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Abstract: The rapid and accurate estimation of leaf area index (LAI) through remote sensing holds
significant importance for precise crop management. However, the direct construction of a vegetation
index model based on multi-spectral data lacks robustness and spatiotemporal expansibility, making
its direct application in practical production challenging. This study aimed to establish a simple
and effective method for LAI estimation to address the issue of poor accuracy and stability that is
encountered by vegetation index models under varying conditions. Based on seven years of field
plot trials with different varieties and nitrogen fertilizer treatments, the Kalman filter (KF) fusion
method was employed to integrate the estimated outcomes of multiple vegetation index models, and
the fusion process was investigated by comparing and analyzing the relationship between fixed and
dynamic variances alongside the fusion accuracy of optimal combinations during different growth
stages. A novel multi-model integration fusion method, KF-DGDV (Kalman Filtering with Different
Growth Periods and Different Vegetation Index Models), which combines the growth characteristics
and uncertainty of LAI, was designed for the precise monitoring of LAI across various growth phases
of rice. The results indicated that the KF-DGDV technique exhibits a superior accuracy in estimating
LAI compared with statistical data fusion and the conventional vegetation index model method.
Specifically, during the tillering to booting stage, a high R2 value of 0.76 was achieved, while at
the heading to maturity stage, it reached 0.66. In contrast, within the framework of the traditional
vegetation index model, the red-edge difference vegetation index (DVIREP) model demonstrated a
superior performance, with an R2 value of 0.65, during tillering to booting stage, and 0.50 during the
heading to maturity stage, respectively. The multi-model integration method (MME) yielded an R2

value of 0.67 for LAI estimation during the tillering to booting stage, and 0.53 during the heading
to maturity stage. Consequently, KF-DGDV presented an effective and stable real-time quantitative
estimation method for LAI in rice.

Keywords: unmanned aerial vehicle; multi-spectral remote sensing; rice; leaf area index; data fusion

1. Introduction

Leaf area index (LAI) is half of the total intercepting area per unit ground surface
area [1]. It serves as a crucial parameter and physiological indicator for crop photosynthesis,
productivity, and water utilization [2]. The quantitative inversion of LAI through remote
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sensing technology holds immense significance in achieving precise crop management
strategies [3].

In recent years, consumer unmanned aerial vehicles equipped with multi-spectral
sensors have garnered significant interest in the field of LAI monitoring [4–6]. Given the
close relationship between spectral information from vegetation leaves and photosynthesis,
the development of a vegetation index model based on remote sensing imagery stands
as the primary approach for LAI inversion due to its simplicity and high computational
efficiency. The estimation methods can be broadly categorized into four groups. Firstly,
there is the direct application of classical vegetation indices, entailing the establishment of
quantitative models that directly relate these indices to LAI. For instance, Zhou et al. [7]
conducted a comparative analysis on the correlation between various classical vegetation
indices and LAI, revealing that the vegetation index comprising of red-edge band and near-
infrared band exhibited a superior monitoring efficacy for LAI compared to other indices.
The second type involves the development of a novel vegetation index, wherein the classical
vegetation index is modified to enhance the estimation accuracy under specific conditions.
For instance, Li et al. [8] devised the red-edge difference index to address inaccuracies
in LAI estimation caused by straw background in rice–wheat rotation fields. The third
category is radiative transfer models. Roosjen et al. [9] employed a multi-spectral camera
mounted on an unmanned aerial vehicle (UAV) to capture spectral data from multiple
angles. These data were then used as input parameters for the radiative transfer model,
resulting in an improved estimation accuracy for LAI and leaf chlorophyll content (LCC).
The fourth category encompasses the comprehensive utilization of vegetation indices,
entailing the simultaneous inversion of LAI using multiple vegetation indices. As an
illustration, Brede et al. [10] proposed a hybrid retrieval approach that combines various
vegetation indices with non-parametric machine learning regression algorithms and a
vegetation radiative transfer model. This method enabled the rapid and precise monitoring
of LAI, yielding an optimal inversion model with an RMSE value of 0.91. Despite the
simplicity and computational efficiency of the vegetation index model, selecting an optimal
vegetation index across different studies remains challenging, leading to a lack of continuity
in the study and utilization of novel vegetation indices.

Although various vegetation indices have been proposed for background elimina-
tion, their sensitivity to specific indicators and other issues prevent any single index from
integrating all advantages simultaneously. When dealing with the same set of remote
sensing data, different vegetation indices yield distinct outcomes due to their inherent limi-
tations and biases, whereas employing a multi-model integration approach can effectively
mitigate the bias associated with individual models, thereby enhancing the estimation
accuracy [11,12]. Simultaneously, this method enables the amalgamation of each model’s
strengths in LAI estimation, facilitating more precise and dependable results. Commonly
employed multi-model integration techniques for LAI estimation encompass three cat-
egories. The first method is the average or median method, which involves the simple
average or weighted fusion of LAI outputs from different models. The resulting perfor-
mance surpasses that of a single vegetation index model [13]. The second approach involves
the utilization of machine learning techniques, wherein multiple vegetation indices and
measured data are employed to train a model for predicting LAI [14,15]. Furthermore, a
comprehensive integration of the aforementioned methods was adopted. For instance, Yue
et al. [16] utilized a vegetation index weighting method to estimate LAI from RGB and
hyperspectral images captured using UAVs, which was further enhanced by incorporating
the random forest regression technique to improve the estimation accuracy of LAI. It is
evident that the integration of multiple models can significantly enhance the accuracy of
LAI estimation. The multi-model integration of machine learning methods is a black box
model, which lacks a mechanism and its use is more complex, as well as its precision essen-
tially being dependent on the quantity and dimension of the sample [17]. Consequently,
there is a need for a multi-model integration method that exhibits simplicity in application,
mechanical rationality, and robustness in practical scenarios.
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The Kalman filter (KF) fusion technique is a state model estimation-based weighted
fusion method that effectively mitigates the uncertainty level of the fusion model by
leveraging uncertainty information for accurate state prediction and estimation [18,19]. In
comparison with other multi-model integration methods, KF fusion is more real-time and
is capable of processing large amounts of data within a short time frame [20]. Recently, KF
fusion has gained widespread adoption across various research fields. For instance, Jin
et al. [21] proposed a novel assimilation scheme based on the Ensemble Kalman Filter, which
effectively integrated multi-temporal and multi-resolution remote sensing observations to
estimate LAI. This approach successfully captured temporal changes in LAI across multiple
scales, thereby enhancing the accuracy of LAI estimation. Lai et al. [22] have developed
an adaptive KF fusion method, which exhibits a superior estimation accuracy in terms of
unknown delay and loss probability compared to existing methods. In summary, while
KF fusion effectively addresses the uncertainty associated with a single model, there is a
dearth of feature analysis and adaptive algorithm enhancements for fusion targets in LAI
estimation studies.

A practical and robust approach for estimating LAI should possess simplicity, accu-
racy, repeatability, and versatility. Current studies on LAI monitoring primarily rely on
machine learning and other sophisticated methods to enhance accuracy. Nevertheless, these
approaches are relatively intricate and lack practical advantages. Although the vegetation
index model method is straightforward, it lacks sufficient robustness and universality. In
this study, multiple groups of vegetation indices were calculated based on the Mini-MCA
multi-spectral imager, and their quantitative relationship with LAI was investigated. Sev-
eral vegetation index models exhibiting a high correlation were selected for KF fusion to
improve the accuracy and stability of the estimation results. Therefore, the aims of this
study are as follows: (1) to quantify the uncertainty of diverse vegetation index models and
construct KF fusion models; (2) to develop a multi-model integrated monitoring approach
for the LAI of rice that accounts for different growth stages and varying combinations of
vegetation index models; and (3) to assess the impact of various multi-model integration
techniques on the precision of LAI monitoring models.

2. Materials and Methods
2.1. Experimental Design

The experiments were conducted at the National Information Agriculture Engineering
Technology Center (NETCIA) test station in Rugao, Jiangsu Province, China. The study
consisted of nine field plot experiments where furrow plots were mulched and irrigated
with distinct drainage systems. These experiments included different years, nitrogen
fertilizer levels, planting densities, and rice varieties as varying factors. Remote sensing
images were obtained using the Mini-MCA multi-spectral imager for experiments 1–8 and
Airphen for experiment 9. The specific test design and sampling times are shown in Table 1.

Table 1. Details of the field treatments used in this study.

Experiment
(Exp.) Rice Variety

Nitrogen
Fertilization

Rate (kg·ha−1)
Plant Density

(cm × cm) Imagery Acquisition Date

Exp. 1 (2014) Wuyunjing24 (V1), Eryou1 (V2) 0 (N0), 100 (N1)
200 (N2), 300 (N6)

30 × 15 (D1)
50 × 15 (D2)

07/14, 07/26, 08/05, 08/18,
08/29, 09/05, 09/21, 10/02

Exp. 2 (2015) Wuyunjing24 (V1), Eryou1 (V2) 0 (N0), 100 (N1)
200 (N2), 300 (N6)

30 × 15 (D1)
50 × 15 (D2)

07/22, 07/28, 08/04, 08/17,
08/28, 09/04, 09/20

Exp. 3 (2016) Wuyunjing24 (V1), Eryou1 (V2) 0 (N0), 100 (N1)
200 (N2), 300 (N6)

30 × 15 (D1)
50 × 15 (D2)

07/22, 08/02, 08/11, 08/25,
09/09, 09/18, 10/03

Exp. 4 (2017) Wuyunjing27 (V3), Eryou728 (V4) 100 (N1), 300 (N6) 30 × 15 (D1) 07/16, 07/25, 08/13, 08/23,
09/06, 09/14, 10/02

Exp. 5 (2018) Wuyunjing27 (V3), Eryou728 (V4) 100 (N1), 300 (N6) 30 × 15 (D1) 07/20, 08/05, 08/14, 08/23,
08/28, 09/04,09/14

Exp. 6 (2019) Wuyunjing27 (V3), Sueryou295 (V5) 100 (N1), 300 (N6) 30 × 15 (D1) 07/23, 08/05, 08/14, 08/19,
09/07, 09/20, 10/03
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Table 1. Cont.

Experiment
(Exp.) Rice Variety

Nitrogen
Fertilization

Rate (kg·ha−1)
Plant Density

(cm × cm) Imagery Acquisition Date

Exp. 7 (2018)

W30 (V6), Tianlong619 (V7),
Tianlong6 (V8), Suxiang3 (V9),

Suxiang100 (V10),
Fengyouxiangzhan (V11),

Changyou5 (V12), Huaidao5 (V13),
Ningjing8 (V14), Wuyunjing30 (V15),
Nanjing5055 (V16), Nanjing46 (V17),

240 (N4), 270 (N5) 30 × 15 (D1)
07/20, 07/28, 08/05, 08/14,
08/23, 08/28, 09/04, 09/14,

09/22, 10/01

Exp. 8 (2019)

Tianlong619 (V7), Tianlong6 (V8),
Fengyouxiangzhan (V11), Changyou5 (V12),

Huaidao5 (V13), Ningxiangjing8 (V14),
Wuyunjing30 (V15), Nanjing5055 (V16),

Nanjing46 (V17), Huajing5 (V18),
Yangiing3012 (V19), Nanjing9108 (V20)

225 (N3), 270 (N5) 30 × 15 (D1)
60 × 15 (D3)

07/23, 07/29, 08/05, 08/14,
08/19, 08/22, 09/07, 09/12,

09/20, 09/28, 10/03

Exp. 9 (2020)

Suxiang100 (V10), Fengyouxiangzhan (V11),
Changyou5 (V12), Huaidao5 (V13),

Ningxiangjing8 (V14),
Wuyunjing30 (V15), Nanjing5055 (V16),

Nanjing46 (V17), Huajing5 (V18),
Yangiing3012 (V19), Nanjing9108 (V20),

Changnongjing10 (V21)

225 (N3)
270 (N5)

30 × 15 (D1)
60 × 15 (D3)

07/17, 07/24, 08/18, 08/23,
09/03, 09/13, 09/24, 10/05

2.2. UAV Multi-Spectral Data Acquisition and LAI Determination

The UAV utilized in this study is the DJI M600 PRO, a six-rotor drone manufactured
by DJI in Shenzhen, China. During experiments 1–8, the UAV was equipped with the
MiniMCA-6 multi-spectral camera (Tetracam, Inc., Chatsworth, CA, USA). This camera
captures images across various spectral bands, as follows: B1 (490 nm), B2 (550 nm),
B3 (680 nm), B4 (720 nm), B5 (800 nm), and B6 (900 nm). In experiment 9, an Airphen
multi-spectral camera (Hiphen, Inc., Avignon, France) was mounted on the drone for
data collection purposes. The flights were conducted during the critical growth period
in rice under favorable weather conditions between 10 a.m. and 2 p.m., ensuring clear
skies and minimal wind or low wind speeds. Image processing procedures referred to the
methods of Li et al. [23]. Following each UAV flight session, a destructive sampling took
place within each test plot where three typical plant holes were selected for leaf area index
determination. After sampling, the green leaves were separated from the stems and the leaf
area was measured using the LI-3100C laser plant meter (LI-3100C; LICOR Inc., Lincoln,
NE, USA). According to planting density, the LAI was calculated for each treated plot.

2.3. Vegetation Index

To fully exploit the multi-band information captured using a multi-spectral camera,
12 widely used vegetation indices were selected in this study. The calculation formulas are
presented in Table 2. Additionally, the modeling accuracy of each vegetation index and
LAI in both linear and exponential forms was analyzed.

Table 2. Selected vegetation indices and corresponding multi-spectral camera band calculation formulas.

Vegetation Index Full Name Calculation Formula Reference

NDVI Normalized difference vegetation index (B5 − B3)/(B5 + B3) Rouse [24]

NDVIREP Red-edge normalized difference vegetation index (B5 − B4)/(B5 + B4) Fitzgerald et al. [25]

DVI Difference vegetation index B5 − B3 Jordan [26]

DVIREP Red-edge difference vegetation index B5 − B4 Jordan [26]

RVI Ratio vegetation index B5/B3 Roujean et al.,
Deng et al. [27,28]

RVIREP Red-edge ratio vegetation index B5/B4 Roujean et al. [27]
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Table 2. Cont.

Vegetation Index Full Name Calculation Formula Reference

SAVI Soil-adjusted vegetation index 1.5 × (B5 − B3)/(B3 + B5 + 0.5) Huete [29]

GNDVI Green normalized difference vegetation index (B5 − B2)/(B5 + B2) Taddeo et al. [30]

OSAVI Optimized soil-adjusted vegetation index (B5 − B3)/(B3 + B5 + 0.16) Wu et al. [31]

EVI Enhanced vegetation index 2.5 × (B5 − B3)/(B5 + 6 × B3 − 7.5 × B2 + 1) Jiang et al. [32]

kNDVI kernel Normalized difference vegetation index tanh(NDVI2) Gustau et al. [33]

NIRv Near-infrared reflectance of vegetation (NDVI − 0.08) × B5 Badgley et al. [34]

2.4. Multi-Model Fusion Approach

(1) The multi-model integration method (MME) based on simple statistical analysis
includes three methods. The first is the average method, which assigns equal weight
to the estimated results of all vegetation index models. The second is the average after
de-minimization method, which calculates the average after removing the maximum and
minimum values. The third is the median method, which arranges the estimated results of
all vegetation index models in order and takes the median.

(2) The multi-model integration method based on a KF is a data assimilation technique
proposed by Evensen [35]. The uncertainty of the measurement is taken into account to
provide a more accurate state estimate. By calculating the predicted value and variance
of the fusion model using µ and σ from each individual model, this approach effectively
leverages uncertainty information to achieve state prediction and estimation. Therefore,
the KF fusion algorithm was employed to filter and fuse the estimated results obtained from
vegetation index models in this study. Two exemplary models utilizing the classical KF fusion
formula were used to illustrate this approach. In this context, µ represents the mean of the
model, σ represents the standard deviation of the model, and f(x) denotes a function that
describes the system’s state transition. The variable x typically denotes the state vector of the
system, while i is used to distinguish the empirical models being fused. µ′ represents the
mean of the new model, and σ′ represents the standard deviation of the new model.

(1) The model prediction equation represents the probability density function of a normal
distribution. Here, fi(x) is the probability density of the variable x for the i-th model.

fi(x) =
1√

2πσi

− (x−µi)
2

2σ2
i (1)

(2) Prediction equation after fusion of two models. When combining two normal distri-
butions, the resulting function f(x) represents the fused prediction. The means and
variances from both models are incorporated into a single exponent, implying the
combined influence of both distributions on the variable x.

f (x) =
1

2πσ1σ2

−[
(x−µ1)

2

2σ2
1

+
(x−µ2)

2

2σ2
2

]
(2)

(3) If f ′(x) = 0, the inclusion center of the function, which represents the average value
in the prediction model, can be determined. This formula gives the new mean µ′ after
fusing two models. It is a weighted average of the means µ1 and µ2 of the individual
models, where the weights are determined by the variances σ2

1 and σ2
2 .

µ′ = µ1 +
σ2

1 (µ2 − µ1)

σ2
1 + σ2

2
(3)
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(4) If f ′′(x) = 0, the degree of dispersion of the function, that is, the variance of the
prediction model, can be obtained as follows:

σ′2 =
σ2

1 − σ2
2

σ2
1 + σ2

2
(4)

(5) If multiple models are fused, they form a new prediction model. This extends the
concept of fusing two models to i models. The resulting fused prediction model f(x)
incorporates the influence of i different normal distributions.

f (x) =
1

2πσ1σ2 . . . σi

−[
(x−µ1)

2

2σ2
1

+
(x−µ2)

2

2σ2
2

+···+ (x−µi)
2

2σ2
i

]
(5)

(6) Find the predicted value and variance of the fusion model, f ′(x) = 0 and f ′′(x) = 0.

The multi-model integration method, based on the fusion of dynamic variance KF,
was devised to address the necessity for vegetation index monitoring models with different
LAI to account for inversion errors within specific ranges. Specifically, it aims to ensure
that more than 68% of these errors fall within one standard deviation, more than 95% fall
within two standard deviations, and more than 99% fall within three standard deviations.
To accomplish this objective, a dynamic equation for σ is formulated and incorporated into
the new prediction model.

KF-DGDV is a specialized application that utilizes the traditional KF method, inte-
grating data through a variety of vegetation indices across distinct growth stages in order
to optimize outcomes. Compared to the previous KF fusion method, this approach better
aligns with the variation characteristics of LAI.

The technical roadmap for this study is illustrated in Figure 1.
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2.5. Data Utilization and Analysis

Correlation analysis was performed to examine the relationship between the calculated
vegetation index and the LAI value of rice. Subsequently, a set of vegetation indices
exhibiting a strong correlation were selected as the input variables for the aforementioned
data fusion process, aiming to assess the accuracy of various data fusion models.

To assess the accuracy of data fusion, coefficients of determination (R2), root mean
square error (RMSE), and mean absolute percentage error (MAPE) were employed to
compare the measured value with the remote-sensed value. Here, O and P represent the
measured and predicted values, respectively, while n represents the number of samples.

R2 =

∑n
i=1

(
Oi − O

)(
Pi − P

)√
∑n

i=1
(
Oi − O

)2


2

(6)

RMSE =

√
∑n

i=1(Oi−Pi)
2

n
(7)

MAPE =
100%

n ∑n
i=1

∣∣∣∣Pi − Oi
Oi

∣∣∣∣ (8)

The nine aforementioned experiments were categorized into four experimental groups.
The whole growth period was divided into two growth stages—the tillering–booting stage
(S1) and the heading–maturity stage (S2)—and the effect difference of the whole growth
stage modeling (WM) and growth stage modeling (SM) was compared.

The entire dataset was utilized for analyzing the relationship between the spectrum
and the LAI, as well as investigating the impact of data fusion. The model was constructed
using different test groups, and the generalization ability was verified by the remaining
test experiments.

Detailed information regarding specific test groups and datasets can be found in
Table 3.

Table 3. Experiment group and testing dataset usage description.

Experiment Experimental Group Dataset Interannual
Generalization Test

Intervarietal
Generalization Test

Inter-Sensor
Generalization Test

Exp. 1
Group 1

G1S1WM
G1S1SM

G1S2WM G1S2SM

model building model building model building
Exp. 2 model validation model building model building
Exp. 3 model building model building model building
Exp. 4

Group 2
G2S1WM G2S1SM

G2S2WM
G2S2SM

model building model building model building
Exp. 5 model validation model building model building
Exp. 6 model building model building model building
Exp. 7 Group 3 G3S1WM G3S1SM

G3S2WM G3S2SM
model validation model validation model building

model buildingExp. 8 model building model validation
Exp. 9 Group 4 / / / model validation

3. Results
3.1. Vegetation Index Estimation Model of Rice LAI
3.1.1. Relationship between LAI and Vegetation Index of Rice during the Whole
Growth Period

Studies have demonstrated a discernible association between the LAI and the veg-
etation index throughout all the growth stages of rice (Table 4). Most vegetation indices
displayed a significant correlation with the LAI, with the exception of certain experiments
where the ratio vegetation index (RVI) and the enhanced vegetation index (EVI) exhibited
an insignificant correlation. Compared to the non-red-edged vegetation index, the red-
edged vegetation index of the same type exhibited a superior performance, with an average
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increase in R2 of 0.27. It was noteworthy that RVIREP demonstrated the most significant
enhancement in accuracy when compared to RVI.

Table 4. Coefficients of determination between the LAI and the vegetation indices at all the growth
stages in rice under a linear model.

Experiment NDVI NDVIREP DVI DVIREP RVI RVIREP SAVI GNDVIOSAVI EVI kNDVI NIRv

Group 1 0.48 0.69 0.57 0.67 0.11 0.65 0.58 0.61 0.57 0.42 0.65 0.65
Group 2 0.36 0.45 0.49 0.66 0.02 0.34 0.49 0.53 0.47 0.25 0.57 0.58
Group 3 0.27 0.49 0.22 0.50 0.01 0.44 0.28 0.38 0.31 0.04 0.45 0.28

All experiments 0.38 0.55 0.44 0.61 0.03 0.49 0.45 0.50 0.44 0.24 0.54 0.53

Among the three groups, DVIREP (Figure 2a) exhibited the highest and most signifi-
cant correlations, followed by NDVIREP (Figure 2b). A comprehensive analysis of all test
results revealed that DVIREP demonstrated the strongest correlation, with an R2 value of
0.61. However, for LAI > 6.0, the model inversion results displayed a greater divergence,
leading to larger deviations compared to NDVIREP.
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Figure 2. Correlations of LAI with DVIREP (a) and NDVIREP (b) at all growth stages in rice.

3.1.2. Relationship between LAI and Vegetation Index of Rice at Different Growth Stages

The LAI throughout the entire rice growth stage was divided into two stages—the
tillering–booting stage and the heading–maturity stage. The results showed that both the
RMSE (Figure 3a) and the MAPE (Figure 3b) exhibited a consistent reduction across all trial
groups. On average, there was a decrease of 0.29 in the RMSE, and a reduction of 13.2% in
the MAPE, with most differences being statistically significant. Significantly, group 3, which
is based on multiple varieties, demonstrated the most pronounced improvement in error
reduction, particularly during the pre-heading stage. Compared with the DVIREP model that
is constructed using data from the entire growth period (Figure 2a), the models based on the
stages before (Figure 4a) and after heading (Figure 4b) resulted in an enhanced accuracy of
LAI estimation and an improved convergence, as depicted using scatter plot analysis.

3.2. Estimation of Rice LAI Based on Statistical Data Fusion

The most commonly employed data fusion method for estimating multiple vegetation
index models in this study involves utilizing statistical techniques such as mean and
median for ensemble forecasting. To improve the modeling accuracy, the two vegetation
indices with the poorest performance, namely RVI and EVI, were excluded. Subsequently,
data fusion methods including average, average after de-extremum removal, and median
were applied to the remaining ten vegetation indices (Figure 5). The results indicated
that these three statistical-based data fusion methods effectively enhance the accuracy of
LAI estimation and reduce errors, particularly during the tillering to booting stage. By
employing these statistical fusion methods instead of directly using a vegetation index
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model at these stages, significant improvements were observed, with a decrease in RMSE
of 0.1 and a decrease in MAPE of 12.3%. Similarly, throughout the heading to maturity
stage, there was an average decrease of 0.04 in RMSE, and 2.2% in MAPE. In particular,
after removing the extreme values, the average method exhibited a superior accuracy, with
the lowest RMSE observed among all approaches considered. Furthermore, compared
to the other two methods, it is evident that the median method demonstrates enhanced
convergence capabilities for outliers, while maintaining minimal mean absolute percentage
error levels.
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3.3. Estimation of Rice LAI Based on KF Fusion Method
3.3.1. Estimation of Rice LAI Based on Classical KF Fusion Method

The foundation of KF fusion lies in the recognition that every vegetation index model
is subject to errors, which follow a Gaussian distribution. First, the normal distribution of
the discrepancy between the estimated results of ten vegetation index models employed
in this study and the measured LAI was assessed. Subsequently, the variance as an input
parameter for KF fusion was determined in subsequent steps. Table 5 presents the disparity
results between all vegetation index models and the measured LAI. The absolute value
of kurtosis was below 10 and skewness falls within a range less than 3, satisfying both
Gaussian distribution requirements and fundamental conditions for KF fusion. The fusion
results are depicted in Figure 6. During the tillering to booting stage, the KF fusion method
demonstrated a comparable estimation accuracy to the three statistical data fusion methods.
However, as maturity is approached, a notable improvement was observed, with an average
decrease of 0.12 in RMSE, and a 2.8% reduction in MAPE compared to the statistical data
fusion method, indicating an enhanced performance.

Table 5. Normal distribution test of difference between rice vegetation index modeling results and
measured LAI and parameter calculation.

NDVI NDVIREP DVI DVIREP RVIREP SAVI GNDVI OSAVI kNDVI NIRv

µ 0.0046 0.0046 0.0047 0.0047 0.0232 0.0046 0.0048 0.0047 0.0397 0.0401
Sigma 1.9647 1.6084 1.5025 0.9821 1.3299 1.5475 1.4417 1.6269 3.0189 3.0761
Skew 1.05 0.22 0.52 0.37 0.09 0.67 0.89 0.84 −1.60 −1.49

Kurtosis 2.27 4.71 1.01 1.20 5.26 1.25 2.21 1.64 4.79 4.80

The results showed that KF fusion exhibits a superior prediction accuracy for LAI
for the heading to maturity stage, with lower RMSE and MAPE values compared to other
fusion methods. Independent analysis of the fusion results from different experimental
groups indicated that across all experimental groups, KF fusion outperformed statistical
data fusion methods such as the average method, in terms of prediction accuracy. This
superiority was particularly evident in the experimental group characterized by a poor
estimation accuracy and a greater uncertainty of vegetation index model.
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3.3.2. Estimation of Rice LAI using KF Fusion Method Based on Dynamic Variance

The LAI of rice exhibited a gradual increase from the tillering to booting stage, followed
by a subsequent decrease from the heading to maturity stage. In particular, during the
tillering to booting stage, lower LAI values were predominantly observed. Nevertheless, if
a vegetation index model was employed for LAI estimation, the mean variance exceeds
1 at each growth stage. Utilizing smaller LAI values and larger variances as the input
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parameters for the KF fusion method poses challenges in fully harnessing its advantages in
uncertainty fusion and reduction. This observation may also elucidate why the accuracy
of LAI estimation based on the classical KF fusion method during the tillering to booting
stage does not significantly differ from other fusion methods.

By formulating a dynamic equation (Table 6), the results indicated that the dynamic σ

method effectively reduced the average σ value by 30.9% during the tillering to booting
stage, and by 20.4% during the heading to maturity stage compared with the fixed σ ap-
proach. Moreover, through employing dynamic σ KF fusion, significant improvements
were observed in terms of the R2 coefficient of determination across all experiments. Addi-
tionally, the RMSE was reduced by 0.15 in the tillering stage, and by 0.12 in the maturity
stage, respectively, while the MAPE successfully exhibited a decrease of 5.5% from the
tillering to booting stage, and a reduction of 1% from the heading to maturity stage.

Table 6. Fusion accuracy of different σ determination methods.

Precision
Evaluation Index

Sigma
Determination Method

Tillering–Booting Stage Heading–Maturity Stage
G1 G2 G3 Average G1 G2 G3 Average

Average σ
Fixed sigma 1.7264 1.7264 1.7264 1.7264 1.8549 1.8549 1.8549 1.8549
Dynamic σ 1.2594 1.3859 1.2823 1.3185 1.5619 1.4827 1.5848 1.5413

R2 Fixed sigma 0.80 0.73 0.49 0.67 0.67 0.63 0.45 0.58
Dynamic σ 0.82 0.76 0.53 0.70 0.69 0.65 0.50 0.61

RMSE
Fixed σ 1.01 1.01 2.07 1.36 1.45 1.15 2.20 1.59

Dynamic σ 0.96 0.97 1.92 1.28 1.39 1.09 1.93 1.47

MAPE
Fixed σ 50.2% 28.8% 55.4% 44.8% 26.1% 29.7% 35.5% 30.5%

Dynamic σ 49.9% 26.5% 49.9% 42.1% 25.2% 28.7% 31.7% 29.5%

3.4. Adaptive Optimization of KF Fusion Method
3.4.1. Determination of the Number of Optimal Coupled Vegetation Indices

The presence of multicollinearity was initially assessed using the variance inflation fac-
tor (VIF). Variables with VIF values exceeding 10 generally indicate severe multicollinearity
and should be eliminated. VIF analysis was conducted to examine multicollinearity among
variables (Figure 7); the results showed that most vegetation indices exhibited a variance
expansion factor below 5. DVI and SAVI demonstrate a higher variance expansion factor
due to shared components in their calculation formulas. On the contrary, there was a
heavy multilinearity observed between NDVI, kNDVI, and NIRv. Therefore, the next study
selected the more commonly used NDVI and no longer analyzed kNDVI and NIRv.
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According to the average correlation between the rice LAI and each vegetation index in
this study, the descending order was conducted, and the data fusion of all eight vegetation
index models was compared; the fusion number was successively reduced until the fusion
accuracy of the two vegetation index models with the best correlation was reached (Table 7).
The results indicated that there was an initial increase followed by a decrease in the
coefficient of determination, as the coupling number decreased. Similarly, both RMSE and
MAPE values initially decreased but then increased with decreased coupling number. The
trends observed for fixed error and dynamic error were essentially similar. It is worth
noting that if the four vegetation indices that exhibit the highest correlation with LAI
were fused using KF fusion, it yielded a superior performance in terms of determination
coefficients, RMSE, and MAPE values.

Table 7. Accuracy evaluation of different quantitative vegetation index model data fusion.

Number of Couplings 8 7 6 5 4 3 2

R2 Fixed variance 0.641 0.665 0.677 0.695 0.704 0.696 0.674
Dynamic variance 0.670 0.683 0.692 0.713 0.718 0.722 0.693

RMSE
Fixed variance 1.443 1.425 1.419 1.405 1.406 1.399 1.416

Dynamic variance 1.348 1.328 1.313 1.308 1.297 1.299 1.310

MAPE
Fixed variance 40.2% 37.8% 35.6% 34.3% 34.0% 35.7% 34.8%

Dynamic variance 37.9% 36.4% 34.5% 33.4% 33.5% 35.1% 34.7%

3.4.2. Effects of Different Vegetation Index Combinations in Different Growth Periods on
Fusion Accuracy

Figure 8a shows that most vegetation index models exhibit a tendency to overestimate
during the tillering and jointing stages, while underestimating during the filling and
ripening stages. Simultaneously, in the KF fusion evaluation of various vegetation index
models, it was found that the fusion effect of the four models with the highest correlation
was better than that of other models. Consequently, in terms of data fusion, the KF-DGDV
method was used, which integrated different growth periods and different combinations
of vegetation indices. Four vegetation index models with the highest correlation were
selected, denoted by white numbers at each growth stage (Figure 8b).
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Using different combinations of vegetation index models across various growth stages
(Figure 9), the results showed that the KF-DGDV method effectively enhances the LAI
estimation accuracy of rice and outperformed other KF fusion methods. In comparison to
DVIREP, which exhibited a superior performance in the single vegetation index model, the
KF-DGDV method expressively improved the LAI estimation accuracy by increasing the
average R2 value by 0.13 and performed well in reducing the MAPE and RMSE values. The
average decrease in RMSE was 0.23, whereas the decline in MAPE amounted to 7.2%. These
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findings indicated a significant enhancement in LAI estimation compared to traditional
vegetation index model methods.
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3.5. Prediction Results of Each LAI Estimation Model under Different Scenarios

The transferability of vegetation index model, MME, and KF-DGDV fusion across
different years and rice varieties was further compared and analyzed (Table 8). The results
revealed that the transfer of the vegetation index model exhibited a poor performance
between different years and rice varieties, particularly among diverse rice varieties. More-
over, it was observed that the transferability of models varied before and after heading,
but remained relatively consistent across different varieties in rice. Both the MME and
KF-DGDV models effectively addressed the issue of inadequate transferability in contrast
to conventional vegetation index models. Notably, KF-DGDV demonstrated a superior
performance, with a reduction in RMSE of 0.23 during the tillering to booting stage, and of
0.41 during the heading to maturity stage. This enhancement can be attributed to accurately
capturing model uncertainty levels while minimizing the overall uncertainty levels.

Table 8. Accuracy evaluation of single vegetation index model, MME, and KF fusion in different year
and rice variety scenarios.

Precision Evaluation Index Scenes
Tillering–Booting Stage Heading–Booting Stage

DVIREP Average KF-DGDV DVIREP Average KF-DGDV

R2 Year 0.65 0.63 0.67 0.51 0.56 0.55
Variety 0.55 0.57 0.59 0.54 0.55 0.57

RMSE
Year 1.46 1.43 1.26 2.01 1.90 1.59

Variety 1.62 1.59 1.35 1.83 1.55 1.43

MAPE
Year 44.0% 46.2% 43.8% 33.5% 33.8% 32.2%

Variety 53.5% 49.4% 47.4% 28.6% 27.2% 26.7%

Finally, the fusion performance of the vegetation index model, MME, and KF-DGDV
was validated using another multi-spectral sensor (Figure 10). Compared to the remote
sensing data obtained using AIRPHEN, all three LAI estimation models demonstrated
consistency with the results from the Mini-MCA sensor. Moreover, both the average method
and KF-DGDV effectively improved the low estimation accuracy of a single vegetation
index model. Remarkably, KF-DGDV exhibited a superior effectiveness, as evidenced by a
decrease in RMSE of 0.45 from the tillering to booting stage, and of 0.21 from the heading to
maturity stage. These results indicated that the KF-DGDV method proposed in this study
was also applicable to other multi-spectral sensors.
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4. Discussion

The primary limitation of the conventional vegetation index model method for es-
timating LAI resides in its insufficient adaptability, which impeded the expansion and
application of the model [36,37]. Different crop varieties and agricultural management
practices can result in significant variations in vegetation growth characteristics, thereby
directly impacting the accuracy and stability of conventional vegetation index models
during monitoring processes [38]. Due to the inherent limitations of traditional vegetation
index models in accurately capturing the growth status of individual crops, there may be
potential errors when monitoring diverse varieties and fields managed under different
agricultural approaches.

Data fusion is a methodology employed to enhance the precision and robustness
of outcomes, constituting a widely debated subject across various disciplines. The pre-
vailing consensus asserts that amalgamating multiple data sources through data fusion
can augment accuracy and yield more precise inferences compared to relying solely on
individual datasets [39]. Studies have demonstrated that the fusion of multiple vegetation
index models can lead to a higher accuracy in the monitoring of the LAI of rice compared
with using a single index alone, thereby emphasizing the significance of data fusion [40].
Firstly, this study unveiled the advantage of dividing modeling process into two distinct
growth stages, namely pre-heading and post-heading; the main reason for this was that
the LAI increased before the heading stage and decreased after the heading stage, which
aligned with previous research findings [41]. Secondly, both statistical data fusion and KF
fusion techniques applied to various vegetation indices contribute prominently towards
enhancing LAI estimation accuracy. This underscores the immense potential of data fusion
in effectively monitoring crop growth dynamics [42,43]. Previous studies have primarily fo-
cused on applying and comparing fusion methods to optimize efficiency, enhance accuracy
through increased parameters, or employ machine learning for big data fusion, which often
overlook analyzing and leveraging the inherent characteristics of the study target itself.

The robustness of the model may be influenced by multicollinearity among vari-
ables [44,45]. To address this, a multicollinearity test was initially conducted in the proposed
fusion method. The selected vegetation index demonstrated no evidence of multicollinearity.
Additionally, it is worth noting that each vegetation index exhibits a varying performance
and accuracy across different growth stages [46]. In this study, a superior performance was
achieved through KF fusion using distinct combinations of vegetation indices during different
growth stages. This outcome can be attributed to the unique and complementary information
provided by each vegetation index due to their diverse band combinations, aligning with
previous findings [47]. In KF data fusion research, it is common practice to fix parameters
after calculating σ and proceed with the fusion process. However, since the uncertainty of
LAI inversion using the vegetation index model increased with the increase in LAI value, the
error also increased if the LAI value was minor and the unified σ was adopted.
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Compared to the conventional KF filtering fusion method, this study integrated the
uncertainty characteristics of LAI [48] and proposed a dynamic variance method for filtering
fusion. The accuracy of this approach surpasses that of the traditional fixed variance
method. Different vegetation index models have their own strengths and limitations in
monitoring the rice leaf area index. For instance, NDVI and DVI are more effective for
early stage monitoring, while DVIREP and NDVIREP with red edges exhibit a higher
accuracy during later growth periods [49]. The SAVI model can effectively eliminate
ground background interference, thereby enhancing monitoring precision [50]. In this
study, we applied the SAVI index to monitor the tillering and maturity stages. Considering
the variations in vegetation index performance and uncertainty across different growth
stages [51], we developed the KF-DGDV method to improve the LAI estimation accuracy
for rice; our results indicate that this approach outperforms classical Kalman filter fusion
methods [52]. Unlike methods involving radiative transfer models that yield a large variety
of data types, or deep learning methods that often lack interpretability, KF-DGDV can be
directly applied to enhance the accuracy of traditional empirical models, making it both
stable and effective. Prominently, the KF-DGDV algorithm offered several advantages—it
effectively incorporates changes in LAI inversion accuracy and uncertainty throughout
different growth periods, enabling the better utilization of uncertain estimation results,
while minimizing their impact. In comparison with alternative approaches such as machine
learning, this methodology stands out due to its simplicity, computational efficiency, and
lack of requirement for extensive sample modeling [53].

Excellent fusion results were demonstrated in this study; however, it is important to
acknowledge some limitations. While various factors such as different varieties, years,
and cultivation treatments were considered, it is crucial to note that these data are solely
derived from a single geographical location. Therefore, future studies should aim to further
investigate the performance of the proposed fusion method across diverse ecological points.
Furthermore, although this paper primarily focuses on LAI indicators, it is worth mention-
ing that this method holds potential for enhancing the accuracy of other agricultural remote
sensing parameters such as leaf chlorophyll content (Cab), leaf nitrogen accumulation
(LNA), and aboveground biomass (AGB). Additionally, future research could explore the
introduction of improved indices to mitigate the impact of saturation effects on estimation
accuracy. Research could integrate more diverse data sources, such as hyperspectral remote
sensing data and UAV data, to enhance the accuracy and applicability of the model.

5. Conclusions

In this study, the relationship between various classical vegetation index models and rice
LAI under different cultivation conditions was investigated based on the vegetation index
obtained from multi-spectral cameras. A highly accurate monitoring model for rice LAI was
developed, which is based on the integration of multiple models using the KF-DGDV fusion
method. The KF-DGDV fusion method effectively incorporates LAI changes throughout
growth stages, inversion accuracy, and uncertainty variations among different index models,
thereby prominently enhancing the estimation precision of LAI. The results showed that
the R2 of the KF-DGDV method reached 0.76 in the tillering to booting stage, and 0.66 in
the heading to maturity stage, which was superior to statistical data fusion and traditional
vegetation index model. In addition, the KF-DGDV method also shows a strong stability and
transferability, and has a wide applicability across different years, rice varieties, and sensors.
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