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Abstract: We propose a novel unsupervised semantic segmentation method for fast and accurate flood
area detection utilizing color images acquired from unmanned aerial vehicles (UAVs). To the best of
our knowledge, this is the first fully unsupervised method for flood area segmentation in color images
captured by UAVs, without the need of pre-disaster images. The proposed framework addresses
the problem of flood segmentation based on parameter-free calculated masks and unsupervised
image analysis techniques. First, a fully unsupervised algorithm gradually excludes areas classified
as non-flood, utilizing calculated masks over each component of the LAB colorspace, as well as using
an RGB vegetation index and the detected edges of the original image. Unsupervised image analysis
techniques, such as distance transform, are then applied, producing a probability map for the location
of flooded areas. Finally, flood detection is obtained by applying hysteresis thresholding segmentation.
The proposed method is tested and compared with variations and other supervised methods in two
public datasets, consisting of 953 color images in total, yielding high-performance results, with 87.4%
and 80.9% overall accuracy and F1-score, respectively. The results and computational efficiency of
the proposed method show that it is suitable for onboard data execution and decision-making during
UAV flights.

Keywords: flood detection; image segmentation; remote sensing; unmanned aerial vehicle (UAV);
unsupervised segmentation

1. Introduction

Natural disasters have historically exerted profound and far-reaching impacts on
humanity. Recently, climate change has intensified weather phenomena, exacerbating the
frequency and severity of natural disasters. Sudden and massive rainfall in mid-summer
triggers devastating floods, while dry conditions paired with unseasonal strong winds
ignite uncontrollable wildfires. Additionally, the occurrence of powerful earthquakes,
volcanic eruptions, and hurricanes has surged. These disasters result in significant loss of
life and property, disrupt essential services, such as water supply, electricity, and transporta-
tion, and pose serious health risks. The economic and psychological impacts on affected
populations are enormous [1].

The extent of damage caused by natural disasters is heavily influenced by the readiness
and risk reduction strategies of a region, which can vary significantly over time. Floods and
hurricanes inflict the greatest damage. The spatial distribution of these disasters is uneven,
with notable patterns in the relative distribution of disaster types and their occurrences
across continents. Specifically, floods account for 32% of disasters, tropical storms for 32%,
earthquakes for 12%, droughts for 10%, and other disasters for 14%. Geographically, Asia
experiences the highest share at 38%, followed by the Americas at 26%, Africa and Europe
each at 14%, and Oceania at 8% [2]. These statistics underscore the critical importance of
tailored disaster preparedness and mitigation efforts across different regions.

Efforts to mitigate the impact of natural disasters include early warning systems,
improved infrastructure resilience, disaster preparedness education, and international
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cooperation for humanitarian assistance. Preparedness and response strategies are crucial
to minimize the human toll and to facilitate faster recovery from such events. Natural
disaster detection systems contribute to early warning, risk reduction, efficient resource
allocation, and community preparedness. Using technology and global cooperation, these
systems play a vital role in minimizing the impact of disasters on both human populations
and the environment.

Technological advancements and collaborative technologies contribute to the sharing
of disaster information benefiting from different types of media. Deep learning (DL)
algorithms show promise in extracting knowledge from diverse data modalities, but their
application in disaster response tasks remains largely academic. Systematic reviews have
evaluated the successes, challenges, and future opportunities of using DL for disaster
response and management [3], while also examining machine learning (ML) approaches [4],
offering guidance for future research to maximize benefits in disaster response efforts. In
this work, we specifically focus on flood segmentation. The relevant research undertaken is
presented below, with a summary provided in Table 1.

Table 1. A brief overview of the research for this article, depicting approach (supervised, unsuper-
vised), modality, and method.

Authors Year Approach Imagery Method

Chouhan, A. et al. [5] 2023 Supervised Sentinel-1 Multi-scale ADNet

Drakonakis, G.I. et al.
[6] 2022 Supervised Sentinel-1, 2 CNN change detection

Dong, Z. et al. [7] 2023 Supervised Sentinel-1 STANets, SNUNet, BiT

Hänsch, R. et al. [8] 2022 Supervised HR satelite RGB U-Net

He, Y. et al. [9] 2024 Weakly-
supervised

HR aerial RGB End-to-end WSSS framework
structure constraints and self-distillation

Hernández, D. et al.
[10] 2021 Supervised UAV RGB Optimized DNN

Hertel, V. et al. [11] 2023 Supervised SAR BCNN

Ibrahim, N. et al. [12] 2021 Semi-
supervised

UAV RGB RGB and HSI color models,
k-means clustering, region growing

Inthizami, N.S. et al.
[13] 2022 Supervised UAV video Improved ENet

Li, Z. et al. [14] 2023 Supervised Sentinel-1 U-Net

Lo, S.W. et al. [15] 2015 Semi-
supervised

RGB (Surveillance
camera)

HSV color model,
seeded region growing

Munawar, H.S. et al.
[16] 2021 Supervised UAV RGB Landmark-based feature selection,

CNN hybrid

Park, J.C. et al. [17] 2023 Supervised HR satelite RGB Swin transformer in a Siamese-UNet

Rahnemoonfar, M. et al.
[18] 2021 Supervised UAV RGB InceptionNetv3, ResNet50, XceptionNet,

PSPNet, ENet, DeepLabv3+

Şener, A. et al. [19] 2024 Supervised UAV RGB ED network with EDR block and
atrous convolutions (FASegNet)

Shastry, A. et al. [20] 2023 Supervised WorldView 2, 3
multispectral CNN with atrous convolutions

Wang, L. et al. [21] 2022 Supervised True Orthophoto
(near infrared), DSM Swin transformer and DCFAM

Wieland, M. et al. [22] 2023 Supervised Satelite and aerial U-Net model with MobileNet-V3
backbone pre-trained on ImageNet
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Table 1. Cont.

Authors Year Approach Imagery Method

Bauer-Marschallinger,
B. et al. [23]

2022 Unsupervised SAR Datacube, time series-based
detection, Bayes classifier

Filonenko, A. et al. [24] 2015 Unsupervised RGB (surveillance
camera)

Change detection, color
probability calculation

Landuyt, L. et al. [25] 2020 Unsupervised Sentinel-1, 2 K-means clustering, region growing

McCormack, T. et al. [26] 2022 Unsupervised Sentinel-1 Histogram thresholding,
multi-temporal and contextual filters

Trombini, M. et al. [27] 2023 Unsupervised SAR Graph-based MRF segmentation

DL methods are increasingly applied to remote sensing imagery to address the limi-
tations of traditional flood mapping techniques. Convolutional layer-based models offer
improved accuracy in capturing spatial characteristics of flooding events, while fully
connected layer-based models show promise when coupled with statistical approaches.
Remote sensing analysis, multicriteria decision analysis, and numerical methods are re-
placed with DL models for flood mapping in which flood extent or flood inundation maps,
susceptibility maps, and flood hazard maps determine, categorize, and characterize the
disaster, respectively [28]. Furthermore, in a recent review, current DL approaches for
flood forecasting and management are critically evaluated, highlighting their advantages
and disadvantages. The challenges with data availability and potential future research
directions are examined. The current state of DL applications in this area is fully evaluated,
showing that they are a powerful tool to improve flood prediction and control [29].

Convolutional neural networks (CNNs) have proved to be effective in flood detection
using satellite imagery. High-quality flood maps are generated with the help of temporal
differences from various sensors after CNNs identify changes between permanent and
flooded water areas using synthetic aperture radar (SAR) and multispectral images [6,7].
In addition, Bayesian convolutional neural networks (BCNNs) have been recommended
to quantify the uncertainties associated with SAR-based water segmentation, because of
their greater flexibility to learn the mean and the spread of the parameter posterior [11].
Also, a CNN employed to automatically detect inundation extents using the Deep Earth
Learning, Tools, and Analysis (DELTA) framework demonstrated high precision and recall
for water segmentation despite a diverse training dataset. Finally, the effects of surface
obstruction due to the inability of optical remote sensing data to observe floods under
clouds or flooded vegetation are quantified, suggesting the integration of flood models to
improve segmentation accuracy [20].

The efficacy of CNNs in semantically segmenting water bodies in highly detailed
satellite and aerial images from various sensors, with a focus on flood emergency response
applications, is assessed by combining different CNN architectures with encoder backbones
to delineate inundated areas under diverse environmental conditions and data availabil-
ity scenarios. A U-Net model with a MobileNet-V3 backbone pre-trained on ImageNet
consistently performed the best in all scenarios tested, while the integration of additional
spectral bands, slope information from digital elevation models, augmentation techniques
during training, and the inclusion of noisy data from online sources further improved
model performance [22]. U-Nets and their variations have been widely used to tackle
the problems of water bodies segmentation and flood extent extraction. In [14], another
adjusted U-Net was proposed. With carefully selected parameters and training with pre-
processed Sentinel-1 images for three-category classification, the proposed method was
able to distinguish flood pixels from permanent water and background.

Since rapid damage analysis and fast coordination of humanitarian response during
extreme weather events are crucial, flood detection, building footprint detection, and
road network extraction have been integrated into an inaugural remote sensing dataset
called SpaceNet 8 and a homonym challenge has been launched. The provided satellite
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imagery posed real-world challenges, such as varying resolutions, misalignment, cloud
cover, and lighting conditions. Top performing DL approaches focusing on multi-class
segmentation showed that swiftly identifying flooded infrastructures, such as buildings
and roads, can significantly shorten response times. Simple U-Net architectures yielded the
best balance of accuracy, robustness, and efficiency, with strategies such as pre-training and
data augmentation proving crucial to improve model performance [8].

In Ref. [13], an improved efficient neural network architecture (ENet) was the choice
to segment the UAV video of flood disaster. The proposed method consists of atrous
separable convolution as the encoder and depth-wise separable convolution as the decoder.
In Ref. [5], a multiscale attentive decoder-based network (ADNet) designed for automatic
flood identification using Sentinel-1 images outperformed recent DL and threshold-based
methods when validated on the Sen1floods11 benchmark dataset. Through detailed ex-
perimentation on various dataset settings, ADNet demonstrated effective delineation of
permanent water, flood water, and all water pixels using both co-polarization (VV) and
cross-polarization (VH) inputs from Sentinel-1 images.

Transformers have also been successfully applied for semantic segmentation in remote
sensing images. A novel transformer-based scheme employing the Swin Transformer
as the backbone to better capture context information and a densely connected feature
aggregation module (DCFAM) serving as a novel decoder to restore resolution and generate
accurate segmentation maps proved to be effective in the ISPRS Vaihingen and Potsdam
datasets [21]. An improved transformer-based multiclass flood detection model capable of
predicting flood events while distinguishing between roads and buildings was introduced,
which, with an additional novel loss function and a road noise removal algorithm, achieved
superior performance, particularly in road evaluation metrics such as APLS [17]. Finally, the
Bitemporal image Transformer (BiT) model scored highest in a change detection approach
that better captures the changed region [7].

Dilated or atrous convolutions, which increase the network’s receptive field and
reduce the number of trained parameters needed [30], are utilized in an effort to speed
up search and rescue operations after natural disasters, such as floods, high tides, and
tsunamis. FASegNet, a novel CNN-based model featuring dilated convolutions, was
specifically designed for flood and tsunami area segmentation. FASegNet utilizes encoder
and decoder networks with an encoder–decoder–residual (EDR) block to effectively extract
local and contextual information. An encoder–decoder high-accuracy activation cropping
(EHAAC) module minimizes information loss at the bottleneck, and skip connections
transfer information between the encoder and decoder networks, outperforming other
segmentation models [19].

A novel weak training data generation strategy and an end-to-end weakly supervised
semantic segmentation (WSSS) method, called TFCSD, challenges urban flood mapping [9].
By decoupling the acquisition of positive and negative samples, the weak label generation
strategy significantly reduces the burden of data labeling, enabling quick flood mapping
in emergencies. Additionally, the proposed TFCSD method improves edge delineation
accuracy and algorithm stability compared to other methods, especially in emergency
scenarios where pre-disaster river data are accessible, or when using the SAM ([31]) assisted
interactive labeling method if such data are unavailable.

Satellites such as Sentinel-1 and Sentinel-2 play a key role in flood mapping due to their
rapid data acquisition capabilities. Their effectiveness in mapping floods across Europe was
evaluated in a study in which the results indicate that observation capabilities vary based on
the size of the catchment area, and suggest that employing multiple satellite constellations
significantly increases flood mapping coverage [32]. The urgent need for real-time flood
management systems by developing an automated imaging system using unmanned aerial
vehicles (UAVs) to detect inundated areas promptly is addressed, so that emergency relief
efforts will not be hindered by current satellite-based imaging systems, which suffer from
low accuracy and delayed response. By employing the Haar cascade classifier and DL
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algorithms, a hybrid flood detection model combining landmark-based feature selection
with a CNN demonstrated improved performance over traditional classifiers [16].

Specially designed datasets have been introduced to address the lack of high-resolution
(HR) imagery relevant to disaster scenarios. In [18], FloodNet, a high resolution (HR)
UAV imagery dataset, capturing post-flood damage, aims to detect flooded roads and
buildings and distinguish between natural and flooded water. Baseline methods for image
classification, semantic segmentation, and visual question are evaluated, highlighting its
significance for analyzing disaster impacts with various DL algorithms, such as XceptionNet
and ENet.

To facilitate efficient processing of disaster images captured by UAVs, an AI-based
pipeline was proposed enabling semantic segmentation with optimized deep neural net-
works (DNNs) for real-time flood area detection based directly on UAVs, minimizing
infrastructure dependency and resource consumption of the network. The experimental
results confirmed the feasibility of performing sophisticated real-time image processing on
UAVs using GPU-based edge computing platforms [10].

It becomes clear that DL methods offer improved segmentation by creating adaptive
mapping relationships based on contextual semantic information. However, these methods
require extensive manual labeling of large datasets and lack interpretability, suggesting
the need to address these limitations for further progress. Traditional ML methods, on
the other hand, rely on manually designed mappings. Systematic reviews of water body
segmentation over the past 30 years examine the application and optimization of DL
methods and outline traditional methods at both pixel and image levels [33]. Evaluating
the strengths and weaknesses of both approaches prompts a discussion of the importance
of maintaining knowledge of classical computer vision techniques. There remains value in
understanding and utilizing these older techniques. The knowledge gained from traditional
computer vision (CV) methods can complement DL, expanding the available solutions.
There also exist scenarios in which traditional CV techniques can outperform DL or be
integrated into hybrid approaches for improved performance. Furthermore, traditional CV
techniques have been shown to have benefits, such as reducing training time, processing,
and data requirements compared to DL applications [34].

In 2015, a method for automatically monitoring flood events in specific areas was
proposed using remote cyber-surveillance systems and image-processing techniques. When
floods are treated as possible intrusion objects, the intrusion detection mode is utilized to
detect and verify flood objects, enabling automatic and unattended flood risk level moni-
toring and urban inundation detection. Compared to large-area forecasting methods, this
approach offered practical benefits, such as flexibility in location selection, no requirement
for real-world scale conversion, and a wider field of view, facilitating more accurate and
effective disaster warning actions in small areas [15]. Real-time methods to detect flash
floods using stationary surveillance cameras, suitable for both rural and urban environ-
ments, have become quite popular. Another method used background subtraction to detect
changes in the scene, followed by morphological closing to unite pixels belonging to the
same objects. Additionally, small separate objects are removed, and the color probability is
calculated for the foreground pixels, filtering out components with low probability values.
The results are refined using the edge density and boundary roughness [24].

Unsupervised object-based clustering was also used for flood mapping in SAR images.
The framework segments the region of interest into objects, converts them into a SAR optical
feature space, and clusters them using K-means, with the resulting clusters classified based
on centroids and refined by region growing. The results showed improved performance
compared to pixel and object-based benchmarks, with additional SAR and optical features
enhancing accuracy and post-processing refinement reducing sensitivity to parameter
choice even in difficult cases, including areas with flooded vegetation [25]. The same
techniques were also proposed for flood detection purposes in UAV-captured images.
Employing RGB and HSI color models and two segmentation methods, K-means clustering
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and region growing, in a semi-supervised scheme, showed potential for accurate flood
detection [12].

There is also a datacube-based flood mapping algorithm that uses Sentinel-1 data rep-
etition and predefined probability parameters for flood and non-flood conditions [23]. The
algorithm autonomously classifies flood areas and estimates uncertainty values, demon-
strating robustness and near-real-time operational suitability. It also contributed to the
Global Flood Monitoring component of the Copernicus Emergency Management Service.

Contextual filtering on multi-temporal SAR imagery resulted in an automated method
for mapping non-urban flood extents [26]. Using tile-based histogram thresholding refined
with post-processing filters, including multitemporal and contextual filters, the method
achieved high accuracy. Additionally, confidence information was provided for each flood
polygon, enabling stable and systematic inter-annual flood extent comparisons at gauged
and ungauged sites.

Finally, in [27], an unsupervised graph-based image segmentation method was pro-
posed that aims to achieve user-defined and application-specific segmentation goals. This
method utilizes a graph structure over the input image and employs a propagation al-
gorithm to assign costs to pixels based on similarity and connectivity to reference seeds.
Subsequently, a statistical model is estimated for each region, and the segmentation prob-
lem is formulated within a Bayesian framework using probabilistic Markov random field
(MRF) modeling. Final segmentation is achieved through minimizing an energy function
using graph cuts and the alpha-beta swap algorithm, resulting in segmentation based
on the maximum a posteriori decision rule. In particular, the method does not rely on
extensive prior knowledge and demonstrates robustness and versatility in experimental
validation with different modalities, indicating its potential applicability across different
domains. It was also successfully applied on SAR images for flood mapping.

Our review of related literature reveals a prevailing preference for supervised method-
ologies in contemporary applications, as they are utilized more frequently than unsu-
pervised approaches (see Table 1). Additionally, there is a preference for satellite radar
imagery due to its greater availability. Among the unsupervised methods, we identified
only one that processes RGB images. However, this method depends on change detection,
necessitating the availability of pre-disaster images.

In this paper, we propose a novel unsupervised method for flood segmentation uti-
lizing color images acquired from UAVs. Without the need of large datasets, extensive
labeling, augmentation, and training, the segmentation can be performed directly on the
UAV deployed over the disaster area. Therefore, relief efforts can be swiftly directed to
damaged sites, avoiding time loss, which can be crucial in saving lives and properties.
Initially, we employ parameter-free calculated masks over each component of the LAB
colorspace, utilizing as well an RGB vegetation index and the detected edges of the original
image in order to provide an initial segmentation. Next, unsupervised image analysis tech-
niques, such as distance transform, are adapted to the flood detection problem, producing
a probability map for the location of flooded areas. Then, the hysteresis thresholding seg-
mentation method is applied, resulting in the final segmentation. The main contributions
of our work can be summarized as follows:

• Novelty in Approach: To our knowledge, this is the first fully unsupervised method
for flood area segmentation in color images captured by UAVs. Our work addresses
flood segmentation using parameter-free calculated masks and unsupervised image
analysis techniques without any need for training.

• Probability Optimization: Flood areas are identified as solutions to a probability opti-
mization problem, with an isocontour evolution starting from high-confidence areas
and gradually growing according to the hysteresis thresholding method.

• Robust Algorithm: The proposed formulation results in a robust, simple, and effective
unsupervised algorithm for flood segmentation.
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• Dataset Categorization: We have introduced a dataset categorization according to the
depicted scenery and camera rotation angle, into rural and urban/pei-urban, and no
sky and with sky, respectively.

• Efficiency and Real-Time Processing: The framework is efficient and suitable for on-
board execution on UAVs, enabling real-time processing and decision-making during
flight. The processing time per image is approximately 0.5 s, without the need for
pre-processing, substantial computational resources, or specialized GPU capabilities.

These contributions highlight the novelty and effectiveness of our method, particularly
its suitability for rapid and efficient deployment in disaster response scenarios.

The proposed system has been tested and compared with various variants of our own
method, as well as with supervised approaches, using the Flood Area dataset introduced
in [35], which consists of 290 color images. Our research did not identify other relevant
unsupervised methodologies, and the proposed system yielded high-performance results.
Additionally, experimental results of the proposed method are reported on the Flood
Semantic Segmentation dataset [36], which comprises 663 color images.

The rest of this paper is organized as follows: Section 2 introduces the datasets used for
this article. Section 3 presents our proposed unsupervised methodology. The experimental
results and a comprehensive discussion are given in Section 4. Finally, conclusions and
consideration of future work are provided in Section 5.

2. Materials

We employed two publicly available datasets for this study to demonstrate the robust-
ness and general applicability of our method. First, the dataset used to assess the efficacy of
our approach and facilitate comparative analyses with alternative methodologies is called
Flood Area, consisting of color images acquired by UAVs and helicopters [35]. It contains
290 RGB images depicting flood hit areas, as well as their corresponding mask images
with the water region segmentations. The ground truth images were annotated by the
dataset creators using Label Studio, an open-source data-labeling software. The images
were downloaded selectively from the Internet; thus, the dataset exhibits a wide range
of image variability, depicting urban, peri-urban, rural areas, greenery, rivers, buildings,
roads, mountains, and the sky. Furthermore, there are image acquisitions relatively close to
the ground as well as from a very high altitude and from diverse camera rotation angles
around the X-axis (roll) and Y-axis (pitch). If pitch and roll are zeros, this means that the
camera is looking down (top-down view). Hereafter, we use the term “camera rotation
angle” to present the angle between the current view plane and the horizontal plane (top-
down view). The images have different resolutions and dimensions with height and width
ranging from 219 up to 3648 and 330 up to 5472, respectively. Representative images with
their corresponding ground truths are shown in Figure 1.

Figure 1. Sample images from the Flood Area dataset (top) and their corresponding ground
truths (bottom).
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Second, to confirm the universal functionality of our approach, we employed the
Flood Semantic Segmentation Dataset [36]. It consists of 600 and 63 color images for
training and validation, respectively. Since our method is fully unsupervised, it does not
require training, and, therefore, we used all 663 images for evaluation. Similarly to the
initial dataset, this dataset comprises images obtained from UAVs, accompanied by their
respective ground truth annotations, portraying diverse flooded scenes captured from
various camera perspectives. The image sizes and resolutions also vary, but were all resized
and, if necessary, zero-padded, to 512 × 512 by the creator, as shown in Figure 2.

Figure 2. Sample images from the Flood Semantic Segmentation dataset (top) and their corresponding
ground truths (bottom).

3. Methodology
3.1. System Overview

We propose an approach which gradually removes image areas classified as non-
flood, based on binary masks constructed from color and edge information. Our method
is fully unsupervised, meaning that there is no training process involved, and thus no
need of ground truth labeling. We use the labels provided by the datasets only for eval-
uation purposes of our method. A repetitive process, consisting of the same algorithmic
steps, is applied over each of the components extracted from the color image in order to
identify areas that are not affected by floods. For each component, as described below,
a binary map is obtained in which areas identified as non-flood are discarded, leading
to a final mask of potential flood areas (PFAs), refined by simple morphological opera-
tions. The flood’s dominant color is calculated by weighting the potential flood area pixels
and hysteresis thresholding yields the final segmentation. An overview of our proposed
methodology is graphically depicted in Figure 3. In the following, we analytically present
the proposed methodology.



Remote Sens. 2024, 16, 2126 9 of 30

Input: RGB image L Α Β

Non-flood (Background)

MRGBVI ML MEdge MA MB

MFinal

Potential flood

Flood

FDCE: Flood Dominant Color Estimation
M: Mask
RGBVI: RGB Vegetation Index

Output: Final Segmentation

FDCE Weight Map Flood Probability Map (PM)

Hysteresis Thresholding

PM(p) > TH

TL < PM(p) ≤ TH

p: pixel

Figure 3. Overview of the proposed approach.

3.2. RGB Vegetation Index Mask

In both urban and rural areas, the landscape is lush with greenery, largely attributed to
the abundant presence of trees and vegetation. Since trees are unlikely to be fully covered
by flood events, our first concern is to rule out the greenery, noticing also in our experiments
that, using only a flood color approach, vegetation is more likely to be misclassified as
flood water. Therefore, we use the RGB Vegetation Index (RGBVI), introduced in [37].
This index was successfully applied in [38] as a first step in detecting and counting trees
using region-based circle fitting. RGBVI particularly improves sensitivity to vegetation
characteristics while mitigating the impact of interfering factors, such as reflection of the
background soil and directional effects. However, as shown in Equation (1), it can be
influenced by the color quality of the image, e.g., due to bad atmospheric conditions by
the time of the image acquisition. It is defined as the normalized difference between the
squared green reflectance and the product of blue and red reflectance:

RGBVI =
(RG)

2 − (RB × RR)

(RG)2 + (RB × RR)
(1)

where RR, RB, and RG denote the red, blue, and green reflectance, respectively. In Ref. [39],
the authors, after extensive experimentation, concluded that an RGBVI value of 0.15 is
optimal for greenery detection. In this work, we preferred to set a stricter value, e.g., 0.2, so
that any value exceeding this threshold is characterized as greenery and, therefore, is not
flooded, resulting from the MRGBVI mask. The threshold is essentially a constant applicable
to any color image input. A stricter value ensures the detection of only confident green
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areas. Consequently, if the floodwaters also exhibit green hues, they will not be selected,
as the mixture of vegetation and water results in a lighter color compared to the actual
vegetation. With this mask, we are able to rule out a large number of image pixels, since
visible vegetation cannot be flooded. Particularly in the Flood Area dataset in some images
depicting rural areas, up to 92.8% of pixels can be characterized as greenery, and thus
non-flood, while, on average, over the whole dataset, 17.94% of pixels are ruled out this
way (median value is 14.16%). The binary image produced from this process results in a set
of pixels definitively classified as non-flood, leaving the remaining pixels as ambiguous.
This ambiguous region is referred to as the potential flood area (PFA). Within this area,
using the modules described below, certain pixels will be classified and segmented as flood,
while the others will be excluded.

In Figure 4, examples of RGBVI masks are shown for (a) urban and (b) rural areas from
the Flood Area dataset, where the dim gray color corresponds to the detected greenery. We
can clearly notice that, especially in rural areas, a substantial number of image pixels are
rightly characterized as trees and vegetation, and, therefore, these areas cannot be flooded.
This technique also works in urban areas where vegetation is present. But there are also
cases where the RGB Vegetation Index is not quite efficient, especially when the image color
quality is poor due to the camera rotation angle and/or weather conditions (Figure 4c).

(a) Rural areas

(b) Urban areas

(c) Poor greenery detection

Figure 4. The original images (from the Flood Area dataset) and the corresponding RGBVI masks on
their right side. The masks show detected greenery with dim gray color. Examples are presented for
(a) urban areas, (b) rural areas, and (c) poor or failed greenery detection. The remaining potential
flood areas are shown in cyan.

3.3. LAB Components Masks

The LAB color space offers several advantages over the RGB color space, such as
perceptual uniformity, wide color gamut, separation of color and lightness, and robustness
to illumination [40]. The LAB color space is designed to be perceptually uniform, which
means that a small change in the LAB values corresponds to a similar perceptual change
in color across the entire color space, making it more suitable for color-based applications
where accurate perception of color differences is important. It encompasses a wider range of
colors compared to the RGB color space, particularly in terms of the human perceptual color
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space. This allows for a more accurate representation of colors that fall outside the RGB
gamut. The LAB color space is less affected by changes in illumination compared to the
RGB color space, since lightness is a separate component. This separation is advantageous
when independent control over lightness and color is desired, making it more suitable for
applications where lighting conditions vary significantly [41]. Considering that the LAB
color space offers greater flexibility and accuracy in color representation and manipulation
compared to the RGB color space, and since, in our application, precise color information
is critical, we selected the CIE 1976 L*a*b* color space, commonly known as CIELAB [42].
Subsequently, we convert the image to the CIELAB color space for further processing,
following the methodology described in [43].

Using the L, A, and B components, we derive three more masks, where areas can
potentially be characterized as non-flood, exploiting the standard deviation values of the
data relative to their central tendency for each color component. In flooded areas, the value
of each color component in the LAB color space is usually higher than the corresponding
values of the background. So, we select a lower threshold ∆C, C ∈ {L, A, B} to create
binary masks that detect regions probably belonging to non-flood areas. ∆C is calculated
by subtracting the standard deviation (σC) from the mean value (µC) over each color
component (C) of the LAB color space:

∆C = µC − σC, C ∈ {L, A, B} (2)

Figure 5 shows the average value of (a) L, (b) A, and (c) B color components computed
on flood (blue curve) and background (red curve) pixels for each image of the Flood
Area dataset, sorted in ascending order. The yellow curves represent the corresponding
threshold ∆C used to create the three masks. Since flooded areas have elevated values
observed in each component of the LAB color space, each mask ML, MA, and MB is labeled
as non-flood, when the component’s pixel value is smaller than ∆C. Because the two classes
(flood and non-flood) have very similar characteristics, setting a threshold between them
makes distinguishing the classes challenging. The proposed equation for ∆C is designed to
produce a threshold that classifies pixels with values significantly below the flood, so that
non-flood pixels can be excluded with high confidence. The objective is not to distinguish
between the two classes, but rather to provide an initial segmentation by excluding pixels
that do not belong to the flood class. In the Flood Area dataset, we observed that the
median value, computed over all images in the dataset, of the percentage of pixels that
belong to the non-flood class according to the mask ML, MA and MB is only 2.3%, 1.3%, and
2.0%, respectively. This means that the ML, MA, and MB masks have a very low number of
wrong-classified flood pixels, providing a robust initial segmentation for our method.
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Figure 5. Blue and red curves correspond on the average value of (a) L, (b) A, and (c) B color
components computed on flood and background pixels, respectively, for each image of the Flood
Area dataset, sorted in ascending order. The yellow curves show the corresponding ∆C threshold.
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Edges often correspond to significant changes in intensity or color in an image. Detect-
ing these edges allows for the extraction of important features, such as object boundaries,
contours, and shapes, which are essential for further analysis and interpretation of image
content. Identifying edges helps in highlighting important structures and details and serves
as a fundamental step in image segmentation, which involves partitioning an image into
regions with similar characteristics. Edges act as boundaries between different regions,
which makes them essential for accurate segmentation and analysis of image content [44].
It is clear that edges can be useful to locate borders between flooded and non-flooded
areas and should, therefore, be excluded from the flood water class. To acquire the fifth
mask, MEdge, the L component is initially smoothed using a 2-D Gaussian kernel with
a standard deviation of 4. Subsequently, the Canny edge detection algorithm is applied to
the blurred L component, resulting in dilated edges. These edge pixels are then designated
as non-flood areas. The MEdge mask is also useful, because by detecting the borders of
small objects (e.g., buildings, cars, trees, etc.), then the weights of their nearby pixels are
reduced in the flood-dominant color estimation, increasing the robustness of the estimation
(see Section 3.4).

Examples from the Flood Area dataset of the four LAB component masks ML, MA,
MB, and MEdge are depicted in Figure 6. We observe that each color component and the
detected edges contribute to further classifying image pixels as background (with dim gray
color), thus excluding them from potential flood areas (cyan color). Non-flood areas are
strengthened, when so classified by multiple components, but also complemented by being
detected by one component when others failed to do so. For the whole Flood Area dataset,
on average 25.43%, 27.75%, 29.82%, and 7.45% of pixels, respectively, for the L, A, and B
component, and the edge image, are classified as non-flood. Notice the sky in the first
image of Figure 6, detected only by the B component as non-flood, and the hillside in the
second image, which as a non-flood area is strengthened by all components. In any case,
the borders of small objects are well detected by the MEdge mask, increasing the robustness
of the flood-dominant color estimation, which is described in the next subsection.

Image ML MA MB MEdge

Figure 6. Original images from the Flood Area dataset and their corresponding LAB components
masks ML, MA, MB, and MEdge from left to right. Note that the edges in MEdge are dilated for
illustration purposes. Non-flood areas are depicted with dim gray color, whereas remaining potential
flood areas are shown in cyan.
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3.4. Flood Dominant Color Estimation

As described in Sections 3.2 and 3.3, five masks with potential non-flooded areas
are constructed. There are cases where these masks describe approximately the same
areas, but essentially the masks complement each other. When all masks are robust in
classifying an area as non-flood, then the conclusion for this specific area is strengthened.
But if one mask is weak in characterizing the area as non-flood, the other masks function
as reinforcement. The final mask (MFinal) for the non-flood class is derived by combining
these individual masks, as also depicted in Figure 3:

MFinal = MRGBVI ∪ ML ∪ MA ∪ MB ∪ MEdge (3)

The morphological operation of image closing follows, merging adjacent areas that
are partially separated and connecting nearby regions. Excluding the non-flood labeled
pixels of the final mask leaves us with potential flood areas, which, of course, have to be
refined, as described below.

We opt for a weighted approach to estimate the dominant color of the flood in the
image. The rationale behind this approach is that we obtain a set of confidently non-flood
areas through the union of five binary masks. All other regions in the image are designated
as potential flood areas. Within these PFAs, the objective is to identify the dominant color
of the flood for precise segmentation. The likelihood that a pixel belongs to a flood area
increases with its distance from a non-flood area. Consequently, such pixels should have
a greater influence on the estimation of the dominant color, achieved by assigning them
a higher weight. Taking into account the non-flood area derived from MFinal , the Euclidean
distance transform [45] assigns to each potential flood pixel a value representing its distance
to the nearest boundary pixel (non-flood). This representation of the spatial relationship
between the pixels serves as a weight map (W), where the pixels farther away from non-
flood areas receive greater weights such that their color (IC) will exert a more significant
influence on the process of the flood’s dominant color estimation:

W(p) =


||p−p′ ||

maxq∈PFA ||q−q′ || , if p ∈ PFA

0, otherwise
(4)

where ||.|| denotes the Euclidean norm, p is the pixel for which the weight value is calcu-
lated, and p′ is the nearest non-flood pixel to p. Similarly, q′ is the nearest non-flood pixel
to q ∈ PFA. The denominator in Equation (4) is used for normalization purposes so that
W(p) ≤ 1.

The weighting variance (σ2
C) for each color component (C) is calculated on the potential

flood area (PFA) as follows:

σ2
C =

N
N − 1

·
∑p∈PFA W(p) · (IC(p)− µC)

2

∑p∈PFA W(p)
(5)

where N and p are the total amount of potential flood area pixels and an image pixel,
respectively. The mean color value of the potential flood for each component C ∈ L, A, B is
represented by µC:

µC =
∑p∈PFA W(p) · IC(p)

∑p∈PFA W(p)
(6)

The estimated variance (σ2
C) can be much higher than the real one, due to the fact that

PFA may also contain non-flood pixels. Furthermore, the estimated σ2
C in the PFA region

should be much lower than the corresponding variance estimated in the entire image (σ2
C),

due to the high color similarity between the flood pixels. So, σ2
C is corrected to a predefined

percentage (e.g., 20%) of σ2
C when it exceeds this value.
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In this work, the probability for potential flood area pixels over each color compo-
nent is defined in Equation (7) via the exponential component of the normal probability
distribution function (Gaussian kernel) that is ranged in [0, 1]:

PC(p) = e
− (IC(p)−µC)2

2·σ2
C (7)

The decisive probability map (PM) is then constructed, as shown in Equation (8),

PM(p) =

(
PL(p)

√
PA(p)

√
PB(p)

) 4
7

(8)

accounting for the greater significance of the L component with exponent term one. This
is because water reflects more light than most backgrounds (excluding the sky), signifi-
cantly affecting the luminance captured in the L component of the LAB color space. The
component A has the second significance, with an exponent term equal to 1

2 . The com-
ponent B is the least significant, with an exponent term equal to 1

4 . In Equation (8), the
exponent term 4

7 is used for normalization purposes, giving the sum of exponent terms one.
The use of different exponent terms on the three color components slightly improves the
results of the proposed method, as shown in Table 3. We achieved 0.5% and 0.3% higher
F1-score (F1), compared to the version of the system having equal significance to all color
components (see Equation (9)) and equal significance to the A and B color components
(see Equation (10)), respectively.

PMeqLAB(p) = (PL(p)PA(p)PB(p))
1
3 (9)

PMeqAB(p) =
(

PL(p)
√

PA(p)PB(p)
) 1

2
(10)

Figure 7 illustrates examples of probability maps derived after the corresponding
initialization masks and weight maps for examples from the Flood Area dataset. In fact,
potential flood areas (cyan color) have a higher probability (red color) compared to the
background. Areas classified as non-flood (dim gray color) by Equation (3) exhibit zero
weights and probabilities (dark blue color) such that they will not contribute to the flood’s
dominant color estimation. However, when the flood’s color is equivalent to the color of
background areas, which were not eliminated by the masks used to initialize our method
(see Sections 3.2 and 3.3), there can be the case of high probabilities turning up in non-flood
areas, as depicted in the example in the last row, where parts of the road exhibit a tendency
towards flood.

At this point, using a single threshold value on the decisive probability map to perform
the final segmentation can lead to quite satisfactory results (see Table 3, row UFS-REM).
However, we opted for dual thresholds, as described in the following subsection.
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Image MFinal Weight Map Probability Map

Figure 7. Probability maps (column 4) obtained using potential flood areas of MFinal (column 2),
weight maps (column 3), as generated by the distance transform and the corresponding images from
the Flood Area dataset (column 1). Potential flood area is shown in cyan, and non-flood area in dim
gray color. The weights and probabilities range from 0 (dark blue color) to 1 (red color).

3.5. Hysteresis Thresholding

The probability map provides a good indication of the location of flooded areas. This
now defines a probability optimization problem. To proceed to the final decision, we pre-
ferred two different threshold values to distinguish between actual flood and background.
The isocontour evolves starting from the high-confidence areas and gradually grows to
segment the flooded area. This technique is known as hysteresis thresholding and was first
implemented for edge detection [44]. The main steps of the hysteresis thresholding method
are described below:

• We adapt the process for region growing, where the high threshold TH is applied to
the entire probability map to identify pixels with PM(p) > TH as flood (strong flood
pixels). These regions have high confidence to belong to flood areas, so they can be
used as seeds in a region-growing process that is described below.

• Next, a connectivity-based approach is used to track the flood. Starting from the pixels
identified in the first step, the algorithm looks at neighboring pixels. If a neighboring
pixel has a probability value higher than the low threshold TL (weak flood pixel), it is
ultimately considered part of the flood.

• This process continues recursively until no more connected pixels above the low
threshold are found.

The hysteresis effect prevents the algorithm from being too sensitive to small fluc-
tuations in probability. Pixels that fall between the low and high thresholds, but are not
directly connected to strong flood pixels, are not considered flood. However, if a weak
flood pixel is connected to a strong flood pixel, it is still considered to be part of the flood.
In this way, flood continuity is maintained and false detections are reduced, so that flood
boundaries are accurately identified.
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We have set the low and high thresholds to be at the 1% and 75% marks, respectively.
This means that pixels with a probability greater than 75% are directly classified as flood,
while pixels with a probability equal or less than 1% are directly classified as non-flood. The
rest of the pixels p with PM(p) ∈ (0.01, 0.75] fall into a substantial margin of uncertainty
regarding their classification as flood pixels. This uncertainty is ultimately reduced when
these pixels are connected to strongly classified flood pixels. Essentially, TH and TL are the
only parameters which could be defined exclusively by the user. But, as we can observe in
Figure 12, any value in the vicinity of TL = 0.01 and TH = 0.75 does not change the outcome
substantially, thus making our methodology robust.

In Figure 8, the middle column shows the hysteresis thresholding process for four
images of the Flood Area dataset in the second column. For the whole set of potential flood
areas, red-colored pixels are those with probability greater than TH and, therefore, certain
to belong to the flood class, while the blue-colored pixels have a probability in the range
PM(p) ∈ (TL, TH]. For the latter, the flood class inclusion is guaranteed only when they
are linked with red pixels. Cyan-colored pixels belong to PFAs but fall below the lower
threshold, and, therefore, they will be assigned to the background class. The non-flood
areas, according to the MFinal mask, are colored with dim gray pixels.

(a) Image (b) Hyst. Thresh. (c) Final Seg.

Figure 8. (a) Original image from the Flood Area dataset, (b) the applied hysteresis thresholding
on the decisive probability map of the potential flood area, and (c) the final segmentation mask.
(b) In red and blue are the pixels with PM(p) > TH and TL < PM(p) ≤ TH , respectively. Cyan-colored
pixels are with PM(p) ≤ TL, they do not surpass the lower threshold, and are subsequently classified
as background. The non-flood areas, according to the MFinal mask, are colored with dim gray pixels.
(c) The last column shows the final segmentation obtained from our proposed method, where the
flood is in blue and the background is in dim gray color.
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3.6. Final Segmentation

The proposed methodology is completed by obtaining the final segmentation after the
hysteresis thresholding is applied to the decisive probability map. For the derived flood
areas, an edge correction is performed via the image dilation operation. The connected
components of flood and non-flood areas are calculated, and relatively small areas are
removed. In particular, if a blob is considered to be flooded but does not exceed about
0.3% of the whole image pixels, then this blob is reclassified as background to reduce
noise effects, e.g., small water pits which do not belong to the flood area. Furthermore,
background blobs with an area of 0.05% of all the pixels in the image are attributed to
the flood class. These blobs can occur in the midst of a flood, because of fluctuations in
the values of the color components (e.g., shadows), disrupting the continuity, and were
wrongly classified as background and, therefore, excluded at the early stages of the method.

Figure 8 shows the final segmentation of our proposed approach (see the last column).
The blue and dim gray represent the segmented flood and background, respectively. Cyan
pixels from the second column, which did not pass the thresholds, and blue pixels, which
are not connected to the red ones, are excluded from the segmented flood area. The
same applies to the small blue blobs connected to red pixels, because they do not fit the
aforementioned area criterion. In the next section, we present more results and discuss
them in detail.

4. Results and Discussion

In this section, we present our proposed method’s results and compare them with
selected recent DL approaches, since we did not find any other unsupervised method to
challenge this problem. Furthermore, we have conducted an ablation study to measure
the contribution of each of our method’s modules, as described in Sections 3.2–3.6, with
respect to performance.

4.1. Evaluation Metrics

The metrics used for evaluation purposes are accuracy (ACC), precision (PR), recall
(REC), and F1-score (F1), as defined in Equations (11)–(14) below:

ACC =
TP + TN

TP + TN + FP + FN
(11)

PR =
TP

TP + FP
(12)

REC =
TP

TP + FN
(13)

F1 =
2 · PR · REC
PR + REC

(14)

TP, FP, TN, and FN stand for true positive, false positive, true negative, and false
negative, respectively. Additionally, we have calculated the average value of the F1-score
(F1) over the whole dataset, which is given by averaging the corresponding F1-score of each
image of the dataset.

4.2. Implementation

The proposed method has been implemented using MATLAB 2023b.
All experiments were executed on an Intel I7 CPU processor at 2.3 GHz with 40 GB

RAM. The proposed algorithm achieves inference in about half a second per image, without
immense calculations that would require the power of GPU cores to perform in the same
time range. The proposed method can be easily implemented on a UAV and executed on
board due to its low computational and hardware resource requirements.
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The code implementing the proposed method, together with the datasets and results,
will be publicly available (after acceptance of the article) at the following link (https:
//sites.google.com/site/costaspanagiotakis/research/flood-detection (accessed on 2 May
2024)).

4.3. Flood Area Dataset: Experimental Results and Discussion

We showcase a series of final segmentations as a result of our proposed approach (UFS-
HT-REM) supplemented by evaluation metrics, as described above, and the original and
ground-truth images. All images have been adjusted to uniform dimensions (800 × 600)
for illustration purposes only, since our method works for any image size.

Representative outcomes from the Flood Area dataset are shown in Figures 9–11. The
results show flood segmentation in blue overlaid on the original image with the flood’s
borders emphasized in dark blue. We also use the same technique to represent the ground
truth. In Figure 9, the results of the proposed method yield F1 and ACC that exceed 90%,
showing high-performance results with almost perfect flood detection. In Figure 10, F1
belongs to the range [75%, 90%], providing results where the flood area detection accuracy
is satisfactory. In Figure 11, the results of the proposed method yield F1 lower than 30%,
showing poor segmentation results.

The proposed unsupervised approach works for any tint of flood water and delivers
excellent results even when a plethora of small objects protrude the flood, managing to
segment around them (see Figures 9b and 10d). As we can observe in the rest of the results,
it achieves satisfactory results in urban/peri-urban as well as rural environments, where it
accurately segments existing flooded areas, even when they are not labeled in the ground
truth, as shown in Figure 10e. The method works best when the acquired image’s color
quality and the weather and lighting conditions are good, alongside a low camera rotation
angle (top-down view). Naturally, should the assumptions underpinning the proposed
algorithm not hold, it may result in suboptimal outcomes (see Figure 11). Reasons for bad
results include extreme similarity of the flood and the background color, and elevated LAB
color components’ values of background areas. It is essential that the flood is not green in
color, because the vegetation index will confuse it with greenery and, therefore, mainly
exclude it (see Figure 11c).

In the LAB colorspace, the flood has been measured to have elevated values with
respect to the background. Therefore, in cases when light is reflected on the surface or the
sky is of the same brightness, it is impossible for the method to set these two areas apart
(see Figure 11a,b). Finally, because the method still relies on color, if there is near-identical
coloration of the flood water and other objects (e.g., buildings, rooftops), these objects will
be considered part of the flood or will be entirely mistaken as flood, omitting the true
flood water (see Figure 11d). High ACC scores in the poor segmentation results are due to
correctly segmenting large areas of the background.

https://sites.google.com/site/costaspanagiotakis/research/flood-detection
https://sites.google.com/site/costaspanagiotakis/research/flood-detection
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Image Ground Truth UFS-HT-REM

(a) F1 = 98.1%, ACC = 98.1%, PR = 99.1%, REC = 97.1%

(b) F1 = 96.4%, ACC = 96.3%, PR = 96.8%, REC = 95.9%

(c) F1 = 95.8%, ACC = 95.2%, PR = 97.3%, REC = 94.4%

(d) F1 = 93.3%, ACC = 89.7%, PR = 97.2%, REC = 89.6%

(e) F1 = 92.7%, ACC = 96.5%, PR = 95.5%, REC = 90.0%

Figure 9. High-performance results of the proposed flood segmentation method from the Flood
Area dataset. Original images, ground truth, and the final segmentation of our proposed
method (UFS-HT-REM).
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Image Ground Truth UFS-HT-REM

(a) F1 = 89.7%, ACC = 90.3%, PR = 83.4%, REC = 97.1%

(b) F1 = 89.6%, ACC = 95.0%, PR = 93.0%, REC = 86.5%

(c) F1 = 87.2%, ACC = 90.6%, PR = 95.6%, REC = 80.2%

(d) F1 = 85.9%, ACC = 89.4%, PR = 96.0%, REC = 77.7%

(e) F1 = 76.2%, ACC = 81.2%, PR = 69.3%, REC = 84.7%

Figure 10. Satisfactory results of the proposed flood segmentation method from the Flood Area dataset.
Original images, ground truth, and our proposed method’s (UFS-HT-REM) final segmentation.
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Image Ground Truth UFS-HT-REM

(a) F1 = 29.1%, ACC = 40.9%, PR = 20.3%, REC = 51.3%

(b) F1 = 13.4%, ACC = 77.5%, PR = 13.1%, REC = 13.8%

(c) F1 = 12.8%, ACC = 42.9%, PR = 99.7%, REC = 6.9%

(d) F1 = 8.7%, ACC = 64.2%, PR = 6.6%, REC = 12.7%

Figure 11. Poor segmentations resulting from the proposed methodology (UFS-HT-REM) from
the Flood Area dataset. Original images, ground truth, and the final segmentation of our
proposed method.

4.4. Exploring the Impact of Environmental Zones and Camera Rotation Angle

Additionally, we study how the environmental zone and the camera rotation angle affect
the flooding segmentation by splitting the Flood Area dataset into the following categories:

1. Environmental zone:

(a) Rural, predominantly featuring fields, hills, rugged mountainsides, scattered
housing structures reminiscent of villages or rural settlements, and sparse
roads depicted within the images. It consists of 87 out of the 290 images in
the dataset.

(b) Urban and peri-urban, distinctly showcasing urban landscapes characterized
by well-defined infrastructure, that conforms to urban planning guidelines;
a dense network of roads and high population density reflected in the pres-
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ence of numerous buildings and structures. It encompasses a collection of
203 images.

2. Camera rotation angle:

(a) No sky (almost top-down view, low camera rotation angle), distinguished
by the absence of any sky elements; specifically, these images entirely lack
any portion of the sky or clouding within their composition. It comprises
182 images of the dataset.

(b) With sky (bird’s-eye view, high camera rotation angle), where elements of the
sky, such as clouds or open sky expanses, are visibly present within the image
composition. It encompasses the remaining 103 images within the dataset.

This categorization has been undertaken to emphasize that the environment in which
the flood is situated can play a role in the final outcome and to encourage further stud-
ies to distinguish in their methodologies urban and rural floods, due to their different
characteristics.

As we can observe, in the evaluation metrics for these categories, shown in Table 2, our
method performs well in all categories. Slightly better results are achieved when the scenery
depicts a rural landscape, with F1 = 80.3% being 1.8% higher than in the urban/peri-urban
category. The extensive greenery in rural areas allows for the exclusion of a significant
number of pixels from PFAs using the RGBVI mask, as described in Section 3.2. However,
in the absence of vegetation, the RGBVI does not impact the method’s performance, as there
will be no greenery to detect. In addition, flooded areas in such environments are usually
large in size, which strengthens the dominant color estimation procedure (see Section 3.4),
because plentiful pixels are engaged (see category 1.(a) in Table 2). In urbanized areas, the
presence of rooftops, buildings and cars, which can have a similar color to flood, leads
to mildly decreased performance with F1 = 78.5%, given that parts of these objects are
misclassified as flood by the algorithm (see category 1.(b) Table 2).

Furthermore, as we have stated previously, poor segmentation results have been
generated when the image featured the sky or parts of the sky. Since the sky’s LAB color
component values can fall above ∆C (as in Equation (2)), and according to our observation
that the flood exhibits higher values in the LAB colorspace, parts of the sky are not excluded
from the PFAs in this case. Their pixels are involved in the dominant color estimation
and they are commonly segmented as flood. In Table 2, rows 2.(a) and 2.(b) present the
evaluation metrics for the categories ‘no sky’ and ‘with sky’, with the F1-scores being 79.8%
and 77.7%, respectively, in which clearly the ‘no sky’ group prevails by 2.1%, as expected.
This categorization leads to the deduction that when the rotation angle of the UAV’s camera
is minded, so that the acquired image does not depict any part of the sky but is facing only
terrain (a fact that can be controlled by the human operator or the navigation software), the
segmentation result is improved.

Table 2. Results for the categories of images existing in the Flood Area dataset. The images were
divided according to the environmental zone into 1.(a) rural, and 1.(b) urban/peri-urban, and
according to the camera rotation angle into 2.(a) no sky (low angle), and 2.(b) with sky (high angle).

Category ACC PR REC F1 F1

1.(a) Rural 83.6% 82.3% 78.4% 80.3% 78.2%

1.(b) Urban/peri-urban 85.4% 78.4% 78.7% 78.5% 76.9%

2.(a) No sky 85.2% 81.6% 78.0% 79.8% 77.9%

2.(b) With sky 84.4% 76.1% 79.5% 77.7% 76.1%

All 84.9% 79.5% 78.6% 79.1% 77.3%
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4.5. Ablation Study

The ablation study outlines the significance of each of the proposed method’s modules
and is reported in Table 3. To do so, we have reported experiments of the proposed
method variants, conducted with the Flood Area dataset. The proposed method (UFS-
HT-REM) includes all modules and yields the best performance in the following metrics
ACC = 84.9%, PR = 79.5%, F1 = 79.1%, and F1 = 77.3%.

Table 3. Ablation study highlighting the contribution of the method’s modules. All experiments were
conducted with the Flood Area dataset.

Method ACC PR REC F1 F1

UFS-HT-REM 84.9% 79.5% 78.6% 79.1% 77.3%

UFS-HT-REM (Equation (10)) 84.7% 79.2% 78.5% 78.8% 77.0%

UFS-HT-REM (Equation (9)) 84.2% 78.6% 78.7% 78.6% 76.7%

UFS-HT 83.4% 76.3% 79.4% 77.8% 75.9%

UFS-REM 82.5% 75.7% 79.1% 77.3% 74.9%

UFS-HT-REM—L 79.9% 68.9% 82.0% 74.8% 72.8%

UFS 78.6% 68.9% 81.1% 74.5% 71.6%

MFinal Mask 76.0% 64.9% 82.7% 72.7% 69.8%

UFS-HT-REM—B 74.6% 66.3% 76.1% 70.8% 67.8%

UFS-HT-REM—A 68.6% 56.7% 88.0% 68.9% 66.0%

UFS(Otsu)-HT-REM 72.6% 66.9% 36.8% 47.5% 43.5%

First, we examine the simplification of the probability map (PM) estimation defined in
Equation (8), including equally all the LAB color components (UFS-HT-REM Equation (9))
and the AB color components (UFS-HT-REM Equation (10)) for the decisive probability
map computation. In both cases, the performance of the method is slightly degraded, since
the reduction in F1 is less than 0.5%. This shows that the proposed Equation (8) is robust
and can be replaced by a simpler formula without significant changes. Additionally, it
shows that the initialization process is solid, leaving in the PFAs a majority of pixels that
are truly flood. From the LAB color components, the luminance L is of greater importance,
as proven by experiments exploiting only one color component:

• L (UFS-HT-REM-L with F1 = 74.8%)
• A (UFS-HT-REM-A with F1 = 68.9%)
• B (UFS-HT-REM-B with F1 = 70.8%)

The core methodology, as described in Sections 3.2–3.4, performs quite adequately
(UFS), with the resulting 4.6% lower F1 compared to UFS-HT-REM. Additionally, by adding
the small area removal segment (UFS-REM) or the hysteresis thresholding technique (UFS-
HT) separately, performance is improved by about 3% compared to the UFS. It implies that
the hysteresis thresholding exerts a slightly better influence, resulting in 0.5% higher F1
compared to UFS-REM. Overall, each of the proposed components was carefully selected
to enhance the final segmentation result.

Finally, the proposed initialization of pixels as potential flood or non-flood using
∆C thresholding (see Equation (2)) is replaced by the Otsu thresholding [46] (UFS(Otsu)-
HT-REM), resulting in 31.6% lower F1 compared to the UFS-HT-REM. This shows that
exploiting the standard deviation of the color data relative to their central tendency of
the LAB components is a crucial step in the proposed method. This is also proved by the
evaluation of the MFinal Mask (see Equation (3)) without any other step of the proposed
method, which yields F1 = 72.7%, which is only 6.4% lower compared to the corresponding
F1 of UFS-HT-REM.
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To show the stability of the proposed system under different values of system parame-
ters, we performed the following sensitivity test on the two parameters of the hysteresis
thresholding technique. Figure 12 depicts the average values of ACC, REC, PR, and F1
computed on the Flood Area dataset for different values of (a) TL with TH = 0.75, and
(b) TH with TL = 0.01. In any scenario, the method’s performance measured with the values
of F1 and ACC is almost stable, while, as expected, only the values of REC and PR slightly
decrease and increase, respectively. In conclusion, minor fluctuations in the threshold
values do not significantly alter the method’s outcome. Although these thresholds are the
only parameters that users can modify, they have already been experimentally optimized.
Reasonable adjustments to these values produce outcomes that remain nearly identical.
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Figure 12. The average values of ACC, REC, PR, F1, and F1 computed on the Flood Area dataset for
different values of (a) TL (with TH = 0.75) and (b) TH (with TL = 0.01).

4.6. Comparison with DL Approaches

Compared to selected DL approaches, our results are reported in Table 4. We in-
cluded the best performing FASegNet [19] (F1 = 90.9%), the intermediate scoring UNet [47]
(F1 = 90%), and the worst performing so far HRNet [48] (F1 = 88.3%). Although we do not
outperform any DL method, UFS-HT-REM scores in close proximity. We are lower by only
3.7% (9.2%) of the HRNet that performs the worst and 6.6% (11.8%) of the FASegNet in
accuracy (F1-score), respectively. It is a good compromise taking into account the simplicity
of our methodology.

Our method does not require image pre-processing or normalization. The input
consists solely of the acquired color image, which can have any resolution and size. In
contrast, DL approaches require large training datasets, as well as validation and test sets,
and typically necessitate pre-processing and normalization of all input data. Labeling these
training and validation sets is time-consuming and prone to human annotation errors.
Moreover, data augmentation, essential for training in DL approaches, is unnecessary in
our method. Additionally, achieving excellent results with a deep neural network (DNN)
trained on one dataset does not guarantee the same performance on a different dataset,
often requiring retraining or the use of transfer learning to maintain result quality. Finally,
while DL approaches involve thousands to millions of trainable parameters, the proposed
method does not involve any.



Remote Sens. 2024, 16, 2126 25 of 30

Table 4. Comparison of our proposed approach with selected DL approaches on the Flood Area
dataset. The metrics used are accuracy (ACC), precision (PR), recall (REC), and F1-score (F1) (calcu-
lated as in Equation (14)) expressed in percentage, and trainable parameters (Tr. Par.) expressed in
millions (M).

Method ACC PR REC F1 Tr. Par.

FASegNet 91.5% 91.4% 90.3% 90.9% 0.64 M

UNet 90.7% 90.0% 90.1% 90.0% 31.05 M

HRNet 88.6% 84.8% 92.0% 88.3% 28.60 M

Ours 84.9% 79.5% 78.6% 79.1% 0 M

4.7. Flood Semantic Segmentation Dataset: Experimental Results and Discussion

To demonstrate the generalization of the proposed algorithm, we used the second
dataset, as described in Section 2. It comprises more than twice the number of images
compared to the initial one. All images were acquired in diverse real-world scenarios and
under different conditions. Without any image pre-processing and modification of the
code or parameters, the algorithm performed even higher, reaching 88.5% and 81.7% in
accuracy and F1-score, respectively. Consequently, we encountered an increase of 3.6%
(2.6%) in ACC (F1). This demonstrates that the observations on which our method is
based are universally applicable and resilient. Moreover, it proves that when controllable
variables, like the camera’s rotation angle, are considered, segmentation outcomes exhibit
enhancement, an observation we found to be consistent within this dataset due to the
reduced occurrence of sky portions in images. Quantitative metrics in comparison with the
first dataset are presented in Table 5. Also, we provide the weighted average in the last row
to give an overview of the overall performance of the algorithm in segmenting the flood for
953 images, which depict various scenes and were acquired with different camera settings,
e.g., camera rotation angle, focal length, etc.

Table 5. Quantitative findings for the Flood Semantic Segmentation dataset (FSSD) in comparison
with the Flood Area dataset (FAD) and for the union of the two datasets (calculated as the weighted
average due to the varying number of images). The number of images for each dataset (Images),
accuracy (ACC), precision (PR), recall (REC), and F1-score (F1) (calculated as in Equation (14))
expressed in percentage are reported.

Dataset Images ACC PR REC F1 F1

FSSD 663 88.5% 79.8% 83.7% 81.7% 79.4%

FAD 290 84.9% 79.5% 78.6% 79.1% 77.3%

FSSD ∪ FAD 953 87.4% 79.7% 82.2% 80.9% 78.8%

Representative results for the Flood Semantic Segmentation dataset are shown in
Figure 13. Flood segmentation is shown in blue overlaying the original image with the
flood’s borders emphasized in dark blue. The same technique is used to present the ground
truth as well. The best flood segmentation scored 99.6% in F1. As we can observe, the
excellent segmentations are capable of capturing the flood in its full or almost full extent
(Figure 13a,b). Furthermore, high-performing results segment flood details in challenging
environments characterized by interference of numerous natural or man-made obstacles
(Figure 13c,d). Of course, the same issues leading to poor performance exist, as described
in Section 4.3. Figure 13e presents such a low-performance segmentation, where the
luminosity of the sky prevents its exclusion from the PFAs. This results in the sky’s pixels
being assigned significant weights, consequently influencing subsequent probabilities, and
ultimately causing them to be misclassified as flood during the hysteresis thresholding
isocontour evolution procedure.
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Image Ground Truth UFS-HT-REM

(a) F1 = 93.2%, ACC = 95.5%, PR = 90.0%, REC = 96.7%

(b) F1 = 89.3%, ACC = 91.6%, PR = 81.8%, REC = 98.3%

(c) F1 = 80.7%, ACC = 93.1%, PR = 71.3%, REC = 92.9%

(d) F1 = 76.9%, ACC = 85.5%, PR = 63.6%, REC = 97.3%

(e) F1 = 10.8%, ACC = 54.6%, PR = 7.2%, REC = 21.5%

Figure 13. Representative results of the proposed methodology (UFS-HT-REM) from the Flood
Semantic Segmentation dataset. Original images, ground truth, and the final segmentation of the
proposed method are shown from left to right.

5. Conclusions and Future Work

Overall, we presented a fully unsupervised approach for flood detection in color
images acquired by flying vehicles such as UAVs and helicopters. The method progressively
eliminates image regions identified as non-flood using binary masks generated from color
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and edge data. Our method operates in a fully unsupervised manner, with no need for
training and ground truth labeling. We iteratively apply the same algorithmic steps to each
color component. Subsequently, a binary map is generated for each component, discarding
regions identified as non-flood and producing a final mask of potential flood areas (PFAs),
refined through basic morphological operations. By weighting the pixels within the PFAs,
we calculate an estimation of the dominant color of the flood, and a hysteresis thresholding
technique is employed to achieve the final segmentation through probabilistic region
growing of an isocontour. To the best of our knowledge, it is the first unsupervised
approach to tackle this problem.

In this work, we showed that the following simple features suffice to accurately
solve the problem of unsupervised flood detection. First of all, the flood’s color is similar
wherever it appears within the image, and this color differs from the background. Almost
always, the flood’s color is not green, assuming tree-like vegetation to be covered with
water is extreme. Finally, in the LAB colorspace, the flooded area exhibits a higher value in
at least one of the color components than the background. The color quality and camera
rotation angle of the captured image contribute to the solidity of our observations, and thus
a good amount of control over the flying vehicle while capturing the images will support
the aforementioned inferences.

To show the robustness of the proposed method, we utilized two datasets containing
a total of 953 images, representing diverse real-world areas affected by flood events. All
images were acquired by various UAVs operating under different weather conditions and
performing a range of flying maneuvers over diverse areas. Our method demonstrated
strong generalization to new, unseen data, as it is entirely unsupervised and parameter-
free. Since no training is required, all images were exclusively used for testing purposes.
Furthermore, we have introduced a categorization of the Flood Area dataset, according
to the depicted scenery and camera rotation angle, into rural and urban/per-urban, and
no sky and with sky, respectively. We showed that our approach performs well in all
categories, slightly excelling in segmenting floods in rural environments and is better
suited for acquired images that do not contain sky, which is a controllable factor when
maneuvering the UAV. Experimental results confirmed that our proposed approach is
robust, performs well in metrics, and is comparable to recent DL approaches, although not
outperforming them.

The proposed parameter-free approach is highly efficient, with an inference time of
approximately half a second, and does not require image pre-processing or GPU core
processing capabilities. This makes the method suitable for on-board execution, allowing
real-time flood segmentation to guide relief efforts, thereby preventing loss of life and
mitigating the impact of floods on infrastructure. Although the proposed unsupervised
method does not outperform any supervised method, it scores in close proximity, being
lower by only 6.6% of the best DL method (FASegNet) in accuracy.

In future research, we plan to extend this work by detecting flooded buildings and
roads. This will refine existing flood segmentations and correct erroneous segmentations
that occur when the observations on which the method relies do not apply to the im-
age. Combined with suitable methodologies which identify buildings and roads, such as
Ref. [49], and cross-correlating the results, we will be able to (a) avoid misclassifications of
rooftop, building, and road pixels that have a color extremely similar to the flood, thus an-
ticipating attainment of improved outcomes and elevated scores in accurately segmenting
the flood event, and (b) identify damaged buildings, when most of their circumference is
adjacent to the flood and flooded roads, when there exist discontinuities in the structure.
These will help to even better assess the situation in the flood-hit area and more accurately
guide disaster assistance, evacuation, and recovery efforts. Additionally, we plan to exploit
the knowledge gained in order to construct specialized DL architectures, directing the
network’s attention towards the flood and even incorporating our classical computer vision
approach into hybrid deep learning frameworks tackling the problem.
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