypothetically induced by specular reflectance. Atm-I is a statistical representation of
the atmospheric effect and, as such, has lower resolution than the original image; hence, the faint
streaks from wind effects visible in the TOAR view are smeared in this view.
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Figure A7. CMAC-corrected view with specular reflectance largely removed from the TOAR view 
of the ocean, patterns of entrained sediments and green-tinted water are now visible. Terrestrial 
features of windblown dunes and the complex hydrology surrounding the bay are visible after 
CMAC processing, though indistinct in the TOAR view. Future research is expected to define a 
relationship for the atmospheric statistical model (Atm-I) measurement of specular reflectance to 
enable reliable atmospheric correction over water. 

Figure A7. CMAC-corrected view with specular reflectance largely removed from the TOAR view
of the ocean, patterns of entrained sediments and green-tinted water are now visible. Terrestrial
features of windblown dunes and the complex hydrology surrounding the bay are visible after CMAC
processing, though indistinct in the TOAR view. Future research is expected to define a relationship
for the atmospheric statistical model (Atm-I) measurement of specular reflectance to enable reliable
atmospheric correction over water.
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Figure A8. LaSRC-Corrected View. Like the CMAC correction, finer features of the image are visible 
after LaSRC correction. Image artifacts over the water are a common feature created by LaSRC cor-
rection. Such artifacts are also visible in the LaSRC view of Figure 1c in the main body of the text. 

  

Figure A8. LaSRC-Corrected View. Like the CMAC correction, finer features of the image are visible
after LaSRC correction. Image artifacts over the water are a common feature created by LaSRC
correction. Such artifacts are also visible in the LaSRC view of Figure 1c in the main body of the text.

Appendix D. Summaries of Spreadsheet Statistics

Data tables for three images for the El Pinacate and Lake Newell AOIs are provided
below. Derivation of these data can be found in the spreadsheets available in the Supple-
mentary Materials. Column 2 presents the TOAR shared values, common among the SoCal,
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El Pinacate, or Lake Newell datasets. Corresponding percentiles for these shared TOAR
values are presented in the third column. Interpolated reflectance values based on shared
TOAR values are provided for SoCal CMAC (cols. 4 and 5) and LaSRC (cols. 7 and 8), and
points are plotted Figures 5 and 6 and summarized in Tables 2 and 3 of the main text body
from cols. 6 and 9.

Table A1. El Pinacate statistics.

1 2 3 4 5 6 7 8 9

6-02-22 Common El Pinacate Fontana El Pinacate CMAC QIA El Pinacate LaSRC
L8 TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

Blue 1880 13.0% 1249 1266 1.3% 1256 1431 14.0%
1964 74.1% 1361 1352 −0.6% 1361 1528 12.3%

2399 1.5% 2308 2301 −0.3% 2333 2362 1.3%
Green 2482 15.0% 2412 2403 −0.4% 2424 2456 1.3%

2559 55.8% 2511 2513 0.1% 2531 2542 0.5%

Red 3613 31.0% 3833 3822 −0.3% 3773 3693 −2.1%

NIR 4471 12.2% 4616 4595 −0.5% 4489 4442 −1.0%

7-04-22 Common El Pinacate Fontana El Pinacate CMAC Fontana El Pinacate LaSRC
L8 TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

Blue 1880 20.0% 1249 1262 1.0% 1256 1430 13.9%
1964 82.0% 1361 1348 −0.9% 1361 1527 12.2%

2399 1.8% 2308 2300 −0.4% 2333 2367 1.5%
Green 2482 19.6% 2412 2405 −0.3% 2424 2451 1.1%

2559 62.9% 2511 2515 0.1% 2531 2538 0.3%

Red 3613 59.4% 3833 3844 0.3% 3773 3689 −2.2%

NIR 4466 23.6% 4616 4659 0.9% 4489 4485 −0.1%

8-29-22 Common El Pinacate Fontana El Pinacate CMAC QIA El Pinacate LaSRC
L9 TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

Blue 1880 19.0% 1249 1250 0.0% 1256 1435 12.4%
1964 82.5% 1361 1335 −1.7% 1361 1533 12.1%

2399 7.0% 2308 2304 −0.3% 2333 2377 2.5%
Green 2482 37.3% 2412 2418 1.0% 2424 2472 3.3%

2559 87.0% 2511 2529 1.0% 2531 2558 2.4%

Red 3613 94.8% 3833 3902 −0.8% 3773 3726 −2.5%

NIR 4541 86.0% 4721 4743 0.5% 4551 4522 −0.6%

Table A2. Lake Newell statistics.

7-29-23 L9 Common Lk Newell Fontana Lk Newell CMAC Fontana Lk Newell LaSRC
TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

1220 2.6% 435 436 0.19% 418 664 58.79%
Blue 1282 43.0% 515 512 −0.55% 540 755 40.01%

1320 82.0% 564 562 −0.32% 605 821 35.63%

1139 14.2% 758 755 −0.32% 742 941 26.91%
Green 1187 57.0% 816 814 −0.20% 833 1002 20.36%

1087 2.3% 932 932 −0.06% 964 1069 10.83%
1156 51.7% 1075 1075 0.00% 1111 1205 8.50%

Red 1282 94.5% 1197 1196 −0.07% 1225 1328 8.36%



Remote Sens. 2024, 16, 2216 21 of 23

Table A2. Cont.

1812 1.4% 1819 1817 −0.10% 1826 1883 3.10%
1913 9.8% 1913 1913 0.01% 1918 1977 3.09%

NIR 2001 34.4% 2006 2005 −0.03% 2009 2064 2.74%
2088 64.3% 2091 2091 −0.02% 2090 2146 2.68%
2243 85.5% 2171 2170 −0.04% 2167 2229 2.84%

8-06-23 L8 Common Lk Newell Fontana Lk Newell CMAC Fontana Lk Newell LaSRC
TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

1412 6.6% 488 485 −0.51% 446 725 62.31%
Blue 1470 82.7% 567 563 −0.68% 594 883 48.73%

1245 8.7% 738 740 0.26% 881 992 12.57%
Green 1310 78.1% 827 826 −0.10% 980 1097 11.95%

1249 1.5% 943 946 0.31% 997 1124 12.70%

1308 10.3% 1018 1021 0.33% 1072 1183 10.35%

Red 1419 87.2% 1164 1162 −0.20% 1216 1324 8.86%

1940 1.0% 1823 1827 0.19% 1845 1903 3.10%
2056 15.9% 1959 1958 −0.01% 1971 2022 2.58%

NIR 2150 50.8% 2067 2067 0.00% 2069 2117 2.31%
2230 80.1% 2159 2151 −0.37% 2156 2201 2.10%

8-14-23 L9 Common Lk Newell Fontana Lk Newell CMAC Fontana Lk Newell LaSRC
TOAR Percentile CMAC CMAC % Error LaSRC LaSRC % Error

1227 5.1% 450 455 1.10% 444 710 59.70%
Blue 1265 30.4% 498 499 0.21% 511 751 46.82%

1078 1.8% 687 696 1.32% 748 888 18.67%
1125 13.5% 746 746 −0.01% 808 939 16.19%

Green 1221 88.2% 862 865 0.37% 930 1053 13.30%

1171 2.6% 948 955 0.71% 981 1093 11.35%
1275 45.3% 1069 1070 0.07% 1100 1205 9.54%

Red 1369 91.7% 1177 1179 0.22% 1201 1312 9.19%

1808 1.8% 1709 1708 −0.04% 1725 1780 3.14%
1897 12.2% 1803 1803 −0.02% 1818 1874 3.11%

NIR 1967 34.0% 1878 1877 −0.03% 1890 1946 2.92%
2032 61.1% 1947 1947 0.02% 1959 2012 2.68%
2096 82.2% 2015 2015 0.00% 2025 2077 2.58%
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Appendix E. Why the Disconnect for the 14 August 2023 NIR Band CDF?
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Figure A9. Change detection confirmed rainfall prior to 14 August, visible as a darkened smear to 
the west of Lake Newell. Figure 5 provides a color reference for the 6 August 2023 image. This anal-
ysis was performed to confirm the validity of the extracted NIR values to explain why the 14 August 
NIR results did not conform with the other two dates in Figure 4. The linear features that cross the 
area west of Lake Newell are gravel roads (confirmed on Google Earth) that drain rapidly and dry 
much quicker than the surrounding prairie. The prominence of these roads on the change detection 
image confirms that the darker area is not an atmospheric issue. Lakes appear black here because 
the TOAR reflectance was elevated due to haze (higher Atm-I); they are brighter on the 6 August 
image. 

Steps in this image analysis were as follows: 
1. Subtract the 6 August 2023 NIR raster from the 14 August 2023 NIR raster. Minimum 

and maximum display values were selected to accentuate the display of wetter con-
ditions guided by the magnitude of the differences visible for NIR in Figure 4. 

2. The resulting dark pattern was then compared against other variables across the AOI 
to ensure that this pattern was not explainable by some other image property—none 
were found. 

3. The analysis supports the conclusion that the AOI received rainfall from a localized 
thunderstorm, likely within several days prior to 14 August. 

  

Figure A9. Change detection confirmed rainfall prior to 14 August, visible as a darkened smear to the
west of Lake Newell. Figure 5 provides a color reference for the 6 August 2023 image. This analysis
was performed to confirm the validity of the extracted NIR values to explain why the 14 August NIR
results did not conform with the other two dates in Figure 4. The linear features that cross the area
west of Lake Newell are gravel roads (confirmed on Google Earth) that drain rapidly and dry much
quicker than the surrounding prairie. The prominence of these roads on the change detection image
confirms that the darker area is not an atmospheric issue. Lakes appear black here because the TOAR
reflectance was elevated due to haze (higher Atm-I); they are brighter on the 6 August image.

Steps in this image analysis were as follows:

1. Subtract the 6 August 2023 NIR raster from the 14 August 2023 NIR raster. Mini-
mum and maximum display values were selected to accentuate the display of wetter
conditions guided by the magnitude of the differences visible for NIR in Figure 4.

2. The resulting dark pattern was then compared against other variables across the AOI
to ensure that this pattern was not explainable by some other image property—none
were found.

3. The analysis supports the conclusion that the AOI received rainfall from a localized
thunderstorm, likely within several days prior to 14 August.
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