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Abstract: Ships are important targets for modern naval warfare detection and reconnaissance. The
accurate detection of ships contributes to the maintenance of maritime rights and interests and the
realisation of naval strategy. Synthetic Aperture Radar (SAR) image detection tasks play a vital
role in ship detection, which has consistently been a research hotspot in the field of SAR processing.
Although significant progress has been achieved in SAR ship detection techniques using deep learning
methods, some challenges still persist. Natural images and SAR images significantly diverge in
imaging mechanisms and scattering characteristics. In complex background environments, ships
exhibit multiscale variations and dense arrangements, and numerous small-sized ships may be
present, culminating in false or missed detections. To address these issues, we propose a novel
SAR ship detection network, namely, a Wavelet-Driven Feature-Enhanced Attention–You Only Look
Once X (WDFA-YOLOX) network. Firstly, we propose a Wavelet Cascade Residual (WCR) module
based on the traditional image processing technique wavelet transform, which is embedded within
an improved Spatial Pyramid Pooling (SPP) module, culminating in the formation of the effective
wavelet transform-based SPP module (WSPP). The WSPP compensates for the loss of fine-grained
feature information during pooling, enhancing the capability of the network to detect ships amidst
complex background interference. Secondly, a Global and Local Feature Attention Enhancement
(GLFAE) module is proposed, leveraging a parallel structure that combines convolutional modules
with transformer modules to reduce the effect of irrelevant information and effectively strengthens
valid features associated with small-sized ships, resulting in a reduction in false negatives in small-
sized ship detection. Finally, a novel loss function, the Chebyshev distance-generalised IoU loss
function, is proposed to significantly enhance both the precision of the detection box and the network
convergence speed. To support our approach, we performed thorough experiments on the SSDD and
HRSID, achieving an average precision (AP) of 99.11% and 96.20%, respectively, in ship detection.
The experimental results demonstrate that WDFA-YOLOX has significant advantages in terms of
detection accuracy, generalisation capability, and detection speed and can effectively realise more
accurate detection in SAR images, consistently exhibiting superior performance and application value
in SAR ship detection.

Keywords: deep learning; synthetic aperture radar (SAR); ship detection; you only look once (YOLO)

1. Introduction

Synthetic Aperture Radar (SAR), a microwave remote sensing sensor, operates on the
principle of the synthetic aperture. Imaging is achieved by transmitting phase-encoded
pulses from a radar beam in a direction almost perpendicular to the sensor’s motion
vector [1]. The echo signal returned from the surface is then received and recorded. As SAR
has continued to advance, its utilisation for ship detection has proven its indispensable
value and found extensive practical applications in both military and civilian domains. It
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provides robust data support and technical assistance for maritime ship detection. However,
SAR ship detection still encounters numerous challenges. Unlike optical images, SAR
images are vulnerable to system noise and background clutter. In some coastal areas and
islands, the reflection characteristics in SAR images can resemble ships, resulting in false
positives. Ship targets in SAR images vary in scale and are often densely clustered in coastal
regions, making their accurate detection more challenging [2–6].

Traditional SAR image ship target detection algorithms primarily rely on contrast
disparities between targets and background clutter for detection. In relatively straightfor-
ward scenarios, these traditional methods can yield reasonably accurate results. Commonly
used target detection approaches for SAR images include the Constant False Alarm Rate
(CFAR) [7,8], template matching [9], entropy [10], and wavelet transform for ship target
detection [11]. However, in complex scenarios with less pronounced features and minor
contrast disparities, such as coastal regions featuring small islands or rocky outcrops, tradi-
tional SAR ship detection algorithms necessitate the manual selection of the most suitable
target feature set and demonstrate limited generalisation capabilities.

The advancement of artificial intelligence has led to significant progress in target
detection algorithms for visible-light images using the deep learning method, specifically
the convolutional neural network (CNN) framework [12]. This approach offers improved
detection accuracy and stronger generalisation. Deep learning approaches encompass
two types. One type is two-stage detection networks, such as region-CNN (R-CNN) [4].
Based on R-CNNs, more typical area-based object detection networks have been proposed,
including Fast R-CNN [13], Faster R-CNN [14], and Mask R-CNN [15]. The primary
principle is to employ selective search techniques to produce the recommended region,
which is subsequently subjected to regression classification. One-stage object detection
algorithms are the other kind. They reduce detection difficulties to regression problems and
just need convolutional neural networks to extract the class probability and target position
coordinates. Examples of representative algorithms are You Only Look Once (YOLO) and
YOLO series [16–21], single-shot multibox detector (SSD) [22], Retina-Net [23], and so on.
YOLO-series algorithms are generally faster than other algorithms and have a good effect
on small object detection.

Some researchers are dedicated to creating SAR image datasets specifically for deep
learning research on ship detection. Notable examples include the SSDD [24], the SAR-Ship
dataset [25], the LS-SSDDv1.0 dataset [26], and the HRSID [27]. Researchers have exten-
sively explored target detection algorithms for SAR images using transfer learning, which
enables the algorithms to effectively address specific detection tasks. Researchers have
proposed numerous advanced techniques to address challenges in SAR image identification
using these datasets. For example, Zhang et al. [28] introduced a quad-feature pyramid
network (FPN) to address the challenges of complicated backdrops and multiscale features
in ship detection. This approach significantly enhanced the accuracy of ship detection
by combining four distinct FPN modules in a cascading manner. For multiscale SAR
ship detection in complex scenes, Fu et al. [29] proposed an anchor-free method based on
FBR-Net. They created an ABP to balance the multiscale features across levels semanti-
cally, and they suggested an FR module to address feature misalignment, which helps to
increase localisation accuracy. Hu et al. [30] proposed an anchor-free approach utilising a
balanced attention network to improve the ability to detect ships at different scales. A local
attention module was incorporated into this network to further augment its robustness.
An additional nonlocal attention module was implemented to efficiently extract nonlocal
features from SAR imagery. Zhang et al. [31] proposed an FSF module, drawing inspiration
from the filtering mechanisms of the human brain. This module efficiently sifts through
information, swiftly excluding irrelevant data while retaining pertinent information related
to the target. On AIR-SARship-1.0, the FSF fully utilises its features to segregate the target
and interference regions using neural networks with robustness. Zhu et al. [32] introduced
a new anchor-free network for SAR image target recognition. The network, based on FCOS,
incorporates deformable convolution (Dconv) and an improved residual network (IRN)
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to enhance the network’s capacity to extract features to obtain a low computational cost
in SAR ship detection. In order to remove broad stretches of ocean and coastline back-
ground from SAR images taken at various levels, Zhang et al. [33] proposed a new SAR
ship identification network called MLBR-YOLOX. This network uses the SSPD and DSFD
modules. Huang et al. [34] proposed a brand-new two-stage detector called CViTF-Net,
which combines visual transformers and CNNs in a novel way with three cutting-edge
parts: a level-sync attention mechanism (LSAM), a Gaussian prior discrepancy (GPD)
assigner, and a CViT backbone. As a result, the feature map visualisation demonstrates that
the detector can reduce background noise while more precisely focusing on the positions of
small ship targets. Zhang et al. [35] introduced a one-stage anchor-free SCSA-Net, to which
an SCSA module and a GAP loss were added to enhance the network’s capacity for feature
extraction and lessen the nearshore background’s interference with ship targets. The two-
stage detection algorithm efficiently increases detection efficiency but at the cost of memory
and computational overhead. Particularly for small targets, the one-stage YOLO-series
algorithm further increases detection accuracy while significantly reducing processing
complexity. The current study primarily employs attention mechanisms, feature pyramid
network architectures, and similar techniques to enhance target features. However, due to
the dense clustering of ship targets and significant scale variations, effective ship detection
in SAR images remains challenging. Additionally, this may lead to a slow detection time
and a high computational cost.

In order to address these issues, this paper presents an effective SAR ship detection
network named the Wavelet-Driven Feature-Enhanced Attention–You Only Look Once X
(WDFA-YOLOX) network, which was inspired by the wavelet algorithm. It can leverage the
inherent correlation between spatial- and frequency-domain feature information to improve
the frequency domain, as well as the local and global information to more effectively
capture ship features while lowering the computational complexity of the model. The main
contributions of our work are as follows:

1. Addressing the complexities inherent in SAR images, including complex background
interference, limited available feature information, and the dense arrangement of
ships in coastal areas, we propose a novel Wavelet Cascade Residual (WCR) module.
This module is integrated into the Spatial Pyramid Pooling (SPP) module to propose
a new wavelet transform-based SPP module (WSPP). By incorporating the wavelet
transform into a CNN, spatial- and frequency-domain features are captured. It not
only compensates for the loss of fine-grained feature information during pooling but
also extends the receptive field of feature maps, ultimately reducing false positives.

2. In response to the prevalence of numerous small-sized ships, which have weak
representation capabilities in SAR datasets, we propose a Global and Local Feature
Attention Enhancement (GLFAE) module. Through a parallel structure, we fuse the
outputs of channel and spatial attention mechanisms with those of the transformer
module, which assigns greater importance to regions of interest while suppressing
unnecessary features and enables the capturing of both local and global information
related to ships.

3. To address the issue of slow convergence speed in the model, which adversely affects
model performance, we replace the loss function with GIOU and introduce the Cheby-
shev distance with dual penalty terms on top of that, which is called the Chebyshev
distance-based generalised IoU loss function. It improves the ability to accurately
align and match bounding boxes, which helps with the convergence and stability of
the training process and strikes a balance between model accuracy and speed.

The rest of this paper is organised as follows. Section 2 presents the structure and
details of the entire network. Section 3 gives the experimental results and performance
analysis, as well as ablation experiments on different modules. Section 4 discusses the limi-
tations of the proposed method and suggests future research directions. Finally, Section 5
gives a short conclusion.
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2. Methodology
2.1. Overall Network Structure

We chose YOLOX with a straightforward structure and stable detection accuracy as the
baseline network. It is the first network in the YOLO series to utilise an anchor-free structure,
which proves to be more suitable for ship detection compared to anchor-based approaches,
given the multiscale and sparse characteristics of ships in SAR images. Furthermore,
YOLOX introduces the SimOTA algorithm to enhance the allocation of ambiguous samples,
which is particularly beneficial in allocating prediction samples for ship targets amidst
complex backgrounds. This approach offers a trade-off between accuracy and speed,
ultimately enhancing the network model’s detection performance. The architecture of our
proposed WDFA-YOLOX is shown in Figure 1, consisting of three sections: the Darknet53
backbone, the neck network, and three decoupled prediction heads. These components
collectively enable ship detection in SAR images [36–38].

CBS

CSP_1

CSP_3

CSP_3

CBS

CBS

CSP2_1 CBS

UpSample

CSP2_1

CBS

CSP2_1

CBS

CSP2_1

CBS

CSP2_1

GLFAE

GLFAE

GLFAE

YOLO Head

YOLO Head

YOLO Head

UpSample

CBS

Res Unit CBS CBS

Res Unit

CBS

CBS

CBS

CBS 2×CBS

CBS

Conv BatchNorm SiLu
X×(2×CBS)

X×ResUnit

Backbone

Neck

CBS

Focus

dark3

dark2

dark4

dark5

80×80×256

40×40×512

20×20×1024

＋

C

CBS

WSPP

C

C

C

C

Slice

Slice

Slice

Slice

Focus

CBS

CSP_X

CSP2_X

C

C

Prediction head

C

＋

Concat

Element-wise Sum

Figure 1. The structure of our proposed WDFA-YOLOX.

First, we introduce the wavelet transform algorithm to propose the Wavelet Cascade
Residual (WCR) module. This module is able to capture image details from all directions
and effectively extract texture features. To extend the receptive field of the network,
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the WCR is integrated into the Spatial Pyramid Pooling (SPP) module [39] within the
fourth layer of the backbone, dark5, to propose the novel wavelet transform-based SPP
module (WSPP). Second, the output of Darknet53 is fed to the pyramid feature extraction
network, known as PA-FPN, to extract contextual information. The Global and Local
Feature Attention Enhancement (GLFAE) module, which we designed, is incorporated
at the end of each output layer of PA-FPN, specifically preceding the three decoupled
heads. GLFAE suppresses irrelevant features by assigning increased weights to regions
of interest through global spatial and local channel attention mechanisms. Due to the
organic integration of wavelets and attention mechanisms, the network can concentrate
on relevant texture information while mitigating discrepancies among images in various
domains. Subsequently, the decoupled head employs an anchor-free structure for category
and position prediction. This approach enhances adaptability to fluctuations in ship sizes
and mitigates problems associated with inaccurate predictions stemming from significant
variations in ship size. Lastly, the original loss function is enhanced to form the Chebyshev
distance-based generalised IoU loss function (LossCGIOU). This modification leads to
improved detection frame accuracy and faster network convergence. WDFA-YOLOX is
applied for ship detection using an open-source dataset of SAR ships, resulting in notable
performance enhancements.

Sections 2.2 and 2.3 introduce the WCR and WSPP, which are employed to classify
the regions of targets and backgrounds in the SAR images, respectively. The GLAFE is
presented in Section 2.4. In Section 2.5, the Chebyshev distance-based generalised IoU loss
function is described in detail.

2.2. Wavelet Cascade Residual Module

Contemporary ship detection networks frequently overlook various intermediate
structural and texture-related cues, and they inadequately investigate frequency-domain
information. As a consequence, existing methods suffer from performance limitations.
To mitigate these limitations, we introduce the wavelet transform algorithm and present
a novel WCR. The WCR leverages both frequency- and spatial-domain information to
enhance the extracted features, resulting in improved structural and edge representations.
The wavelet transform systematically refines the signal by applying translation and scaling
operations, decomposing the image into a series of sub-band signals with distinct frequency
characteristics [40,41]. We use the 2D discrete wavelet transform (DWT) to process the ship
image, which produces a single low-frequency component and three high-frequency com-
ponents for each decomposition layer while retaining the subject and detail information.
The component combination can achieve a more effective balance between preserving fine
details and ensuring adequate noise immunity performance [42]. After wavelet multiscale
decomposition, the decomposed image set requires reconstruction. The existing literature
predominantly employs reconstruction methods that focus on low-frequency components.
While effective in suppressing noise, this approach often leads to the loss of crucial detail
information. Additionally, decomposed images at various scales demonstrate intercorre-
lations and redundancy. High-frequency information from one layer can be embedded
within the low-frequency content of the preceding layer.

The WCR comprises fundamental 2D wavelet decomposition and reconstruction
processes. Additionally, it incorporates compact modules for enhancing features, aimed
at improving contour information and retaining the detail information within both the
low- and high-frequency components. The DWT employs the Haar wavelet basis with
multi-resolution [43]. We use the input Xi ∈ RC×H×W to convolve with four horizontal
and vertical filters, fLL, fLH , fHL, and fHH , characterised by fixed parameters and a step
size of two. The filters are as follows:

fLL =

[
1 1
1 1

]
, fLH =

[
−1 −1
1 1

]
, fHL =

[
−1 1
−1 1

]
, fHH =

[
1 −1
−1 1

]
. (1)



Remote Sens. 2024, 16, 1760 6 of 24

Subsequently, downsampling is performed, completing the decomposition of the
original image to obtain four sub-bands: ILL, ILH , IHL, and IHH . The formula is expressed
as follows:

In = Xi ∗ fn ↓ 2, n = LL, LH, HL, HH, (2)

where * represents the convolution operation, and ↓ 2 represents downsampling. ILL is
a component of low-frequency information that represents the overall information of the
image. It enhances the global information of the feature map and primarily consists of
the original image’s information. ILH represents the wavelet coefficient obtained from
low-pass filtering in the horizontal direction and high-pass filtering in the vertical direction.
It mostly captures the characteristics present in the horizontal direction. IHL represents
the wavelet coefficient obtained from high-pass filtering in the horizontal direction and
low-pass filtering in the vertical direction, which primarily captures the features present
in the vertical direction. IHH represents the wavelet coefficient obtained by high-pass
filtering in both the horizontal and vertical directions and carries the minimum amount of
information. ILH , IHL, and IHH pertain to high-frequency data, capturing intricate details
of the image that are crucial in enhancing texture, edges, and other fine features.

The wavelet transform utilises its reversible nature and downsampling properties; the
receptive field can be expanded to mitigate any loss of information. In Figure 2, the DWT
procedure and outcomes are shown, displaying the basic tower structure after performing
a one-layer DWT decomposition on the SAR images. The input Xi can be recovered
using the IDWT due to the DWT’s bi-orthogonal nature. In this way, the inverse discrete
wavelet transform (IDWT) is the transposed convolution operation of the DWT, which is a
convolution operation with a kernel size of 2 × 2, a step size of two, and fixed weights.

LL HL

LH HH

Figure 2. Tower structure in wavelet transform on SAR images.

We obtain the sub-bands ILH , IHL, and IHH , which represent the high-frequency de-
tails of the image in different directions after the DWT. In the sub-highband, we pro-
pose the convolution residual block (CRB), taking the high-frequency details, ILH , IHL,
and IHH , as input. It allows the model to focus more on spatial information features
of the high-frequency information and conduct deeper feature extraction. Figure 3 dis-
plays the structure of the CRB. There are four basic blocks, with each block consisting of
3 × 3 convolution and batch normalisation [44] in the CRB. The output of the basic block
is fed to the ReLU activation function. The output FHo1 is derived by applying two basic
blocks. The input FHi ∈ RC×H×W is then added directly to FHo1 to yield the final residual
output FHo2. Considering the measurement and parameters of the model, two consecutive
feature extractions are carried out to yield FHo3. Subsequently, comprehensive feature ex-
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traction and fusion are achieved through the average pooling layer and the fully connected
layer, FC, resulting in the output FHm of the CRB, which can be formulated as follows:

FHm = f c(Avg(RELU(FHo2))), m = 1, 2, 3, (3)

FHo2 = RELU(FHo1) + ϕ(RELU(FHo1)), (4)

FHo1 = FHi + ϕ(FHi), (5)

ϕ = ReLU(δ(conv3×3(ReLU(δ(conv3×3(FHi)))))), (6)

where conv3×3 denotes a convolutional operation with a kernel of 3 × 3, and δ denotes
batch normalisation. FHm(m = 1, 2, 3) denotes the output of the mth CRB. fc(·) is the
fully connected layer. ϕ is the operation of two basic block operations. There are three
consecutive CRBs connected in series, and deep features FHη are ultimately extracted by
the residual structure in the sub-highband.

HiF 1HoF 2HoF 3HoF

BN Batch Normalization

Figure 3. The structure of the CRB.

The low-frequency detail ILL is acquired using the DWT, encompassing the primary
ship construction information, as well as the background details of the image. We propose
the gated residual convolution block (GRCB) for the sub-lowband, as described in Figure 4,
which utilises the low-frequency detail as input and incorporates a gating mechanism in
the sub-lowband. The gating mechanism employs a dual-branch structure, utilising two
3 × 3 convolutions to expand the channels of the layer-normalised features simultaneously
by a factor of two. One of these convolutions is subsequently followed by GELUs (Gaussian
Error Linear Units) [45], which can be formulated as follows:

GELU(x) = x ∗ P((X ≤ x) = x ∗ Φ(x), (7)

where Φ(x) refers to the cumulative function of the Gaussian normal distribution of x. It
has both linear and nonlinear transformation characteristics. In comparison to the ReLU
activation function, the GELU exhibits a higher likelihood in its output, resembling a
Gaussian distribution near zero. Its derivatives exist throughout the entire real number
domain, ensuring smooth continuity. This aids the model in adapting to continuous
variables and helps mitigate issues like vanishing and exploding gradients. This feature
makes the GRCB more adaptable when handling different types of tasks. Finally, the
resulting output is multiplied element-wise to leverage more intricate local features. The
channels are subsequently diminished to the initial input dimensions 1 × 1 by convolution
to achieve the result. The structure of the GRCB is illustrated in Figure 4, which can be
formulated as follows for the input FLi ∈ RC×H×W :

FLn = conv1×1(Gating(FLi)) + FLi, n = 1, 2, (8)

Gating(FLi) = conv3×3(ψ(FLi))⊙ GELU(conv3×3(ψ(FLi))), (9)

ψ
(

Fl
Li

)
=

Fl
Li − µl√(
σl
)2

+ ε
gl + bl , (10)
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where conv1×1 and conv3×3 denote convolutional operations with kernels of 1× 1 and 3× 3,
respectively. FLn(n = 1, 2) denotes the output of the nth GRCB. ψ is layer normalisation,
and ⊙ is element-wise multiplication. Fl

Li denotes the 1st channel of the input tensor,

µl and
(

σl
)2

are the mean and variance of Xl
in, ε is a small constant that prevents the

denominator from being zero, and gl and bl are two learnable parameters. In general, due
to the utilisation of global residual learning, the GRCB enables us to selectively propagate
specific properties to the subsequent layer of the network. For ship detection, this enables
the transmission of ship-related data while filtering out information from areas with a lot
of noise, which enhances accuracy in identifying ship regions. The shallow features FLn are
ultimately extracted by the residual structure in the sub-lowband.

 

BN

3*3 Conv

3*3 Conv

1*1 Conv

·

GELU

LiF

LoF

＋

Figure 4. The structure of the GRCB.

The high-frequency features derived from the sub-highband have a low density.
Adding more layers to the DWT to capture additional high-frequency details will lead
to increased computational complexity for the network. To reduce the length of the fea-
ture information transfer path, the feature FLn(n = 1, 2) extracted from the GRCB in
the sub-lowband is added to the feature FHm(m = 1, 2, 3) extracted from the CRB in the
sub-highband using a shortcut connection. The red solid line in Figure 5 illustrates the
transmission of low-frequency feature information to high-frequency features. Hence, the
WCR that we propose not only possesses the inherent benefits of the wavelet transform
but also facilitates a more comprehensive fusion of deep features and shallow features
through the inclusion of a multi-layer cascade of high-frequency and low-frequency bands.
This approach ensures more comprehensive feature fusion by utilising the feature infor-
mation from each layer, enhances the representation of small targets in the feature map,
and enhances the performance of detection. Afterwards, the deep features FH3 and shallow
features FL2 are combined, resulting in the same number of channels. Ultimately, we restore
the combination to their initial dimensions by executing the IDWT and handle the resulting
information flexibly using 1 × 1 convolutional layers to obtain the output feature of the
WCR, denoted by Xout . The complete structure of the WCR is depicted in Figure 5.
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Figure 5. The structure of the WCR.

2.3. Wavelet Transform-Based Spatial Pyramid Pooling

Small targets in SAR images might experience a loss of features in the backbone
network owing to their low resolution. Consequently, YOLOX employs SPP, which is
positioned in the fourth layer of Darknet53 in order to expand the receptive field of the
convolutional neural network (CNN). Nevertheless, the conventional average pooling
and maximum pooling layers discard some amount of intricate information present in the
initial feature maps, and the downsampling of the CNN can cause substantial harm to
the features. The CNN is unable to retrieve the information that is lost during pooling
layer operations and downsampling. This leads to the removal and fading of details
in the image, resulting in a decrease in the ability of the network to distinguish and
identify patterns. However, the conventional CNN used for SAR ship detection only
considers the spatial-domain information, disregarding the significance of the frequency-
domain information and failing to investigate the relationship between the frequency and
spatial domains.

In Section 2.2, the DWT is used to generate a series of sub-band images, which are
then used as the input for frequency-domain recovery. The WCR is integrated into the
SPP module, forming a new module called the WSPP, which combines information from
both the frequency- and spatial-domain information and utilises the spatial data from the
2D DWT to facilitate the ship detection task, hence enabling the extraction of features
at several scales. During the feature fusion phase, low-level feature maps that undergo
fewer downsampling iterations possess a narrower receptive field, higher resolution, and
greater spatial information and retain finer details. This is beneficial for detecting smaller
targets. High-level feature maps obtained by more instances of downsampling have a
larger receptive field and maintain stronger semantic information, which are well suited
for identifying targets of larger dimensions. Combining the characteristics of the small
resolution of the images in the SAR dataset, we employed 2× 2, 4× 4, and 8× 8 resolutions
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for feature extraction in the pooling layer to improve SPP. This resulted in 4, 4, and
16 multi-dimensional feature vectors after using max pooling. Subsequently, these vectors
were merged to create fused pyramid pooling information comprising 24 dimensions. The
improved SPP module is depicted in Figure 6.

···

···

2×2 2×2

4×4

4 4 16

24-dimensional vector

Figure 6. The structure of the improved SPP module.

The low-frequency and high-frequency components extracted from the WCR are com-
bined with feature vectors of varying receptive field sizes of 2 × 2, 4 × 4 and
8 × 8 in the improved SPP module. The concat operation is then performed to gener-
ate the multiscale receptive field output, which forms the WSPP. The structure is illustrated
in Figure 7. The CNN learns the spatial- and frequency-domain features separately because
they have distinct characteristics. This allows for the fusion of these features at the feature
map level, compensating for the loss of detailed feature information during the pooling
process. The issue of information loss is partially mitigated. Within the intricate context
of SAR images, the outcome of feature reconstruction preserves numerous fundamental
attributes, such as shape, texture, and other characteristics of the target. Subsequently,
through the integration of information from various levels, the accuracy of identifying ship
details is significantly enhanced. The more concentrated region of ships is emphasised,
and the outline of each ship target is preserved, enabling the differentiation of ships with
identical distances. This enables the precise detection and segmentation of dense targets.

CBS

Maxpool Maxpool MaxpoolWCRM

＋

＋

＋

＋

C

CBS

Figure 7. The structure of the WSPP.
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2.4. Global and Local Feature Attention Enhancement Module

There is a high prevalence of small-sized ships in SAR images, and there is limited
ability to depict small SAR ship features. Additionally, existing SAR ship detection methods
that rely on CNNs for feature extraction struggle to establish long-distance dependency
relationships and extract global information, leading to limited detection accuracy [46]. In
order to mitigate the influence of irrelevant data on small-sized ships within the image,
our developed GLFAE incorporates both a CNN and a transformer to effectively enhance
the representation of features specific to small-sized ships. It maintains the fast inference
speed and local feature extraction capability of a CNN while also leveraging the global
sensing capability of the transformer. This helps establish stronger connections between
distant pixel points and improves the algorithm’s robustness and recognition accuracy.
Subsequently, the global spatial attention (GSA) module in the global branch and the local
channel attention (LCA) module in the local branch of GLFAE are described.

The global branch of GSA consists of a transformer [47] that utilises a self-attention
mechanism to capture the global dependency between the input and output, extracting the
global properties of the ship. The structure of GSA is illustrated in Figure 8. It employs
spatial geometric division to independently monitor the characteristics of the ship image.
GSA has the capability to simultaneously analyse every region in the entire image without
dividing it into fixed-size sub-regions. This allows for easier handling of ships with varying
sizes and proportions and enables the efficient modelling of the contextual relationship
between smaller ships and their surrounding environments. In the local branch, our
designed LCA involves filtering the channel dimension of the data. We combine global
average pooling and global max pooling layers after obtaining a feature map with a height
and width of one. The resulting feature maps are then merged through a splicing operation,
and their dimensions are converted to normal dimensions using Depthwise separable
convolution (DWConv) [48], which can reduce model parameters. Subsequently, a series
of operations, including linear layers, ReLU, and the sigmoid function, are applied to
reset the channel dimension and obtain the attention vector. Finally, the attention vector is
multiplied by the input features. Figure 9 displays the structure of the LCA module. LCA
prioritises the essential data of the target area and distinct local characteristics of the target,
such as edges, texture, or shape, to facilitate precise target localisation and classification.
In addition, the channels that are redundantly computed are assigned a negligible weight,
hence minimising the computational workload.

GLFAE serialisation incorporates GSA and LCA into the GLFAE module, as depicted
in Figure 10. The input Fi is fed into LCA to obtain the output Fo1. This output is then
subjected to matrix multiplication with the input feature layer Fi1. Subsequently, GSA is
utilised to derive the output Fo2 by performing matrix multiplication with the output of
the preceding module. This results in the generation of the output Fo3. The integration
of GSA with LCA enhances the precision of target object localisation for WDFA-YOLOX.
GSA enables the model to concentrate on the entire image, whereas LCA enables the model
to concentrate on crucial components of the objective. This can enhance the emphasis
on the positional data of compact ships, hence enhancing their precision in determining
their location.
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Figure 8. The structure of GSA.
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Figure 10. The structure of GLFAE.

The neck network utilises the PA-FPN to merge features from both the wavelet and
spatial domains to fully exploit multi-domain features. To improve the capture and sensing
of local and global information, GLFAE is incorporated at the end of each of the three
output layers of PA-FPN, just before the three decoupled heads. This improves the distin-
guishability and robustness of the features, ultimately enhancing the discriminative ability
of the network. GLFAE specifically examines the correlation between channels and spatial
aspects inside the WDFA-YOLOX network to optimise the expression of effective features
and inhibit the expression of ineffective features, boosting the ability to accurately represent
small-sized ships.

2.5. The Chebyshev Distance-Generalised IoU Loss Function

YOLOx uses the decoupled head to separate the classification and regression tasks. It
splits the loss into three components: bounding box regression loss

(
Lossreg

)
, category loss

(Losscls), and object loss
(

Lossobj
)
. The Binary Cross-Entropy Loss (LossBCE) is employed

during the training phase for Losscls and Lossobj. Following the SimOTA label-matching
process, a total of N positive samples can be selected. The target and prediction frames
are then aligned, allowing for the calculation of the final loss function, which is calculated
as follows:

Loss = Lossreg + Losscls + Lossobj

= Lossreg +
1
N

M

∑
m=1

−
[
Ĉm log(Cm) +

(
1 − Ĉm

)
log(1 − Cm)

]
+

1
N ∑

i∈Pos

N

∑
n
−
[
Ôn log(On) +

(
1 − Ôn

)
log(1 − On)

] (11)
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where N represents the count of positive case prediction boxes, while M represents the
count of prediction boxes. Cm denotes the number of target species present in the mth posi-
tive case prediction box, and Ĉm represents the number of target species in the ground-truth
box corresponding to the mth positive case prediction frame. On denotes the confidence
score of the nth prediction box. Additionally, Ôn indicates whether the nth prediction box
is a positive or negative example, with a value of 1 representing a positive example and
0 representing any other case. Lossreg uses LossIOU , which can be described as follows:

LossIOU = 1 − G ∩ P
G ∪ P

, (12)

where P and G are the prediction box and ground-truth box. ∩ denotes the intersection
operation, and ∪ denotes the union operation.

Due to the requirement for multiple iterations to achieve convergence, the initial
(LossIOU) in YOLOX suffers from numerical instability, resulting in the degradation of
model performance. Simultaneously, the four edges of the two bounding boxes (top, bottom,
left, and right) are disregarded, not only their centroids or areas. Moreover, alterations
in the horizontal and vertical bounding box ratios have a specific influence on the loss,
resulting in a decline in the accuracy of the predicted box. Thus, the generalised IoU loss
function LossGIOU [49] is introduced and can be described as follows:

LossGIOU = 1 − A ∩ B
A ∪ B

+
|C − A ∪ B|

|C| , (13)

where A and B are the prediction box and ground-truth box, respectively. C is the minimum
box that encompasses both A and B.

However, in contrast to LossIOU , LossGIOU considers the lack of overlap between
A and B by incorporating a penalty term, and it only takes into account the spatial position
of the frames and disregards the distance between them. Consequently, the penalty of GIOU
is removed, and a novel penalty is introduced to reduce the distance between the centroids
of the two prediction boxes. Simultaneously, another penalty is incorporated to enhance
the convergence speed of the network loss by taking into account the correlation between
the aspect ratios of A and B. To address the aforementioned problem, we introduce the
Chebyshev distance IOU (LossCIOU) [50] to the enhanced loss function as the Chebyshev
distance-generalised IoU loss function, and its formula is presented as follows:

LossCGIOU = 1 − IOU +
C(A, B)

L
+

arctan

 wi
hi
− wj

hj

1 +
wiwj
hihj

2

, (14)

where the coordinates of the centre point of the prediction box(P) are represented by
P = (xi, xi) , where xi is the horizontal coordinate, and yi is the vertical coordinate. Similarly,
the coordinates of the centre point of the ground-truth box(G) are represented by G = (xi,
xi), where xj is the horizontal coordinate, and yj is the vertical coordinate. L represents the
diagonal length of the smallest enclosing frame that contains both P and G. C represents
the Chebyshev distance between the centre points of P and G. wi, hi, wj, and hj represent
the length and width of P and G, respectively.

The Chebyshev distance is a continuous and differentiable metric that provides greater
stability when calculating the gradient. This enhances the convergence and stability of
the training process, leading to the accelerated convergence of the network. A schematic
representation of LossCGIOU is depicted in Figure 11. It illustrates that as the distance
between P and G increases, the value of LossCGIOU also increases. As the distance decreases,
the value of LossCGIOU also decreases and approaches 0. The enhanced penalty term in
the loss function increases the sensitivity to the predicted and real frames, resulting in a
more precise measurement of the discrepancy between P and G. This improvement aids
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the model in gaining a better understanding of the target’s location and shape, ultimately
leading to improved detection accuracy.

G

P

L

Figure 11. Schematic diagram of LossCGIOU .

3. Experiments

In this section, the performance of the proposed WDFA-YOLOX model is demon-
strated through some experiments.

3.1. Implementation Details
3.1.1. Datasets

This work selected two authoritative SAR ship datasets, namely, the SAR Ship Detec-
tion Dataset (SSDD) [24] and the High-Resolution SAR Images Dataset (HRSID) [27], which
are widely utilised in the field of SAR ship detection, for the experimental analysis. The
first dataset in the field of SAR ship detection that was made available to the public is the
SSDD. The HRSID is a collection of high-resolution SAR images created by Wei et al. [27].
The HRSID utilises 136 panoramic SAR images obtained from various satellites, which
are then processed by cropping and filtering. The two datasets include basic information
parameters, as listed in Table 1.

Table 1. The experimental results of different methods on the SSDD and HRSID datasets.

SSDD HRSID

RadarSat-2, Sentinel-1B,
Data sources TerraSAR-X, TerraSAR-X,

Sentinel-1 TanDEM-X
Polarisation mode HH, VV, VH, HV HH, VV, VH, HV

Band X and C bands X and C bands
Resolution (m) 1–15 0.5–3

Category ship ship
Number (sheets) 1160 5604

Image size (pixels) 28 × 28 − 256 × 256 800 × 800
Ship number 2456 16,951

3.1.2. Evaluation Metrics

To assess the effectiveness of WDFA-YOLOX, we use precision (P), recall (R), average
precision (AP), and frame per second (FPS), which are correlated with each other. Precision
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is a statistical measure that evaluates the accuracy of prediction results. Recall is a statistical
measure derived from the actual sample set. They are defined as follows:

precision(P) =
TP

TP + FP
× 100%, (15)

recall(R) =
TP

TP + FN
× 100%, (16)

where TP, FP, and FN denote the number of true positives, false positives, and false
negatives, respectively.

Recall and precision can be represented as horizontal and vertical coordinates to create
a precision–recall curve for each target category in the dataset. A metric called average
precision (AP) gauges a model’s accuracy at various recall rates. The precision–recall (PR)
curve’s area under the curve is used to compute it. The definitions of AP and mAP are as
follows, respectively:

AP =

1∫
0

p(r)dr × 100%, (17)

mAP =
1
N

N

∑
j=1

APj × 100%, (18)

where j represents the jth category, and N denotes the total number of categories. The
mean value of APj is mAP. Since there is only one class of ships in the dataset, mAP = AP.
In order to calculate AP, the IoU threshold should be set to 0.5.

We use frames per second (FPS) to evaluate the detection efficiency of the model. It
indicates the number of images detected per second.

3.1.3. Implementation Details

This paper’s experimental setup is shown in Table 2. We divided the training, verifica-
tion, and test subsets at random and established a 7:1:2 split, respectively. The batch size
was set to 8, and the learning rate restart cycle was set to 24 epochs throughout the tests. For
every iteration, the dataset was generated at random. We employed the Adam optimiser
with a 0.0001 starting learning rate [51]. The optimiser’s weight decay was set at 0.05, and
cosine annealing was used to dynamically modify the learning rate with restarts. The test
phase established a scoring criterion of 0.5. To guarantee the stability and dependability of
the experimental data, we carried out the experiment three times and averaged the results.

Table 2. The experimental environment configuration.

Configuration Parameter

GPU NVIDIA GeForce GTX 3090 GPU ×3
Operating system Ubuntu 20.04.4 LTS

Development tools Python 3.10, Pytorch 1.13.0+cul17

3.2. Ablation Experiment

WDFA-YOLOX incorporates many enhancements in model architecture compared
to the baseline YOLOX network. Consequently, it is imperative to examine the practi-
cal implications of all proposals and their interplay. We conducted ablation experiments
on the SSDD and HRSID to evaluate the efficacy of the WSPP in the backbone network,
GLFAE in the neck network, and the improved loss function LossCGIOU . These experi-
ments involved various combinations of these innovative modules, resulting in a total of
16 sub-experiments, each set consisting of 8 sub-experiments. The outcomes are presented
in Table 3.
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Table 3. Ablation experiments on the SSDD and HRSID datasets.

Dataset WSPP GLAFE LossCGIOU P(%) R(%) AP(%) FPS

SSDD

92.81 96.95 96.92 28.28√ 94.14 95.30 97.66 27.31
√ 93.29 95.24 97.30 28.19

√ 91.63 94.83 94.08 60.53
√ √ 95.92 96.32 98.98 20.27
√ √ 95.01 97.43 98.03 57.11

√ √ 94.93 96.77 97.29 58.75
√ √ √ 95.07 98.33 99.11 58.34

HRSID

89.02 93.73 92.61 28.42√ 92.59 95.98 94.53 27.26
√ 91.84 94.96 93.29 28.41

√ 90.85 88.32 91.29 60.33
√ √ 93.80 95.70 96.19 27.35
√ √ 92.90 95.62 95.89 57.28

√ √ 92.72 95.23 94.37 59.29
√ √ √ 93.25 95.89 96.20 59.13

The check mark “√” indicates that the technique was used in training. The bold numbers in the table represent
the maximum value in this column.

We substituted SPP in the fourth layer of the backbone of YOLOX with the proposed
WSPP. This proposal resulted in a 0.74% increase in AP on the SSDD and a 0.38% increase
in AP on the HRSID as compared to the baseline. By incorporating the WSPP, the model
successfully detected all the ships in the image, whereas the baseline model falsely detected
the background as ships. The results indicate that the WSPP successfully restores ship
texture that was previously lost in the feature map and enhances ship detection, making
it more effective. The proposed GLFAE is incorporated into the neck network of YOLOX,
resulting in a 0.38% improvement in AP on the SSDD and a 0.55% improvement in AP
on the HRSID. GLFAE outperforms the baseline in detecting dense ships in images. The
number of dense ships in the HRSID is greater than in the SSDD. Consequently, GLFAE has
significantly more influence on AP on the HRSID than on the SSDD. This module highlights
the significance of attention enhancement and feature fusion. The enhancement of the loss
function results in a 0.08% improvement in AP on the SSDD and a 1.83% improvement
in AP on the HRSID. Additionally, FPS sees a 32.2 improvement on the SSDD and a
31.9 improvement on the HRSID. Due to the inclusion of numerous modules in WDFA-
YOLOX, the computational cost of the ship detection network may increase. However, the
FPS with the addition of multiple modules to the network is not as high as the FPS with
the introduction of only the improved loss function in the network.

WDFA-YOLOX, as compared to the baseline network, YOLOX, demonstrates signifi-
cant improvements on the SSDD. Specifically, it enhances the model’s precision by 2.26%
(from 92.81% to 95.07%), its recall by 1.38% (from 96.95% to 98.33%), and its AP by 2.19%
(from 96.92% to 99.11%). WDFA-YOLOX demonstrates a substantial enhancement in the
effectiveness of detecting objects, as indicated by the rise in FPS from 28.3 to 58.3. On the
HRSID, WDFA-YOLOX enhances precision by 4.23% (from 89.02% to 93.25%), recall by
2.16% (from 93.73% to 95.89%), and AP by 3.59% (from 92.61% to 96.20%). FPS shows a
substantial improvement, ranking third highest, with an increase from 28.4 to 59.1.

The effectiveness of each enhancement is demonstrated by the significant improvement
in the performance of the benchmark model when each enhancement is implemented sepa-
rately. Furthermore, as the number of enhancements increases, the model’s performance
improves significantly. This suggests that there is minimal overlap in the performance en-
hancements achieved by different improvements. This is because each improvement targets
a distinct problem, resulting in limited substitutability among the various enhancements.
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By comparing the outcomes of experiments that include two enhancements with those that
only include one enhancement, it is evident that the WSPP has the greatest impact, while
combining the other two modules further improves AP. WDFA-YOLOX demonstrates
superior performance compared to any individual module or combination of two modules,
indicating its overall effectiveness.

3.3. Comparison with Other Methods

In order to explore the stability and generality of WDFA-YOLOX and to provide a more
comprehensive performance evaluation, we conducted detailed experiments on the SSDD
and the HRSID to validate the performance of our ship detection network in scenarios
where ships are densely arranged or small-sized amidst complex background SAR images.
As shown in Table 4, the first five rows represent mainstream object detection algorithms,
including the two-stage algorithm Faster R-CNN [14] and the one-stage algorithms Reti-
naNet [23], YOLOv5 [19], YOLOv7 [20], and YOLOX [21]. Rows 6 to 8 (from MLBR-YOLOX
to SCSA-Net) [33–35] show the state-of-the-art algorithms in SAR ship detection. In the
last row, WDFA-YOLOX represents our proposed method. For an equitable comparison of
detection performance and computational complexity across various networks, we adhered
to similar parameter settings to those utilised in the compared networks while referencing
the optimal experimental outcomes reported in the references of the compared methods.

Table 4. Comparisons of WDFA-YOLOX and the state-of-the-art methods on the SSDD and
HRSID datasets.

Dataset Model P(%) R(%) AP(%) FPS

SSDD

Faster-RCNN [14] 81.63 85.31 89.62 11.37
RetinaNet [23] 93.34 87.54 92.13 23.82
YOLOv5 [19] 95.14 90.01 96.61 98.80
YOLOv7 [20] 91.05 84.92 93.68 51.63
YOLOX [21] 92.81 96.95 96.92 28.28

MLBR-YOLOX [33] 86.70 95.70 96.69 120.71
CviTF-Net [34] 94.30 98.18 97.80 -
SCSA-Net [35] 98.19 94.72 98.70 22.01
WDFA-YOLOX 95.07 98.33 99.11 58.34

HRSID

Faster-RCNN [14] 83.81 72.57 77.98 11.41
RetinaNet [23] 78.40 83.4 88.80 24.80
YOLOv5 [19] 78.24 83.41 88.89 24.76
YOLOv7 [20] 91.52 80.58 89.64 51.82
YOLOX [21] 89.02 93.73 92.61 28.42

MLBR-YOLOX [33] 92.72 88.61 92.16 121.25
CviTF-Net [34] 90.95 93.69 92.98 -
SCSA-Net [35] 96.45 90.02 95.40 22.29
WDFA-YOLOX 93.25 95.89 96.20 59.13

It is challenging to fully replicate the experimental codes and findings of some SAR ship detection networks since
they are not publicly available and because certain parameters and features are not clearly stated. Therefore,
the “-” designation is used for these results. The bold numbers in the table represent the maximum value in
this column.

Table 4 reveals that, on the SSDD, both Faster R-CNN and RetinaNet exhibit limited
generalisation capability. The extracted features of the ships are insufficiently accurate,
resulting in subpar detection performance characterised by lower precision, recall, and
AP. Additionally, the overall response rate of the model is low, with FPS below 25. The
YOLO series, including YOLOv5 and YOLOv7, demonstrate favourable outcomes in terms
of precision and recall. However, AP still falls short of being sufficiently high, as there
are instances of missed detection and false alarms for small targets. While MLBR-YOLOX
and YOLOv5 have the greatest and second-highest FPS, respectively, they achieve this
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speed at the expense of sacrificing model precision, potentially leading to false alarm
issues. MLBR-YOLOX demonstrates exceptional recall at an impressive rate of 95.70%,
which indicates its strong ability to accurately identify and capture targets. The recall of
CviTF-Net is 98.10%, indicating its effective capture of the target. However, its precision
is very low, perhaps resulting in more false alarms. The precision of SCSA-Net reaches
a maximum of 98.19%, demonstrating a significant decrease in false alarms during the
detection process. Nevertheless, it has a deficiency in recall, achieving only 94.72%, which
suggests a constraint on its ability to effectively detect small targets. By comparison, our
WDFA-YOLOX demonstrates excellent performance in precision, recall, and AP, achieving
95.07%, 98.33%, and 99.11%, respectively. While WDFA-YOLOX may not achieve the
greatest FPS, its FPS is boosted from 28.28 to 58.34 compared with YOLOX. Our network
has a competitive edge in overall performance when compared to the other networks.
This advantage lies in its ability to effectively balance detection accuracy and speed. The
findings clearly showcase the method’s viability, with excellent detection performance.

In comparison to the SSDD, the background of the SAR images in the HRSID is notably
more intricate, and the number of small ships is greater. Therefore, the values of precision,
recall, and AP on the HRSID are all lower when compared to the SSDD. Table 4 reveals
that the Faster R-CNN and RetinaNet models exhibit reduced precision, recall, and AP.
Additionally, the total reaction rate of the model is diminished, with FPS below 25. The
YOLO series, specifically YOLOv5 and YOLOv7, both demonstrate an impressive AP of
93.49% and 89.64%, respectively. MLBR-YOLOX exhibits a precision rate of 94.33% and a
recall score of 88.61%, and it achieves a maximum FPS of 121.25. The recall of cviTF-Net
is 93.69%, indicating a high level of accuracy in identifying positive instances. However,
its precision is comparatively poor, suggesting a higher likelihood of false alarms. The
precision of SCSA-Net reaches a maximum of 96.45%, indicating that it is able to detect
ships more accurately and with fewer instances of misclassifying non-ship objects, such
as fuel tanks on the coast of the port, throughout the detection process. Nevertheless,
its recall stands at a mere 90.02%, suggesting a susceptibility to overlooking small-sized
ships during detection. Our WDFA-YOLOX outperforms it in terms of precision, re-
call, and AP, achieving 93.25%, 95.89%, and 96.20%, respectively. FPS increases from
28.42 to 59.13, which ranks third in terms of FPS performance. WDFA-YOLOX demon-
strates the capability to uphold a high level of precision while simultaneously achieving
the comprehensive detection of targets. The results unequivocally showcase the method’s
viability, as it boosts the model’s feature representation, resilience, and adaptability, hence
enhancing the ship detection performance at the feature level.

3.4. Visualisation Comparison of Detection Results

The presence of complex backgrounds on the sea surface, such as inshore, offshore,
near-island, and near-object interference, along with multiscale changes in the character-
istics of ship targets on the sea surface and their dense arrangement, pose challenges for
SAR ship detection. Therefore, many challenging scenes were chosen for detection in order
to assess whether WDFA-YOLOX can enhance the accuracy of detection. To provide a
clearer comparison of the aforementioned methodologies, Figure 12 presents the detec-
tion outcomes of various algorithms, such as Faster-RCNN, YOLOX, MLBR-YOLOX, and
CviTF-Net, on the SSDD and HRSID. The ground truth of the ships is indicated by green
boxes, and the detection results of Faster R-CNN, YOLOX, SCSA-Net, and WDFA-YOLOX
are indicated by dark-blue, yellow, purple and light-blue boxes, respectively. The false and
missed detections are marked with green triangles and red circles, respectively.
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Ground Truth

Faster-RCNN

YOLOX

CviTF-Net

Proposed

WDFA-YOLOX

(a) Inshore (b) Near-object interference (c) Dense arrangement

MLBR-YOLOX

SCSA-Net

Figure 12. Experimental results of different algorithms in complex backgrounds, including inshore,
near-object interference, and densely arranged scenarios.

As shown in Figure 12, the second rows of Figure 12(a–c) demonstrate that the de-
tection results of Faster R-CNN exhibit a higher number of missed targets, particularly
for small-scale targets. The network has a poor detection rate for targets and is prone to
wrongly identifying items like oil tanks as ships. YOLOX enhances the detection efficiency,
although it does result in some incorrect identifications of targets, which negatively im-
pacts performance. Although MLBR-YOLOX and CviTF-Net can detect most ship targets,
their confidence level is not as good as that of WDFA-YOLOX. WDFA-YOLOX demon-
strates a minimal occurrence of false alarms and missed detections when applied to the
sample images.
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As shown in Figure 13, both datasets exhibited multiscale transformations and dense
arrangements in the characteristics of ships. While several existing algorithms and WDFA-
YOLOX successfully detected the corresponding targets, there were instances where the
current algorithms failed to accurately identify the ships. These cases resulted in very low
probability scores for the detections. However, our proposed WDFA-YOLOX algorithm
achieved confidence of 91%, 93%, 96%, and 97% for detecting the four targets, respectively,
as shown in Figure 13a in the seventh row. Furthermore, the confidence of the Faster
R-CNN algorithm and YOLOX algorithm in detecting ships was approximately 1–5%
lower than that of WDFA-YOLOX. Simultaneously, both Faster R-CNN and YOLOX exhibit
1–4 instances of missed detections in the detection results when the texture features of
the ships are not prominent and occlusion occurs. However, WDFA-YOLOX effectively
mitigates false alarms and reduces the number of missed detections, with only one ship
remaining undetected. Furthermore, WDFA-YOLOX increases the probability fraction
of detection by approximately 4%. The aforementioned result confirms the efficacy of
the enhanced technique for identifying ships in SAR images. However, MLBR-YOLOX
and CviTF-Net are not efficient in handling densely arranged targets in the nearshore
scene. They tend to under-report and mistakenly treat multiple targets as a single target,
as demonstrated in rows 2 and 3 in Figure 13b. So, WDFA-YOLOX is more proficient in
dealing with this type of target.

Ground Truth

Faster-RCNN

YOLOX

SCSA-Net

Proposed

WDFA-YOLOX

(a) small object (b) multi-scale

CviTF-Net

MLBR-YOLOX

Figure 13. Experimental results of different algorithms on small, multiscale ships.

4. Discussion

The performance of algorithms was evaluated on two datasets with different scenarios,
including offshore and inshore scenarios, scenarios with objects that interfere near the
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ships, and scenarios with densely packed ships. In offshore scenarios, the target has a
relatively simple background environment but occupies a small portion of the image, which
increases the possibility of missed detections. In inshore scenarios, the target is surrounded
by a complex background environment, making it challenging to distinguish between
the ship target and the shore’s buildings. In scenarios with object interference, such as
oil tanks that resemble the ship in shape and texture, it becomes difficult to differentiate
the target, leading to a higher chance of false alarms. This suggests that the proposed
algorithm effectively reduces the possibility of both false and missed detections while still
maintaining a high level of accuracy in detecting ships within a complex environmental
context. Hence, WDFA-YOLOX has been proven to possess robust SAR ship detection
capabilities across several settings, which efficiently mitigates the missed detection of
ships, with favourable outcomes even in the detection of tiny SAR ships, showing that
the AP of ship detection using this approach achieves 99.11% and 96.20% on the SSDD
and HRSID datasets, respectively. On the basis of the current research, it is planned to
design a series of experiments in a thesis extension to further test the performance of the
model on randomly selected SAR images, especially on unseen scenes, to comprehensively
evaluate its performance. Furthermore, it can be seen from the size of the FPS index in
the experimental results that, compared with similar high-performance detection models,
WDFA-YOLOX establishes a better balance between improving accuracy and efficiency,
achieving the more efficient use of computing resources. But the module proposed in this
article does add some computational overhead. Therefore, in future research work, we will
focus on solving the core issue of balancing computing efficiency and model accuracy. In
particular, effective network optimisation algorithms like quantisation compression, sparse
training, and other tactics, as well as the creation of lightweight network architectures
like channel pruning, knowledge distillation, and other technological methods, will be
actively explored.

5. Conclusions

In complex environments such as densely packed ship formations in coastal regions
like harbours, there is a high density of small-sized ships, which increases the risk of
encountering challenges related to false and missed detections. Additionally, the original
model network exhibits slow convergence speed. To address these challenges, a new SAR
ship detection network based on YOLOX called WDFA-YOLOX, which is driven by the
wavelet transform, using attention to enhance features in SAR images, is proposed. The
proposed network greatly enhances the detection accuracy of ships in SAR images across
various intricate scenarios and scales, particularly at smaller scales. Wavelet features are
employed to guide the attention of the network towards intricate characteristics in the
image, taking into account the influence of the complex background on ship detection.
The WCR is proposed as the backbone to form the WSPP, with the aim of mitigating the
influence of background noise and intricate backgrounds on ship detection. Subsequently,
we propose GLAFE, designed to capture both the local and global information of ships.
This module boosts the feature representation of small targets, mitigates the impact of
irrelevant information in images with small-sized ships, and reduces missed detections.
The original loss function is substituted for the Chebyshev distance-generalised IoU loss
function with a dual penalty term, resulting in the enhanced accuracy of the detection
frame and the better convergence speed of the network.

The performance of the proposed method was validated on two SAR ship image
datasets, showing that the AP of ship detection using this approach achieves 99.11%
and 96.20% on the SSDD and HRSID datasets, respectively. This shows that the pro-
posed method outperforms other techniques in SAR ship detection. Compared to other
high-performance detection models, WDFA-YOLOX establishes a better balance between
increasing accuracy and efficiency, achieving the more effective use of computing resources,
even though the modules provided in this paper do add some computing overhead.
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In future research work, we will focus on solving the core issue of balancing computing
efficiency and model accuracy. In particular, effective network optimisation algorithms
like quantisation compression, sparse training, and other tactics, as well as the creation of
lightweight network architectures like channel pruning, knowledge distillation, and other
technological methods, will be actively explored. Furthermore, validating the effectiveness
of the model on a wider set of images is an important direction for future research. On
the basis of the current research, it is planned to design a series of experiments in a thesis
extension to further test the performance of the model on randomly selected SAR images,
especially on unseen scenes, to comprehensively evaluate its performance. This will include
but not be limited to SAR images of different bands, resolutions, looking detections, and
environmental conditions to ensure that the practicality of the model is fully verified.

Author Contributions: Conceptualisation, F.W. and T.H.; methodology, T.H. and Y.X.; software, Y.X.
and B.M.; validation, T.H. and B.M.; formal analysis, Y.X. and S.S.; investigation, T.H. and B.M.;
resources, F.W. and C.Z.; data curation, Y.X. and C.Z.; writing—original draft preparation, T.H.;
writing—review and editing, F.W., T.H., and S.S.; visualisation, T.H. and S.S.; supervision, F.W. and
C.Z.; project administration, F.W. and C.Z.; funding acquisition, F.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This paper uses the SSDD and HRSID. Data sources: https://github.
com/TianwenZhang0825/Official-SSDD and https://github.com/chaozhong2010/HRSID (accessed
on 1 January 2024).

Acknowledgments: The editors and anonymous reviewers are appreciated by the authors for their
insightful feedback, which significantly enhanced the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AP Average precision
CNN Convolutional neural network
CRB Convolution residual block
Dconv Deformable convolution
DWT Discrete wavelet transform
FPS Frame per second
GRCB Gated residual convolution block
GLFAE Global and Local Feature Attention Enhancement
GSA Global spatial attention
HRSID High-Resolution SAR Images Dataset
LCA Local channel attention
P Precision
R Recall
R-CNN Region-convolutional neural network
SAR Synthetic Aperture Radar
SPP Spatial pyramid pooling
SSD Single-shot multibox detector
SSDD SAR Ship Detection Dataset
WCR Wavelet cascade residual
WDFA-YOLOX Wavelet-Driven Feature-Enhanced Attention–You Only Look Once X Network
WSPP Wavelet transform-based SPP module
YOLO You Only Look Once
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